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Predictive brain theory challenges the general assumption of a brain extracting
knowledge from sensations and considers the brain as an organ of inference, actively
constructing explanations about reality beyond its sensory evidence. Predictive brain has
been formalized through Bayesian updating, where top-down predictions are compared
with bottom-up evidence. In this article, we propose a different approach to predictive
brain based on quantum probability—we call it Quantum Predictive Brain (QPB). QPB
is consistent with the Bayesian framework, but considers it as a special case. The tenet
of QPB is that top-down predictions and bottom-up evidence are complementary, as
they cannot be co-jointly determined to pursue a univocal model of brain functioning.
QPB can account for several high-order cognitive phenomena (which are problematic
in current predictive brain theories) and offers new insights into the mechanisms of
neural reuse.
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“It’s not the deer that crosses the road,
it’s the road that crosses the forest”

[unknown author]

INTRODUCTION

Although we know that the sun is fixed and the horizon moves, we observe that the sun goes
down behind a stationary horizon. More than 150 years have passed since the German physicist
Hermann von Helmholtz described the involuntary mechanisms involved in visual impressions
(see Dayan et al., 1995). Being humans, we are often involved in situations (for instance, optical
illusions) in which the sensory evidence, which follows its own strict rules, seems to outclass our
rational expectations. The flourishing theory of predictive brain (e.g., Friston, 2009; Clark, 2013)—a
brain constantly matching top-down expectations with bottom-up sensory inputs—is sympathetic
to Helmholtz’s ideas and represents a powerful theoretical device, able to challenge the traditional
principles of a brain building models of the world by accumulating cues through bottom-up
processes. According to this view, the brain is a predictive machine reactive to “surprises” and works
through a hierarchical generative model aiming to minimize prediction error. Any adaptive change
minimizes free-energy, that is to say, the brain works through conservative principles (Friston,
2012, 2009).

But, involuntary mechanisms are not the end of the story. What about higher-order illusions? Let
us consider the incipit of this contribution “It’s not the deer that crosses the road, it’s the road that
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crosses the forest.” It summons up, by means of a high-level
“illusion,” the loss of awareness of the ecological embeddedness
of human beings. This kind of illusion is quite different to
Helmholtz’s one about the sun and the horizon. There is no
sensory illusion, as the deer actually crosses the road. But, the
illusion starts to be there exactly when one oversteps the veil
of sensory obviousness. Indeed, the point is not just a mere
spatial recognition of “who (unexpectedly) moves with respect
to what,” but that this recognition is somehow evocative and
poetically meaningful.

The theory of predictive brain is still in its infancy for
such kinds of phenomena involving higher-order processes and
complex sense-making. A deer crossing the road is, for sure,
unexpected, but this is relatively trivial. The most interesting
surprise lies in the higher-order discovery of the ecological
embeddedness, occurring when one realizes that the road is
nothing more than a small line in a huge forest. A deer crossing
the road is, to a different cognitive order, illusory once one
realizes that the driver’s point of view is incompatible with respect
to the forest’s (and to the deer’s) point of view. Put in different
words, we can hypothesize that the driver’s surprise lies in
experiencing two incompatible points of view—the driver’s and
the forest’s—and they are salient exactly because they cannot be
reduced to a unique model.

The Bayesian framework in predictive brain theory
represents a significant methodological device to account
for surprise—technically speaking “surprisal” (Clark, 2013)—
as the “unexpected” is used to update the model. However,
a Bayesian framework is somehow inadequate to model
such kinds of phenomena involving unconventional surprises,
incommensurable points of view and sophisticated contemplative
experience, which are a mark of the human being. In this
contribution, we propose a novel approach to predictive brain—
we call it Quantum Predictive Brain (QPB)—that exploits the
formalism of quantum cognition (Busemeyer and Bruza, 2012).
The fundamental idea of QPB is that top-down predictions
and bottom-up evidence are complementary; we can determine
the state of the top-down system only if we accept some non-
reducible uncertainty about the state of the bottom-up system,
and vice versa (for complementarity, see Plotnitsky, 2014;
Wang and Busemeyer, 2015). Far from being just a speculative
exploration (based on the use of a non-Kolmogorovian, quantum
probability), as we will explain in the next sections, the theoretical
reasons for a quantum approach to predictive brain are both
neurocognitive and psychological.

Predictive Coding
Predictive brain represents an alternative to the orthodox
framework based on the general assumption that sensory inputs
“ascend” by integrating the complexity of perceptual experience.
Predictive brain proposes an inverse explanation as “the brain
became an organ of inference, actively constructing explanations
for what’s going on ‘out there’, beyond its sensory epithelia”
(Friston, 2018, p. 1019). Predictive brain challenges the general
assumption that the brain is a device that extracts knowledge
from sensations, and proposes a unifying theory of cortical
function postulating that the core function of the brain is

