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Abstract

Background

Atrial fibrillation (AFib) is the most common cardiac arrhythmia associated with stroke, blood
clots, heart failure, coronary artery disease, and/or death. Multiple methods have been pro-
posed for AFib detection, with varying performances, but no single approach appears to be
optimal. We hypothesized that each state-of-the-art algorithm is appropriate for different
subsets of patients and provides some independent information. Therefore, a set of suitably
chosen algorithms, combined in a weighted voting framework, will provide a superior perfor-
mance to any single algorithm.

Methods

We investigate and modify 38 state-of-the-art AFib classification algorithms for a single-lead
ambulatory electrocardiogram (ECG) monitoring device. All algorithms are ranked using a
random forest classifier and an expert-labeled training dataset of 2,532 recordings. The
seven top-ranked algorithms are combined by using an optimized weighting approach.

Results

The proposed fusion algorithm, when validated on a separate test dataset consisting of
4,644 recordings, resulted in an area under the receiver operating characteristic (ROC)
curve of 0.99. The sensitivity, specificity, positive-predictive-value (PPV), negative-predic-
tive-value (NPV), and F1-score of the proposed algorithm were 0.93, 0.97, 0.87, 0.99, and
0.90, respectively, which were all superior to any single algorithm or any previously
published.

Conclusion

This study demonstrates how a set of well-chosen independent algorithms and a voting
mechanism to fuse the outputs of the algorithms, outperforms any single state-of-the-art
algorithm for AFib detection. The proposed framework is a case study for the general notion
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of crowdsourcing between open-source algorithms in healthcare applications. The exten-
sion of this framework to similar applications may significantly save time, effort, and
resources, by combining readily existing algorithms. It is also a step toward the democratiza-
tion of artificial intelligence and its application in healthcare.

Introduction

Atrial fibrillation (AFib) is the most common cardiac arrhythmia, with an increasing preva-
lence worldwide [1]. As of 2020, the worldwide prevalence of AFib was 37,574 million cases
(0.51% of the worldwide population), and has increased by 33% during the last 20 years [2].
AFib is associated with a five-fold increase in likelihood of ischemic stroke, blood clots, heart
failure, coronary artery disease, and two-fold increase in likelihood of death [3]. Despite its
prevalence and the importance of its diagnosis, AFib remains under-diagnosed [4], mainly
due to asymptomatic individuals and the fact that the electrocardiogram (ECG) is not rou-
tinely monitored in everyday life. A recent study estimated that 13.1% of AFib cases were undi-
agnosed and over half of these were at moderate to high risk of stroke [5]. The ECG is in fact
the primary and most accurate means of screening subjects for AFib.

Motivated by the aforementioned factors, AliveCor (Mountain View, CA) developed a low-
cost patient-driven personal ECG device (Kardia), with a focus on outpatient monitoring (pri-
marily) for AFib detection. Personal ECG devices such as the AliveCor Kardia and the Apple
Watch enable the detection on a much larger scale than ever before, currently generating
100,000’s of ECGs a day. However, this places additional burden on healthcare systems,
already swamped by systems designed to be extremely sensitive, but not specific. Optimizing
the identification of AFib for such personal devices to reduce this burden was the motivation
behind the 2017 PhysioNet/Computing in Cardiology (CinC) Challenge and this current
research, on which we build in this work.

Many research groups worldwide have worked on ECG classification for AFib detection
and other arrhythmias. However, most of these algorithms are evaluated on very limited data-
sets and compared with only a few other algorithms. This results in algorithms that underper-
form on larger datasets and/or tend to be more sensitive or more specific on unseen test data.
In this work, we develop a new AFib detection algorithm based on existing algorithms and
demonstrate that an appropriate fusion mechanism leads to an algorithm with superior perfor-
mance and highly robust on unseen datasets.

Although the superior performance and robustness of ensemble algorithms is well-known
in the field of machine learning [6], the approaches are generally ensembles of weak learners.
In this work, 38 different algorithms trained in different conditions independently by indepen-
dent research teams (i.e., an ensemble of strong learners) are combined to address the issue of
detecting AFib from a single ECG channel. To do so, a total of 38 algorithms were investigated:
a total of 36 independently developed algorithms sourced from the 2017 PhysioNet/CinC
Challenge [7], plus two independently developed algorithms by the coauthors of this paper
(AliveCor Inc and Li et al. [8]).