the minimization of the prediction error, which represents the
mismatch between the predicted input and the actual evidence
(Rao and Ballard, 1999; Friston, 2009; Clark, 2013). In this
view, the brain is composed of a hierarchy of layers, where
each layer makes predictions about the layers below in the
hierarchy. A prediction error—the information that, at each layer,
is not successfully predicted—is formed through a comparison
between the downward descending predictions and the activity
of the layer. Prediction errors serve as input to higher levels
and can be used to update the mental model of the world.
Generally speaking, by minimizing the prediction error, the brain
performs perceptual inference and learning, as predictions are
instantiated at multiple scales and hierarchy levels, from the low-
level variation of sensory data to high-level models of causes
of sensory data (Clark, 2015). Prediction error minimization
is affected by precision, related to the “signal to noise ratio”
in updating mechanisms. Attention can be considered as the
inference of precision in hierarchical perception (Feldman and
Friston, 2010; see also Hohwy, 2012; Yon and Frith, 2021).
In more detail, prediction error minimization passes through
the inference of hidden external states (perception) through
updating the model of the world (learning) or through the actions
employed to conform to predictions. Despite the elegance of
the predictive brain framework, its neurobiological dimension is
nowadays subject to increasing investigation, as the evidence is
still mixed (Walsh et al., 2020).

The principles of predictive brain present important
theoretical antecedents—in particular, Kant’s a priori knowledge,
Helmholtz’s unconscious inference, and the notion of feedback
control in cybernetics. The modern mathematical formalization
of predictive brain—also known as predictive coding (Huang
and Rao, 2011)—is relatively recent. After the seminal article of
Rao and Ballard (1999), such formalization passed through the
recognition that predictive coding could be approximated by
Bayesian inference based upon Gaussian generative models (e.g.,
Friston, 2003, 2008). As discussed by Friston (2012, p. 1230):
“Bayesian brain is a corollary of the free energy principle, which
says that any self organizing system (like a brain or neuroimaging
community) must maximize the evidence for its own existence,
which means it must minimize its free energy using a model
of its world.” The current mathematical formalization of
predictive brain is not secondary to its theoretical tenets and
its well-developed formalism often represents a barrier for
the outsiders. Maximizing Bayesian evidence (or minimizing
variational free energy) has been described as a gradient descent
minimization of variational free energy (Friston et al., 2017),
able to account for several phenomena such as “repetition
suppression, omission responses, violation responses, place
cell activity, phase precession, theta sequences, theta-gamma
coupling, evidence accumulation, race-to-bound dynamics, and
transfer of dopamine responses” (Friston et al., 2017, p. 37).
Generally speaking, the minimization of variational free energy
allows a parsimonious but accurate description of observable
outcomes of different types.

Bayesian inference does not necessarily need to be
implemented by predictive coding (Aitchison and Lengyel,
2017). Millidge et al. (2021) propose a review of the mathematical
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components of predictive coding. Predictive coding can be
considered, in its foundational principle, as a form of variational
inference (under Gaussian assumptions) where multi-layered
topology, dynamical properties, the multiplicity of stimulus, and
precision are essential factors. Interestingly, Millidge et al. (2021)
discuss the future directions of research on predictive coding,
identifying the following domains: the plausible existence of
non-Gaussian but discrete generative models at the highest
cognitive levels, the necessity of formalizing the basis of long
term memory involved in cortical working, the opportunity
of considering the actual architecture of the cortex (which
could not be fully connected through hierarchical layers,
but presents sparse connectivity and “columnar” structures),
and the implementation of precision consistent with known
neurobiological mechanisms. Furthermore, they identify several
machine learning algorithms that could be comparatively
used to shed light on updating mechanisms involved in
predictive coding.

Current literature on predictive coding (extensively discussed
by Millidge et al., 2021) never raises the more foundational
issues about the very nature of probability, assumed in predictive
coding. In particular, current research in predictive brain does not
consider the existence of alternative probabilistic frameworks,
which are not based on Kolmogorov’s probability axioms and
Boolean logic, but informed by quantum principles. Among
the exceptions, Fields et al. (2021) discuss quantum systems
as observers assigning semantics to observational outcomes;
the authors emphasize that context-switching challenges the
classical formulation of the free-energy principle so as to justify
a quantum formulation. Such a quantum approach represents
a novel and promising perspective for future research on the
free energy principle. Generally speaking, quantum mechanics
can be used to solve the so-called “Bayesian blur” problem—
related to the contrast between the univocal nature and the
probabilistic roots of human experience (Clark, 2018)—where
consciousness is considered a “collapsing agent” (Safron, 2021),
which is consistent with von Neumann & Wigner’s interpretation,
according to which, consciousness is necessary for quantum
measurement (von Neumann, 1932/1955; Wigner and Margenau,
1967).

The QPB—presented in the next section through a stylized
model—aims to update the current view of the predictive brain
through a quantum probabilistic framework.

QUANTUM PREDICTIVE BRAIN: A
STYLIZED MODEL

The standard formalization of probability—in which the Bayesian
framework is conceived—relies on Kolmogorov’s probability
axioms. But, Kolmogorov axioms are not the unique way to
formalize probability. Quantum theory represents a significant
alternative (relatively under-explored in disciplines other than
physics) with interesting applications in the cognitive realm, also
known as quantum cognition (Aerts, 2009; Busemeyer and Bruza,
2012; Khrennikov, 2015; cf. Atmanspacher et al., 2002). Also,
quantum cognition proposes a different cognitive explanation to

many factual phenomena—mainly related to judgments under
uncertainty (Kahneman et al., 1982)—traditionally conceived
in a Bayesian framework (for a comparison between Bayesian
and quantum frameworks, see Bruza et al., 2015). Generally
speaking, quantum measurement can be conceived as Bayesian
updating where “collapse”—to be generally intended as the
transition from a “superposition,” indefinite state to a definite
state associated with the observed outcome—corresponds to a
revision of the state conditioned to new information (Caves et al.,
2002; Busemeyer and Bruza, 2012).

In the next sections, we present a stylized model of QPB
along with a gradual introduction of the fundamental concepts
of quantum cognition, formalized through a geometric approach.
Such a geometric approach has been readapted from Busemeyer
and Bruza (2012, Section 2.1), which is an excellent contribution
to exploring the potential of quantum models in cognitive science
(for a geometric approach, see also Franco, 2009; Lambert-
Mogiliansky et al., 2009). While classical probability is formalized
using events (employing set theory), quantum formalism uses
spaces and projections on subspaces and presents a different
geometric interpretation.

Quantum formalism is supposed to be non-friendly and
almost inaccessible as it requires dedicated mathematical tools.
Actually, it constitutes a well-established domain of knowledge.
von Neumann (1932/1955) provided the mathematical
formalism of quantum theory. Linear algebra represents a
suitable tool to model quantum phenomena. Among the various
notations used to express quantum concepts, we will refer to
Dirac’s formalism (Dirac, 1939), also known as bra-ket notation.

Top-Down and Bottom-Up Systems
In each instant, an organism is in a state |S〉, which is
a unit-length vector, expressed in bra-ket notation, in an
N-dimensional Hilbert space, representing the states of the
system. A Hilbert space is a generalization of Euclidean space
and was originally used to formalize quantum mechanics
(for a detailed formulation of the nature of events and
their properties in a Hilbert space, see Busemeyer and
Bruza, 2012, Sections 2.1 and 2.5). The N dimensions of
this space represent potential states that are possible for
an organism and the unit-length vector state represents the
state of the system. In our model, we do not consider
that the dimensions could be infinite and include real or
complex coefficients; neither do we specify additional constraints.
This deliberate simplification is consistent with the geometric
approach (proposed by Busemeyer and Bruza, 2012, Section 2.1)
and is suitable to introduce quantum cognition to non-experts
(as we assume that predictive coding scholars are not versed in
quantum formalism).

The dimensions of the system must be conceptualized as
the possible values of the neurobiological degrees of freedom,
where events can be of two general types: top-down predictions
or bottom-up evidence. As we explain in the following
sections, the fundamental idea of a quantum view of predictive
brain is that this state admits incompatible—complementary—
representations depending on the fact that we are considering
top-down or bottom-up processes.

Frontiers in Psychology | www.frontiersin.org 3 July 2022 | Volume 13 | Article 869894

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-869894 July 4, 2022 Time: 17:26 # 4

Mastrogiorgio Quantum Predictive Brain

Top-Down System
Let us consider the system with the potential predictions P1 and
P2. Notice that, for simplicity, we are choosing two options,
but this logic applies to a space with an arbitrary number of
dimensions and can be generalized to arbitrary numbers of
predictions P1, P2, P3, etc. A generalization to N dimensions
should be consistent with neuroscientific evidence and is not part
of the present model.

The two vectors {|P1〉 , |P2〉} are a basis. So, an arbitrary vector
in their space can be expressed by a linear combination of them.
S, the unit-length vector, representing the state of the system, is a
combination of {|P1〉 , |P2〉} such as:

|S〉 = (0.2269) · |P1〉 + (0.9739) · |P2〉 (1)

where

ψ =

[
ψ1
ψ2

]
=

[
0.2269
0.9739

]
(2)

represents the coordinates of the state |S〉 with respect to
{|P1〉 , |P2〉}, as in Figure 1.

Quantum theory works differently from classical probability.
S is in an indefinite state, formally called a superposition
state, before the collapse—to generally indicate any state that
eventuates, after some processing, in a definite output—occurs.
In other words, an indefinite state allows all the definite states
to have the potential for being expressed at each moment, as
superposition expresses the psychological state of conflict and
ambiguity between potential observable states.

The squared length of the unit-length vector S, representing
the state of the system, equals 1 by definition, being the sum of
the squared magnitudes of its coordinates:

|||S〉 ||2 = ||ψ||2 =
(
|0.2269|2 + |0.9739|2

)
= 1 (3)

According to quantum formalism—specifically the Born rule,
Born (1926)—if we project the state on a subspace and then we
square, the result is the probability of its occurrence. Hence, the
probability of the prediction P1 is obtained by considering the
projection of S on the subspace P1 to identify, on the P1-axis,

FIGURE 1 | State of the top-down system with predictions (P).

the relative segment. If we square the length of the projection,
we obtain the probability that the specific prediction P1 occurs.
Notice that we could express (one or more) coordinates also in
negative values (for instance 0.2269, −0.9739) and we should
draw the respective negative axis as in Figure 1. This modification
is irrelevant because inverting the direction of one or more
vectors, for example from |P2〉 to − |P2〉, does not affect the
probability (since it is the square of the amplitude); the new
basis is “equivalent” to the first one as both vectors span the
same ray. In our model, S can be expressed equivalently both in
the {|P1〉 , |P2〉} and {|P1〉 , −|P2〉} basis, or in any other basis
obtained by this type of transformation.