The 2017 PhysioNet/CinC Challenge focused on differentiating AFib from noise, non-AFib
normal (Normal), and non-AFib abnormal (Other) rhythms in short (9-61 s) single lead-I
ECG recordings captured by the AliveCor Kardia device [7]. All PhysioNet/CinC Challenge
algorithms were trained on the PhysioNet/CinC training dataset consisting of 8,528 ECG
recordings. We were not involved in the training process of these algorithms except Zabihi
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et al. [9], but only had access to the trained algorithms. We emphasize that in this work, the
processing steps inside each algorithm, such as preprocessing, noise removal, QRS detection,
and classification method, are not important, and we need only the output of each algorithm.
The ranking and voting system removes highly flawed algorithms. As the focus of this work is
on AFib vs. non-AFib detection, the algorithms were modified slightly such that in the case of
Normal and Other rhythms, they generate non-AFib labels (through the fusion of Normal and
Other labels produced by each algorithm).

The independently developed algorithm by Li et al. [8] was designed to classify AFib from
non-AFib using a support vector machine [10] (SVM) model and 14 features extracted from
the beat-to-beat interval (RR interval) time-series. The extracted features were from different
domains: 7 time-domain, 3 frequency-domain, and 4 nonlinear parameters. A recursive fea-
ture elimination algorithm was adopted to select a set of 8 features for classification. The
model was trained on the MIT-BIH Atrial Fibrillation Database [11, 12] with a total number of
23 10-hour long ECG records by a ten-fold cross-validation approach.

The AliveCor Kardia algorithm combines ten different processing steps into an SVM for
determining a final AFib call. The Kardia algorithm is specifically adapted to processing short,
30 s recordings from AliveCor’s handheld device. First, a deep neural network [13] (DNN)-
based method is used to locate and classify QRS complexes into one of three classes: normal,
premature ventricular complex (PVC), and premature atrial complex (PAC). After this, an
average beat is derived, as well as various classical RR variability metrics. Two additional
DNNs are then utilized: a deep convolutional neural network (CNN) that processes the aver-
age beat, and a recurrent neural network (RNN) that processes the normalized RR time-series
by taking into account beat labels. These two additional DNNs each produce a softmax output.
The inputs of the final SVM classifier are the softmax outputs of DNNs and eight classical RR
variability features. The AliveCor Kardia algorithm was trained over a total number of 24,000
non-public ECG records.

Materials and methods
ECG dataset and data annotation

The training and testing datasets of this study are independent of the three datasets mentioned
earlier and both extracted from larger datasets developed in AliveCor Inc. In what follows, we
briefly describe the developments of these datasets. 1,589 ECG recordings from unique subjects
were selected from the original single-lead Kardia Mobile & Kardia Band validation set,
AliveDBI1. AliveDB2 was built upon AliveDB1 by adding a set of 1,000 6L-lead recordings each
from a unique 6L user, resulting in 2,589 recordings. These recordings were annotated inde-
pendently by two cardiologists. A third tie-breaker cardiologist labeled the 124 recordings for
which the previous annotators disagreed. The labels that annotators provided for the record-
ings are: inverted (when the polarity of ECG was inverted), sinus rhythm, atrial fibrillation,
atrial flutter, bradycardia, tachycardia, wide QRS (QRS > 120 ms), no P-wave, unclassified
(when the cardiologist could not classify the rhythm), and unreadable or noisy (when the cardi-
ologist could not read the recording due to a large amount of noise). The training set of this
study is a subset of AliveDB2 by removing a set of 57 unsuitable recordings (e.g., pacemaker
signals) selected by a cardiologist. In addition, in this study, we only use the Lead I signal. The
final training set has 2,532 30 s single-lead ECG recordings. We limited the number of classes
to three: AFib, noisy, and non-AFib (rhythms that are neither AFib nor noisy). The distribution
of these classes in the training dataset is as follows: 2,317 non-AFib, 137 AFib, and 78 noisy.
The 6L-2020 dataset is composed of a set of 18,850 2-lead recordings from unique users
made with Kardia 6L. This dataset is not fully randomized such that it is sampled specifically
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to increase the prevalence of arrhythmias and unusual heart rates. In this dataset, the ECG
recordings were divided into blocks of 1,000 and annotated by CardiacMinds, using AliveCor’s
annotation tool. Each block of 1,000 contained 940 unique files and 60 duplicate files, except
for Block 1, which contained 990 unique files and only 10 duplicates. Duplicates were added
with modified unique IDs and used to ensure consistency between multiple annotators. After
annotation by CardiacMinds, a cardiologist reviewed the first 5 blocks (5,000 recordings) and
corrected the annotations. Then, the 250 duplicate records were removed from this 5-block
data to obtain 4,750 unique recordings. The existing labels in this dataset are: normal sinus
rhythm, sinus arrhythmia, atrial fibrillation, atrial flutter, first degree AV block, second degree
AV block (type I), second degree AV block (type II), third-degree AV block, accelerated junc-
tional rhythm, atrial bigeminy, atrial trigeminy, atrial high order ectopy (>trigeminy), ventric-
ular bigeminy, ventricular trigeminy, ventricular high order ectopy (> trigeminy),
supraventricular tachycardia (SVT), SVT run, nonsustained ventricular tachycardia, ventricu-
lar tachycardia, wide QRS, unreadable, and inverted. Some recordings do not have any labels,
meaning that the cardiologist has not decided to allocate any label to them due to uncertainty.
The testing dataset of this study is the remaining 4,644 recordings after removing all unlabeled,
noisy, and unsuitable records from the 5-block data. In the testing dataset, we only use Lead I
data and two class labels: AFib and non-AFib, which encompasses all class labels except AFib,
noisy, and unlabeled. The testing dataset consisted of 777 AFib and 3,867 non-AFib.