Formally speaking, we know that with respect to the
{|P1〉 , |P2〉} basis, the coordinates of each vector are represented
by a canonical system:

|P1〉 →
[

1
0

]
, |P2〉 →

[
0
1

]
(4)

The inner product 〈S|X〉, called transition amplitude,
represents the amplitude from |S〉 to |P1〉:

〈S|P1〉 =
[

1 0
]
·

[
0.2269
0.9739

]
=

= (1 · 0.2269)+ (0 · 0.9739) =

= 0.2269 (5)

If we project |S〉 on the p1-ray, we obtain:

|P1〉 〈S|P1〉 = 0.2269 · |P1〉 (6)

and its squared length is:

||0.2269 · |P1〉 ||2 = 0.0515 (7)

which represents the probability of P1.
As the two predictions P1 and P2 orthogonal, in quantum

formalism, the probability of both is simply related to the sum
of both events:

|| (0.2269) · |P1〉 + (0.9739) · |P2〉 ||2 = 0.0515+ 0.9485 = 1
(8)

Notice that we can also compute the probability for more
general events represented by subspaces in an N-dimensional
space. For instance, in a 5-dimensional space, the projection
of the union “P1 or P2 or P3” is (|P1〉〈P1| + |P2〉〈P2| +
|P3〉〈P3|)|S〉 = |P1〉〈P1|S〉 + |P2〉〈P2|S〉 + |P3〉〈P3|S〉 = (ψ1) ·
|P1〉 + (ψ2) · |P2〉 + (ψ3) · |P3〉, and the probability is
||(ψ1) · |P1〉 + (ψ2) · |P2〉 + (ψ3) · |P3〉||2 (as orthogonality
guarantees that the squared length of the sum equals the sum of
squared lengths).

Bottom-Up System
Now let us consider the evidence E1 and E2. As in the case of top-
down processes, this formalization can be generalized to arbitrary
numbers of evidence, E1, E2, E3, etc.
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FIGURE 2 | State of the bottom-up system with evidence (E).

The two vectors {|E1〉 , |E2〉} are the basis of the bottom-up
system and an arbitrary vector in their space can be expressed by a
linear combination of them. Notice that S, the unit-length vector,
representing the state of the system in the previous top-down
system, is expressed in the bottom-up system as a combination
of {|E1〉 , |E2〉} such as:

|S〉 = (0.7767) · |E1〉 + (0.6299) · |E2〉 (9)

where

ϕ =

[
ϕ1
ϕ2

]
=

[
0.7767
0.6299

]
(10)

represents the coordinates of the state |S〉 with respect to
{|E1〉 , |E2〉}, as in Figure 2.

As in the case of prediction (discussed in the previous section),
here, S is in a superposed state as evidence could be potentially
expressed through the collapse.

The squared length of the unit-length vector S, representing
the state of the system, equals 1 by definition, being the sum of
the squared magnitudes of its coordinates:

|| |S〉 ||2 = ||ϕ||2 =
(
|0.7767|2 + |0.6299|2

)
= 1 (11)

Again, if we project the state S on a subspace and then
we square, the result is the probability of its occurrence.
Concerning the {|E1〉 , |E2〉} basis, the coordinates of each vector
are represented by a canonical system:

|E1〉 →
[

1
0

]
, |E2〉 →

[
0
1

]
(12)

The inner product 〈S|E1〉 represents the amplitude from |S〉 to
|E1〉:

〈S|E1〉 =
[

1 0
]
·

[
0.7767
0.6299

]
=

= (1 · 0.7767)+ (0 · 0.6299) =

= 0.7766 (13)

If we project |S〉 on the E1-ray we obtain:

|E1〉 〈S|E1〉 = 0.7767 · |E1〉 (14)

and its squared length is:

||0.7767 · |E1〉 ||2 = 0.6032 (15)

which represents the probability of E1.
As the two evidence E1 and E2 are orthogonal, in quantum

formalism, the probability of both is simply the sum of both
events:

|| (0.7767) · |E1〉 + (0.6299) · |E2〉 ||2 = 0.6032+ 0.3968 = 1
(16)

The union of the events is the sum of the probabilities related
to its orthogonal sub-dimensions.

Notice that, as in the case of top-down processes, we
can also compute the probability for more general events
represented by subspaces in an N-dimensional space.
For instance, in a 5-dimensional space, the projection
of the union “E1 or E2 or E3” is (|E1〉〈E1| + |E2〉〈E2| +
|E3〉〈E3|)|S〉 = |E1〉〈E1|S〉 + |E2〉〈E2|S〉 + |E3〉〈E3|S〉 = (ϕ1) ·
|E1〉 + (ϕ2) · |E2〉 + (ϕ3) · |E3〉, and the probability is
||(ϕ1) · |E1〉 + (ϕ2) · |E2〉 + (ϕ3) · |E3〉||2 (as orthogonality
guarantees that the squared length of the sum equals the sum of
squared lengths).

Complementarity Between Top-Down
and Bottom-Up Systems
Predictive coding is based on the hypothesis that the brain
minimizes the prediction errors with respect to a generative
model of the world. Both classical and quantum theories provide
a tool for model updating the state conditioned to some
observations. In a classical Bayesian framework, when an event
is observed, the original probability function is changed into a
new conditional function. In particular, the joint probability is
normalized and this guarantees that the new probability function
sums to one. Quantum theory proposes, mutatis mutandis, a
similar model: the original state vector is transformed into a new
state vector through a projection. In particular, the original state
is projected onto the subspace of the observed event and then
such projection is divided by its length. This transformation of
the state vector onto a subspace corresponding to the observed
event is called “projective measurement.” In our stylized model,
we call it collapse to generally indicate any state that eventuates,
after some processing, in a definite output. In the words of
Busemeyer and Bruza (2012, p. 23), collapse refers to “the
transition from a superposition state to a definite state associated
with the observed outcome.”

The difference between a classical and a quantum framework
is marginal when the systems are compatible (the probability of
the union of independent events is simply their sum, and the
probabilities of all the events sum to unity). However, things
change when we consider complementary systems, that is to
say, predictions and evidence are incompatible. The certainty
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about predictions may lead to uncertainty about evidence (and
vice versa), as incompatibility is, in the words of Busemeyer
and Bruza (2012, p. 23), “mathematically implemented by the
non-commutativity of quantum measurements.” Indeed in case
of incompatibility, predictions and evidence do not share the
same basis, but require separate spaces. In particular, each
one (predictions and evidence) considered separately admits a
Boolean framework, but they cannot be treated in a Boolean
way once they are “pasted together.” A quantum probabilistic
approach presents more flexibility than the Bayesian, as it does
not require specifying the joint probabilities. More specifically,
as we explain in section “The Role of Quantum Contextuality”,
the notion of “quantum contextuality”—whose role is nowadays
debated with reference to quantum evidence in the behavioral
domain (e.g., Dzhafarov et al., 2016)—represents a fundamental
theoretical device able to provide alternative explanations to
incompatibility.

Incompatibility is central in the QPB and represents a
substantial innovation compared to existing theories of Bayesian
predictive coding, assuming a unique space for both predictions
and evidence. We know from the previous two sections that
S—the vector representing the state of the system—can be
represented in terms of either the top-down system (that is
{|P1〉 , |P2〉} basis) or the bottom-up system (that is {|E1〉 , |E2〉}
basis). Indeed, we know that:

|S〉 = (0.2269) · |P1〉 + (0.9739) · |P2〉 (17)

and

|S〉 = (0.7767) · |E1〉 + (0.6299) · |E2〉 (18)

so

|S〉 = (0.2269) · |P1〉 + (0.9739) · |P2〉

= (0.7767) · |E1〉 + (0.6299) · |E2〉 (19)

where

ψ =

[
ψ1
ψ2

]
=

[
0.2269
0.9739

]
(20)

represents the coordinates of the state |S〉 with respect to
{|P1〉 , |P2〉}, and

ϕ =

[
ϕ1
ϕ2

]
=

[
0.7767
0.6299

]
(21)

represents the coordinates of the state |S〉 with respect to
{|E1〉 , |E2〉}. Now we know that the same state |S〉 can be
represented using two incompatible bases, that is to say, we have
different coordinates depending on the basis, as in Figure 3.

We can represent the basis vectors of the top-down system in
terms of the bottom-up system basis:

|P1〉 = (−0.4372) · |E1〉 + (0.8994) · |E2〉 (22)

FIGURE 3 | Incompatibility between predictions (P) and evidence (E).

|P2〉 = (0.8994) · |E1〉 + (0.4372) · |E2〉 (23)

And, vice versa, we can represent the basis vectors of the
bottom-up system in terms of the top-down system basis:

|E1〉 = (−0.4372) · |P1〉 (0.8994) · |P2〉 (24)

|E2〉 = (0.8994) · |P1〉 + (0.4372) · |P2〉 (25)

We can express each system with respect to the other. If
we want to express the coordinates of the bottom-up system
with {|E1〉 , |E2〉} basis in terms of the top-down system with
{|P1〉 , |P2〉} basis, we have:

ψ = UPE · ϕ[
ψ1
ψ2

]
=

[
〈P1|E1〉 〈P1|E2〉
〈P2|E1〉 〈P2|E2〉

]
·

[
ϕ1
ϕ2

]
(26)

And if we want to express the coordinates of the top-down
system with {|P1〉 , |P2〉} basis in terms of bottom-up system with
{|E1〉 , |E2〉} basis, we have:

ϕ = U†
PE ·ψ[

ϕ1
ϕ2

]
=

[
〈E1|P1〉 〈E1|P2〉
〈E2|P1〉 〈E2|P2〉

]
·

[
ψ1
ψ2

]
(27)

where † indicates the transpose-conjugate operation, as
UPE·U†

PE = I, where I is an identity matrix.
The incompatibility between the prediction system

and evidence system, in Figure 3, represents a form of
fundamental uncertainty, related to the famous Heisenberg
uncertainty principle. Indeed, if we are certain in the
evidence system—we observe a specific sensory input—we
must accept some uncertainty in the prediction system—
different predictions are still potential—and vice versa. In
other words, once the state vector collapses in a system,
it remains in a superposed state in the complementary
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system. This point is a tenet of the QPB, positing that
we can determine the state of the top-down system only
if we remain uncertain about the state of the bottom-up
system, and vice versa.