Ranking and selecting the algorithms/features

A total of 38 recently developed AFib detection algorithms were studied. The studied algo-
rithms involved various machine learning methods, including but not limited to bagged deci-
sion trees [14], random forests [15], deep neural networks, and SVM. We aimed to design a
fusion mechanism to combine these base-level algorithms to increase the performance of auto-
matic AFib detection. To add some ECG contextual information [16] to our algorithm, we
also provided a set of 24 ECG features derived from Li et al. [8] (n = 14) and Kardia (n = 10).
The combination of the outputs of 38 base-level learners (algorithms) and the 24 features was
treated as a new set of features (n = 62) for a meta-level learner.

The 14 features employed by Li et al. [8] are mRR (mean of RR intervals), minRR (mini-
mum of RR intervals), maxRR (maximum of RR intervals), medHR (median of heart rate),
SDNN (standard deviation of RR intervals), PNN50 (percentage of RR intervals larger than 50
ms), RMSSD (square root of the mean squared differences of successive RR intervals), LF
(low-frequency power), HF (high-frequency power), LE/HF (the ratio of LF to HF), COSEn1
(coefficient of sample entropy), NFEn (normalized fuzzy entropy), MAD (median of the varia-
tion in the absolute standard deviation from the mean of heart rate in three adjacent RR seg-
ments), and AFEv (an AF evidence feature, as a numeric representation of the Lorenz plot).

The 10 features employed by the Kardia algorithm are RMSSD1 (square root of the mean
squared differences of successive RR intervals), RMSSD2 (square root of the mean squared dif-
ferences of every other RR interval), RMSSD3 (square root of the mean squared differences of
every third RR interval), RMeSSD1 (square root of the median squared differences of succes-
sive RR intervals), RMeSSD2 (square root of the median squared differences of every other RR
interval), RMeSSD3 (square root of the median squared differences of every third RR interval),
mHR (mean heart rate), COSEn2 (coefficient of sample entropy), CNNout (output of CNN
that processes average beat), and RNNout (output of RNN that processes RR time-series).
These 10 features are calculated after a deep neural network algorithm locates and classifies
QRS complexes into either normal, PAC, or PVC. It is noteworthy that although some feature
types are the same between Kardia and those used by Li et al. [8], their values are different
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because the algorithms use different QRS detection methods. Li et al. [8] combine three widely
used QRS detection algorithms with the majority voting of the results to calculate the RR
intervals.

To train the meta-level learner (i.e., fusing algorithm), we first selected the most relevant
and informative meta-level features (i.e., AFib detection algorithms and ECG features) by
ranking them using a random forest classifier and randomizing (permuting) the values of each
feature. The algorithms/features were sorted in the reverse order based on their out-of-bag
errors; the higher the error, the better the algorithm/feature. The rationale is that by permuting
or randomizing the output values of an algorithm or the values of a feature, if the random for-
est classifier’s performance drops, the contribution of that algorithm/feature is significant. But,
if randomizing the values of an algorithm or a feature does not have any significant effect on
the performance of the classifier (a small out-of-bag error), it indicates that the algorithm/fea-
ture is not important for classification and can be removed without a significant drop in the
performance. This is a well-known approach based on a built-in characteristic of the random
forest classifier for feature selection [15, 17].