Order Effects and Interference
A fundamental implication of complementarity lies in the
presence of non-commutativity between events (explained in
section “Complementarity Between Top-Down and Bottom-Up
Systems”), which gives rise to order effects (discussed in Wang
and Busemeyer, 2013). Let us consider the state from the top-
down system. Firstly, we want to analyze the transition from S
to P1 passing through the state E2:

|S〉 → |E2〉 → |P1〉 (28)

In this case, we first have to project the S state on the E2 ray:

〈E2|S〉 =
[

0.8994 0.4372
] [

0.2269
0.9739

]
= (0.8994) · ( 0.2269)+ (0.4372) · (0.9739) = 0.6299 (29)

The probability, as explained above, is:

|〈E2|S〉|2 = |0.6299|2 = 0.3968 (30)

Now we have to analyze the path E2 to P1:

〈P1|E2〉 =
[

0.8994 0.4372
] [

1
0

]
= (0.8994) · ( 1)+ (0.4372) · (0) = 0.8994 (31)

And the probability is:

|〈P1|E2〉|2 = |0.8994|2 = 0.8089 (32)

Hence the probability of the path |S〉 → |E2〉 → |P1〉 is:

|〈P1|E2〉|2 · |〈E2|S〉|2 = 0.8089 · 0.3968 = 0.3209 (33)

Now let us imagine that we want to analyze the path |S〉 →
|P1〉 → |E2〉. In this case, with respect to the previous path, the
order of evidence E2 and prediction P1 is changed. First, we have
to project the S state on the P1 ray:

〈P1|S〉 =
[

1 0
] [

0.2269
0.9739

]
=

(1) · ( 0.2269)+ (0) · (0.9739) = 0.2269 (34)

So the probability is:

|〈P1|S〉|2 = |0.2269|2 = 0.0515 (35)

Then we calculate:

〈E2|P1〉 =
[

1 0
] [

0.8994
0.4372

]
= (1) · ( 0.8994)+ (0) · (0.4372) = 0.8994 (36)

And the probability is:

|〈E2|P1〉|2 = |0.8994|2 = 0.8089 (37)

Hence the probability of the path |S〉 → |P1〉 → |E2〉 is:

|〈E2|P1〉|2 · |〈P1|S〉|2 = 0.8089+ 0.0515 = 0.8604 (38)

It is important to notice that the two paths present two
different probabilities, respectively, 0.3209 for the path |S〉 →
|E2〉 → |P1〉 and 0.8604 for the path |S〉 → |P1〉 → |E2〉. This
happens because:

|〈E2|S〉|2 > |〈P1|S〉|2

0.3968 > 0.0515 (39)

Notice also that |〈E2|P1〉|2 = |〈E1|P2〉|2 because of the law
of reciprocity. Importantly, this symmetry condition only applies
to events represented by unidimensional rays, but not to such
events represented by multiple dimensions (see Busemeyer and
Bruza, 2012). Indeed, quantum formalism allows distinguishing
between complete measurements—the events are identified by
the rays (one-dimensional subspaces) spanned by each of the
basis vectors—and coarse measurements—the events are not
rays but whole subspaces of dimension greater than one, so
that the transitions through pure or mixed states are defined.
For simplicity in our stylized model, we do not consider this
articulation, which is postponed to future research.

A fundamental implication of quantum formalism is the
violation of the distributive axiom due to the presence
of incompatible events and non-commuting projectors. The
violation of the distributive axiom implies a violation of the
law of total probability, which is fundamental in the Bayesian
framework. Indeed, while in a Bayesian framework we know that
the conditioned probability must be less than the unconditioned
probability, this property is violated in the quantum framework
where the probability associated with a direct path between the
state vector and a final state could be less than the probability
when the path is obtained through intermediate paths. For
instance, let us consider the probability of the direct path |S〉 →
|P1〉 and also the mediated paths |S〉 → |E1〉 → |P1〉 and |S〉 →
|E2〉 → |P1〉. In a quantum framework, nothing grants that
the probability of the direct path is consistent with the split
into two mediated paths, as happens in a Bayesian framework.
Indeed, we could have the case in which the probability of the
direct path |S〉 → |P1〉 is less than the probability that considers
both paths |S〉 → |E1〉 → |P1〉 and |S〉 → |E2〉 → |P1〉. More
interestingly, we could have the case in which the probability of
the direct path is also smaller than the probability of a specific
mediated path. Indeed, the probability of the direct path |S〉 →
|P1〉 is |〈S|P1〉|2 = 0.0515 is smaller than the probability of the
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specific mediated path |S〉 → |E2〉 → |P1〉, which is |〈P1|E2〉|2 ·
|〈E2|S〉|2 = 0.3209 (see the previous sections for calculation).
This property, which represents a substantial violation of the
Bayesian framework and a tenet of a quantum approach, is due to
the presence of interference effects, which (in a quantum-cognitive
framework) are intended as positive or negative interferences
among the intermediate states affecting the final state. In
particular, when the intermediate paths are not determined,
they interfere creating positive or negative interference on the
probability of the final state (Busemeyer and Bruza, 2012).
According to Feynman, interference is the fundamental mystery
of quantum theory (Feynman et al., 1964).