Fusion mechanism

Various fusion mechanisms or voting strategies are proposed in the literature ranging from
naive voting system based on the best performance of algorithms, to LASSO, LASSO+ [16],
and Bayesian approaches [18-21], to combine the algorithms’ outputs in smarter and system-
atic ways. In this work, we examined multiple bagged and boosted decision trees to combine
different algorithms, including bagged decision tree, random forest, AdaBoost [22], RUSBoost
[23], and TotalBoost [24]. After testing each approach in a repeated (five times) stratified ten-
fold cross-validation architecture on the training dataset [25], we conclude that the result of
the random forest model was both better and more robust (i.e., varied less among different
folds of the cross-validation procedure), as compared with the other methods that we evalu-
ated. It is worth mentioning that due to the size of our training dataset (2,532), we did not try
data-hungry algorithms such as deep neural networks.

A random forest classifier is a type of bagged decision tree that samples the features in each
training step. In this case, it generates an ensemble of nearly uncorrelated predictors (decision
trees) [26]. The training of a random forest classifier involves bagging, i.e., multiple sampling
of the training data using the bootstrap method. We sampled the original data with replace-
ment until the subset had the same size as the original data. The decision tree was then trained
on that subset and expanded (grown) by finding the best split (based on the cross-entropy)
among a randomly selected set of features. We let the trees grow deep (i.e., until each terminal
node has only one unique data sample). In growing the trees for classification, a square root of
features is typically randomly sampled in each node. We did the same for the first random for-
est classifier used for algorithm ranking. However, we set the number of (randomly sampled)
features to unity to guarantee that the ensemble of predictors became uncorrelated for training
the fusing random forest. This number was also cross-validated on the training dataset. In this
way, 500 predictors were generated, which at the end, the decision is made by collecting their
votes and choosing the candidate (hypothesis) that received the majority of votes.

In this work, the votes (decisions) of only seven top-ranked algorithms (cf. the next section)
are collected and given to each predictor as input (feature vector). Each of the seven algorithms
classifies each test sample and generates the first-level outputs (votes). Six of the votes are cate-
gorical (class labels); however, Kardia’s vote is in the form of a class-specific continuous out-
put. Then, each of the 500 predictors (decision trees) classifies the feature vectors associated
with the test samples and generates the final 500 votes. The final decision is made by choosing
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the hypothesis (class label) that received the majority of votes. It can also be in the form of a
class-specific continuous output (e.g., probability) as a ratio of votes allocated to each class.

Results

Sorted algorithms/features

Table 1 shows the rank of each algorithm/feature on the training dataset along with the perfor-
mance of each algorithm. The noisy labels were removed from the training dataset and only

used AFib and non-AFib rhythms for ranking the algorithms. The same procedure was applied

for assessing the performance of Kardia and Li et al. [8] algorithms. However, for evaluating
the performance of 36 PhysioNet/CinC algorithms, we used all three classes but at the end,

Table 1. The 38 base-level algorithms and the 24 ECG features were ranked using a random forest classifier. The detailed descriptions of the features are described in
Methods. The classification results of the 38 algorithms on the training dataset are also listed. For features the corresponding locations of classification results are filled
with N/A (i.e., not applicable). The source codes and their related papers can be found in https://physionetchallenges.org/2017/results/.

Rank Algorithm/Feature Entry Code Sensitivity Specificity PPV NPV Fl1-score AUC
1 Kardia —- 0.905 0.999 0.976 0.994 0.939 0.999
2 Datta et al. [27, 28] shreyasi-datta-209 0.898 0.993 0.872 0.994 0.885 0.945
3 Baydoun et al. mohammed-baydoun-208 0.898 0.996 0.932 0.994 0.915 0.947
4 Kropf et al. [29, 30] martin-kropf-205 0.920 0.995 0.907 0.995 0.913 0.957
5 Zabihi et al. [9] morteza-zabihi-208 0.883 0.996 0.931 0.993 0.906 0.940
6 Gliner et al. [31, 32] gliner-vadim-210 0.869 0.995 0.908 0.993 0.888 0.932
7 Solinski et al. [33] rymko-207 0.883 0.989 0.823 0.993 0.852 0.936
8 Patidar et al. [34] ashish-sharma-210 0.891 0.994 0.891 0.994 0.891 0.942
9 Jiménez-Serrano et al. [35] elena-simarro-mondejar-216 0.832 0.996 0.919 0.990 0.874 0914
10 Sopic et al. [36] dionisije-sopic-208 0.854 0.995 0.907 0.992 0.880 0.925
11 Liu et al. [37] na-liu-210 0.869 0.993 0.882 0.993 0.875 0.931
12 Sadr et al. [38] nadi-sadr-208 0.891 0.972 0.649 0.994 0.751 0.932
13 Yazdani et al. [39] sasan-yazdani-204 0.818 0.995 0.903 0.990 0.858 0.906
14 CNNout — N/A N/A N/A N/A N/A N/A
15 Liet al. [8] —- 0.978 0.975 0.698 0.999 0.815 0.977
16 AFEv [8] — N/A N/A N/A N/A N/A N/A
17 Jiayu et al. chen-jiayu-202 0.854 0.993 0.867 0.992 0.860 0.923
18 minRR (8] — N/A N/A N/A N/A N/A N/A
19 Ocoa victor-manuel-jose-ocoa-202 0.876 0.990 0.828 0.993 0.851 0.933
20 Plesinger et al. [40, 41] filip-plesinger-210 0.832 0.993 0.877 0.990 0.854 0.913
21 NFEn [8] — N/A N/A N/A N/A N/A N/A
22 Christov et al. [42, 43] ivaylo-christov-204 0.890 0.989 0.824 0.994 0.856 0.940
23 MAD (8] — N/A N/A N/A N/A N/A N/A
24 Stepien et al. [44] katarzyna-stepien-209 0.839 0.993 0.865 0.991 0.852 0.916
25 Mahajan et al. [45] oguz-akbilgic-219 0.781 0.996 0.922 0.988 0.846 0.889
26 Costa et al. javier-de-la-torre-costa-205 0.825 0.993 0.863 0.990 0.843 0.909
27 RNNout — N/A N/A N/A N/A N/A N/A
28 LFn [8] — N/A N/A N/A N/A N/A N/A
29 Mei et al. zhenning-mei-209 0.796 0.988 0.784 0.988 0.790 0.892
30 Chandra et al. [46] b-s-chandra-207 0.883 0.977 0.688 0.993 0.773 0.930
31 RMSSD2 — N/A N/A N/A N/A N/A N/A
32 RMeSSD1 — N/A N/A N/A N/A N/A N/A
33 Liu et al. [47] runnan-he-210 0.825 0.985 0.753 0.990 0.788 0.905
34 COSEn1 (8] —- N/A N/A N/A N/A N/A N/A
(Continued)
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Table 1. (Continued)

Rank Algorithm/Feature Entry Code Sensitivity Specificity PPV NPV F1-score AUC
35 RMeSSD2 — N/A N/A N/A N/A N/A N/A
36 mRR [8] — N/A N/A N/A N/A N/A N/A
37 Bonizzi et al. [48] joel-karel-203 0.869 0.969 0.617 0.992 0.721 0.919
38 mHR — N/A N/A N/A N/A N/A N/A
39 Da Silva-Filarder et al. [49] matthieu-da-silva-filarder-204 0.839 0.976 0.665 0.991 0.742 0.908
40 RMSSD1 — N/A N/A N/A N/A N/A N/A
41 COSEn2 — N/A N/A N/A N/A N/A N/A
42 HFn [8] — N/A N/A N/A N/A N/A N/A
43 RMSSD3 — N/A N/A N/A N/A N/A N/A
44 medHR [8] —- N/A N/A N/A N/A N/A N/A
45 LE/HF [8] — N/A N/A N/A N/A N/A N/A
46 Ghiasi et al. [50] kamran-kiani-203 0.730 0.995 0.885 0.985 0.800 0.862
47 SDNN [8] — N/A N/A N/A N/A N/A N/A
48 RMeSSD3 — N/A N/A N/A N/A N/A N/A
49 Ferris et al. lluis-borras-ferris-205 0.730 0.982 0.694 0.984 0.712 0.856
50 Marques et al. ines-chavarria-marques-204 0.336 0.997 0.868 0.963 0.484 0.666
51 RMSSD (8] — N/A N/A N/A N/A N/A N/A
52 Goovaerts et al. griet-goovaerts-206 0.620 0.993 0.842 0.979 0.714 0.807
53 Hasna et al. [51] octavian-lucian-hasna-202 0.256 0.973 0.350 0.958 0.295 0.614
54 Alvarez et al. pedro-alvarez-204 0.810 0.986 0.766 0.989 0.787 0.898
55 PNN50 [8] —_ N/A N/A N/A N/A N/A N/A
56 Santos et al. carlos-fambuena-santos-202 0.175 0.972 0.264 0.954 0.211 0.574
57 Hassanat et al. ahmad-hassanat-206 0.679 0.967 0.541 0.981 0.602 0.823
58 Kalidas vignesh-kalidas-204 0.752 0.980 0.678 0.986 0.713 0.866
59 Amandi et al. ruhallah-amandi-205 0.467 0.966 0.441 0.969 0.454 0.717
60 Wang ludi-wang-206 0.788 0.986 0.761 0.988 0.774 0.887
61 Jekova et al. [52] irena-jekova-204 0.584 0.970 0.530 0.976 0.556 0.777
62 maxRR [8] — N/A N/A N/A N/A N/A N/A