The violation of the Bayesian rule, which is compatible
with interference dynamics of a quantum framework (as in the
well-known double-slit experiment), has been experimentally
documented in the last two decades, mainly concerning
judgments formulation and decision making (Busemeyer et al.,
2006, 2011; Busemeyer and Bruza, 2012).

The Role of Quantum Contextuality
In our stylized model, incompatibility—revealed by the presence
of order effects (consistently with Wang and Busemeyer, 2013)—
is based on the hypothesis that top-down predictions and
bottom-up evidence cannot be co-jointly determined to pursue
a univocal model of (predictive) brain functioning. The nature
of this “impossibility” is strictly related to the role of quantum
contextuality. Quantum contextuality became central in quantum
theory since the formulation of Bell’s well-known argument (Bell,
1966) along with its complement known as Kochen–Specker’s
theorem (Kochen and Specker, 1967, see Mermin, 1993 for
a retrospective overview)—discussing the Einstein–Podolsky–
Rosen paradox about the incompleteness of quantum mechanics
and the alleged presence of hidden variables (Einstein et al.,
1935). Generally speaking, contextuality refers to the idea that
measurements could be locally consistent, but they can exhibit
globally inconsistency, that is to say, a random variable could
change its identity depending on the conditions under which
it is recorded (Liang et al., 2011; Dzhafarov and Kujala, 2014,
2015; Budroni et al., 2021). Indeed, considering a random variable
as fixed under different conditions could lead to contradictions
in the joint distribution with other random variables. In non-
technical terms “the contextuality in a system of random variables
recorded under various conditions is a deviation of the possible
couplings for this system from a specifically chosen identity
coupling” (Dzhafarov and Kujala, 2014, p. 8).

Discriminating the direct effects (occurring when other
stimuli influence the response by changing its distribution), from
“true” quantum contextuality, about such changes that cannot be
explained by direct influences, is crucial in the current debate
on the nature of quantum cognition. According to Dzhafarov
et al. (2016), the experimental evidence related to order effects—
collected by Wang and Busemeyer (2013) and explained through
quantum principles—is not due to quantum contextuality, but
to direct effects. Contextuality can be analyzed by eliminating all
the direct influences by the experimental design, as in Cervantes
and Dzhafarov (2018), experimentally discriminating the two
types of effects. An operational procedure, developed specifically

to compute “true” quantum contextuality in the presence of
direct effects, is known as “contextuality-by-default” (Dzhafarov
and Kujala, 2014, 2015). Contextuality-by-default assumes (in a
Kolmogorov framework) that contextuality is normally present,
that is, any two random variables under different conditions
are considered different by default (for instance, instead of
considering a set of fair coins as the same and unique random
variable, we can identify a different random variable for each
of the coins). In the special case in which they are equal with
probability = 1, they are considered non-contextual.

We think that quantum contextuality, and its distinction
from direct effects, represents a fundamental theoretical tool
for the development of Quantum Predictive Brain (cf., Fields
and Glazebrook, 2022); in particular a generalization to N
dimensions, informed by neuro-cognitive evidence. Indeed, we
can hypothesize that the interaction of different pieces of
evidence can generate incompatibility whose nature should
require experimentally discriminating the role of direct effects
and the role of quantum contextuality. This specific development
of QPB is postponed to future research.

The Bayesian Brain as a Special Case
When systems are compatible, as the prediction system and
evidence system are orthogonal, the quantum framework
becomes compatible with a classical Bayesian framework. Hence,
the Bayesian brain works in the absence of complementarity
between predictions and evidence, and could be considered
a special case of QPB. In the case of compatibility, the
classical assumptions of unicity apply, and non-commutative,
order effects disappear. Indeed, when top-down processes and
bottom-up processes are compatible, the assumption of unicity
(fundamental in the Kolmogorov framework) is repristinated,
so it is possible to form a single common sample space
in which to place all the events and to define the rule of
classical probability theory. A quantum framework differs from
a Bayesian framework only when incompatible systems are
involved (Busemeyer and Bruza, 2012).