https://doi.org/10.1371/journal.pone.0259916.t001

considered non-AFib and noisy labels as the negative class. The reason for this modification is
that Kardia and Li et al. [8] algorithms are binary classifiers, but the modified versions of Phy-
sioNet/CinC algorithms are 3-class classifiers.

Fusion of the selected algorithms

After ranking the algorithms/features by the approach mentioned above, a different number of
top-ranked algorithms/features were selected and fed into another random forest classifier for
AFib detection. By performing a grid search in a repeated (five times) stratified ten-fold cross-
validation procedure for algorithm/feature selection and hyperparameter tuning [25], it was
concluded that selecting more than seven top-ranked algorithms/features would not improve
the classification performance in terms of the F1-score on the training dataset. So, in this
work, we selected the seven top-ranked algorithms. The outputs of these algorithms were then
fused to train another random forest classifier, using the training dataset and the parameters
derived from the aforementioned cross-validated method.

The proposed model’s performance was assessed on the test dataset. The proposed model
achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.99 for
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Fig 1. ROC and precision-recall curves. The left panel shows the ROC curves of our proposed algorithm (fusion of algorithms) and Karida. Since the other six
algorithms do not generate class-specific continuous output (they generate only a class label), their operating points are indicated with one point defined by their
sensitivity and specificity. The right panel shows the precision-recall curves of our proposed algorithm and Kardia along with the operating points of the other six

algorithms.

https://doi.org/10.1371/journal.pone.0259916.9001

AFib detection. Its sensitivity, specificity, positive-predictive-value (PPV), negative-predictive-
value (NPV), and F1-score were 0.93, 0.97, 0.87, 0.99, and 0.90, respectively. Fig 1 shows the
ROC and precision-recall curves of the fusion of algorithms and the performance of individual
top-ranked algorithms participating in the fusion algorithm. As can be seen, the fusion of algo-
rithms surpasses each individual algorithm’s performance.

Table 2 shows the performance of the fusion algorithm as well as the performance of
selected algorithms using the aforementioned algorithms/features ranking strategy and the
cross-validation procedure. From this table, it is seen that the performance of the fusion of
algorithms is superior to any individual algorithm across all metrics tested. It is noteworthy
that for evaluating the performance, one needs to consider all criteria together. For example,
although the algorithm by Kropf et al. [29] has the highest sensitivity and NPV, its overall per-
formance is not the highest when considering all performance criteria. This can be observed in
Fig 1 by the distance of the operating point of Kropf’s algorithm from the ideal points (i.e.,
upper left corner in the ROC curve figure and upper right corner in the precision-recall curve
figure).

Table 2. The classification results of the selected algorithms as well as the fusion algorithm on the test dataset.

Algorithm Sensitivity Specificity PPV NPV F1-score AUC
Kardia 0.916 0.969 0.855 0.983 0.885 0.983
Kropf et al. [29] 0.958 0.953 0.804 0.991 0.874 0.955
Zabihi et al. [9] 0.914 0.965 0.838 0.982 0.874 0.939
Datta et al. [27] 0.916 0.962 0.830 0.983 0.871 0.939
Baydoun et al. 0.918 0.956 0.808 0.983 0.859 0.937
Solinski et al. [33] 0.895 0.941 0.752 0.978 0.817 0.918
Gliner et al. [31] 0.879 0.951 0.782 0.975 0.827 0.915
Fusion of Algorithms 0.929 0.973 0.873 0.986 0.900 0.988

https://doi.org/10.1371/journal.pone.0259916.t002

PLOS ONE | https://doi.org/10.1371/journal.pone.0259916 November 16, 2021


https://doi.org/10.1371/journal.pone.0259916.g001
https://doi.org/10.1371/journal.pone.0259916.t002
https://doi.org/10.1371/journal.pone.0259916

PLOS ONE

Atrial fibrillation detection in outpatient electrocardiogram monitoring

Table 2 also shows that among the top seven selected meta-level features (i.e., AFib
detection algorithms and ECG features), all of them were the output values of the algo-
rithms, and no ECG feature was selected. However, it is noteworthy that at least ten features
contributed to the final algorithm through the Kardia algorithm (Kardia was selected in the
final set).

Table 2 specifically demonstrated that the proposed method outperforms the Kardia algo-
rithm (i.e., the best single algorithm) by 0.015 and 0.005 in terms of F1-score and AUC,
respectively. At first glance, it seems that this improvement is marginal. However, it is better
understood in terms of reduced “false positives” and reduced “false negatives”. Considering
100,000 ECG recordings per day and AFib prevalence of 0.5% (Lippi et al. [2]), the number
of AFib and non-AFib recordings will be 500 and 99,500 per day, respectively. The 2.7%
false-positive rate of our proposed method (see next section) leads to 2,687 false-positive
errors per day. If we do the same calculation for Kardia algorithms with 3.1% false-positive
rates, the number of false-positive errors will be 3,085 per day. This number is 398 cases
more than our proposed method and typically require case-by-case screening by human
experts. On the other hand, the 7.1% false-negative rate of our proposed method translates
to 36 false-negative errors per day (i.e., AFib cases which are not diagnosed). This number
for the Kardia algorithm with 8.4% false-negative rates will be 42, which is 6 cases more. It is
worth mentioning that although the aforementioned 0.5% is AFib prevalence worldwide, we
expect a higher prevalence among the outpatient monitored populations. For example, if we
use 2% AFib prevalence reported by Zoni-Berisso et al. [53] the reduced false positives and
reduced false negatives will be 392 and 26 cases, respectively. Moreover, if we use the 5.4%
AFib prevalence in our training dataset then we will have 379 and 71 reduced false positives
and reduced false negatives, respectively.

Considering that all other six selected algorithms have significantly inferior performance to
Kardia in terms of F1-score and AUC, if we repeat the same experiment by designing a fusion
mechanism to combine those six algorithms, we arrive at the same observation. The new
model achieves a 0.895 F1-score and 0.980 AUC, respectively. These results are comparable to
the Kardia algorithm’s performance. However, the reason that the performance of the fusion
of seven algorithms is higher than Kardia is that the other six algorithms provide some inde-
pendent information from Kardia, and the random forest is able to determine which algo-
rithms to weight more in different circumstances.

Sources of Misclassification

Fig 2 shows the detailed results of the proposed model in the form of a confusion matrix.
Accordingly, from 777 (= 722 + 55) AFib recordings, 722 are detected correctly, resulting in
a sensitivity of 92.9%. However, 55 AFib instances are incorrectly classified as non-AFib
(false negatives), which results in a 7.1% false-negative rate. Further investigation in the
dataset reveals that most false-negative errors belong to those AFib recordings that are
either noisy or slow. By slow AFib, we refer to AFib rhythms that have a ventricular rate less
than 60 bpm. Moreover, there are also a few instances of AFib/supraventricular tachycardia
(SVT) that are incorrectly classified as non-AFib. Fig 3 shows typical instances of these
types of false negative errors.

The confusion matrix in Fig 2 also shows that among 3,867 (= 3762+ 105) non-AFib
recordings, 3,762 are classified as non-AFib, and 105 are classified as AFib resulting in 97.3%
specificity and a 2.7% false-positive rate, respectively. Again, a case-by-case visual inspection
of the dataset shows that among those 105 non-AFib recordings classified as AFib (false posi-
tive error), nearly half of them are atrial flutter. In fact, discrimination between AFib and atrial
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Fig 2. Confusion matrix for the proposed AFib detection algorithm.
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flutter from only lead I is sometimes difficult. We conjecture that if lead II data were available,
it was much easier to differentiate between AFib and atrial flutter. The remaining false-positive
errors include nonsustained ventricular tachycardia (NSVT), atrial bigeminy, first-degree AV
block, third-degree AV block, SVT, atrial high order ectopy, and sinus arrhythmia with wide
QRS (QRS > 120 ms). Fig 4 shows some instances of false-positive errors in our dataset.

Nois; Noisy  Ndisy disy oisy olsy

-1 I 1 I I ! e
0 5 10 15 20 25 30

time (s)

Fig 3. Examples of false-negative errors in AFib detection. SI is a 30 s noisy ECG segment in the test dataset labeled as
AFib but incorrectly classified as non-AFib. S2 is a slow AFib rhythm with a 34 bpm ventricular rate that is classified as
non-AFib. S3 is a segment of AFib with supraventricular tachycardia (SVT) that is incorrectly classified as non-AFib.

https://doi.org/10.1371/journal.pone.0259916.9003
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Fig 4. Examples of false-positive errors in AFib detection. S1 is a 30 s ECG signal in which an episode of atrial flutter
follows an episode of normal sinus rhythm. This ECG signal is classified as AFib. S2 is an episode of NSVT that is
incorrectly classified as AFib. S3 is an episode of SVT with wide QRS that is incorrectly classified as AFib.

https://doi.org/10.1371/journal.pone.0259916.9004

Discussion

This study designed and demonstrated a fusion-based algorithm for crowdsourcing between
open-source state-of-the-art algorithms for AFib classification. The proposed scheme outper-
formed any individual algorithm across all metrics. This indicated that the fusion mechanism
has successfully learned and combined the best aspect of each algorithm. In particular, the
importance of having high specificity without sacrificing sensitivity should not be underesti-
mated. With clinical applications involving the screening of large numbers of individuals, con-
fidence in the determination of AFib is highly advantageous for practical implementation. In
fact, if there are significant numbers of false positives, then the burden is on the human experts
(the healthcare system in the large scale) to adjudicate the interpretations. With the large num-
bers of readings that can be generated with consumer-focused devices, the burden can be
overwhelming.

As reported in our previous work [54], the framework presented here for fusing between
independent algorithms developed by different research teams is a generalized approach that
could represent a new paradigm for the future of the application of artificial intelligence (AI)
in medicine. However, considering machine learning and Al as a panacea for all problems in
designing the decision-making systems is dangerous, particularly in healthcare. This is why we
deliberately focused on and underlined the instances that our designed algorithm failed to dif-
ferentiate between AFib and non-AFib rhythms. We also note that our data did not include
any information on race, and so we were unable to evaluate the performance of the voting
approach in this domain. We note that this is an important area to explore before translating
the discoveries into practice.

Any data-driven algorithmic performance depends on the quality and size of the training
and test data. In this regard, if a specific type of examples were missing in the training dataset
or only a few samples are available, the algorithm cannot learn to differentiate between that
class and others (the imbalanced dataset phenomenon). For example, it was already discussed
that the developed algorithm incorrectly detects an episode of NSVT as AFib. The main reason
for this is that the number of instances of NSVT in our dataset is minimal, so the algorithm
cannot effectively learn to classify this rhythm as non-AFib, and mostly focuses on the changes
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in RR-intervals, thus classifying it as AFib. While expanding the labeled set of data, or include
more (independent) algorithms is likely to improve the framework, this cannot solve all the
issues. As noted earlier, nearly half of the false-positive errors of our fusion algorithm are due
to the classification of atrial flutter rhythms as AFib. It is well-known that flutter waves are
observed more easily in lead II compared to lead I. We therefore conclude that one either
needs to include lead II data in future analysis, or at least to be aware of this limitation and to
clearly report it in any machine-based AFib detection/reporting system, to avoid false alarms.

The relatively small size of the dataset used in this study, and the prevalence of rhythms nar-
row down our options to algorithms that are less data demanding and sensitive to the class
imbalance problem. In fact, the selected fusion algorithm in this work (i.e., a random forest) is
a good choice that can handle both the data size and class imbalance limitations well. However,
we conjecture that developing a much larger labeled dataset (and with more leads) will help
with the selection of a higher number of base algorithms and the combination of their deci-
sions will significantly boost performance. Nevertheless, the study described in this work dem-
onstrates that the combination of algorithms with appropriate voting mechanisms is an
effective way for decision-making, specifically in the healthcare domain, in which designing
new algorithms is typically very time-consuming and expensive. The role of public data and
public competitions to generate these independent algorithms is crucial.
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