Generally speaking, the idea that the brain is a predictive
machine does not imply that it should work strictly based
on Bayesian principles. Bayesian models are more familiar
to most researchers, especially in the field of social and
behavioral sciences. Unfortunately, such models may be
limited, as they require restrictive probabilistic assumptions
(for a comparison between Bayesian mechanisms and
quantum probability in cognition, see Bruza et al., 2015).
Using again the incipit about the deer, a Bayesian model is
useful to update our model about the probability of deer
crossing the road and it can be also used to improve our
skills when we walk or drive in a forest. But, a Bayesian
model hardly seizes the inspirational, higher-order meaning,
unveiled by the metaphor and its poetical dimension. We
think—and we postpone this investigation to future research—
that quantum formalism offers a more flexible, generalized
and sophisticated approach to predictive brain, for which
the Bayesian approach represents only a specific case.
Hence, QPB is not a tout court alternative to a Bayesian
brain, but an articulation that can preserve the Bayesian
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updating mechanisms and can also consider them in a
complementary fashion.

DISCUSSION

“In my childhood we were always assured that the brain was a
telephone switchboard” (Searle, 1984, p. 44). The idea that new
scientific ideas come from specific scientific tools is not new,
as methods of statistical inference have often been translated
into metaphors of mind (cf., Gigerenzer and Murray, 1987).
Predictive coding is probably a case of a well-known formal
device (the Bayes’ theorem was formulated long ago) used not
only as an approximation of brain functioning, but also as an
inspiring tool. But, if we think that this transposition of Bayesian
mechanisms into the brain is only a speculative attempt, we
are wrong. Predictive coding is successful not only because
of its mathematical elegance, but also because of its internal
consistency and explanatory power, as it proposes a successful
unifying framework for many neuro-cognitive phenomena
including perception, action, belief, memory and learning.

We think that what applies to the Bayesian brain applies
to the QPB, which also presents the advantage of overcoming
several limitations present in the Bayesian framework. Far from
being just formal speculation (based on the use of a non-
Kolmogorovian probability), the rationale behind a quantum
approach is based on two general arguments. First, current
theories of the predictive brain do not appear to be able
to explain more sophisticated cognitive phenomena, involving
unconventional surprises, incommensurable points of view,
contemplative experience and metaphorical meaning, which
are all marks of human cognition. Second, current theories
of the predictive brain do not consider that predictions and
evidence present an evolutionary substrate, which could be non-
adaptive. Such arguments (respectively discussed in the following
sections “Complementarity as a Mark of Human Cognition”
and “Neural Reuse and Complementarity”) find a more natural
theoretical integration in a quantum framework. A QPB offers
a more flexible approach to predictive brain, able to preserve the
mechanism of Bayesian updating and, at the same time, overcome
its limitations through the general hypothesis of complementarity
between top-down and bottom-up processes.

Complementarity as a Mark of Human
Cognition
Let us consider, again, the incipit of this contribution, “It’s not the
deer that crosses the road, it’s the road that crosses the forest.” If
we remain bounded in a Bayesian framework, we will consider
the deer as an unexpected event and we will update our model of
the forest: deer are not so much rare, so the next time we cross
a forest, we should pay attention. Unfortunately, this Bayesian
mechanism is as much plausible as it is trivial. The citation is
not about deer living in a forest, but lies in a different cognitive
order, unveiled by a metaphor (about a deer and a forest). We
can conceive this metaphorical meaning only if we conceive the
sensory evidence on a totally different and incompatible order of
meanings. Indeed, the most interesting surprise is instantiated by

the discovery of the ecological embeddedness, occurring when
we realize that the road is nothing more than a small line in a
huge forest. But, there is more. Once we access this higher-order
meaning and we re-formulate the metaphor through an internally
consistent and accurate description (the metaphor reveals our
ecological embeddedness, disclosing the incapacity of conceiving
our life as a part of a bigger picture), its poetical meaning
suddenly disappears and becomes vague and uncertain. Notice
also, when we try to express the meaning through a consistent
and accurate description, new metaphors (such as the “bigger
picture”) will enter again into the game of sense-making. Yet,
again, there is more. There is no actual experience of a forest
and a deer, our narrative is not part of a poetry book, nor are
we interested in ecological embeddedness. The metaphor is a
part of a scientific publication and it is instrumental to a totally
different purpose and topic. Again, we found a further, higher-
level order of sense-making. In short, when we are certain about
a specific order of sense-making, we remain vague on the others
that instantiate the sense. So, it seems to us that we can be
certain about one thing precisely because of the vagueness of the
complementary things.

We think that the Bayesian brain is not able to model
such kinds of higher-order dynamics among different levels of
metaphorical mapping, sensory evidence, poetical value, and
logical consistency, and we also think that QPB presents some
advantages. A fundamental implicit assumption of the Bayesian
brain is that predictions and evidence are modeled as orthogonal
sub-spaces. This fundamental property represents a fundamental
limitation if analyzed through the quantum lens. Indeed, QPB
assumes that prediction and evidence could not be independent
(not orthogonal), as they can be expressed, one with respect
to the other, with a precision trade-off (they are conjugate
systems). The orthogonality between the prediction and evidence
systems (in the Bayesian brain) is only an extreme case, and QPB
explores all the other infinite possibilities of non-orthogonal but
complementary interactions between prediction and evidence.
Such types of incompatible interactions are central in QPB.

Speculatively, the human brain presents the “ability” of
adjusting the predictive system with respect to the sensory
evidence, and vice versa. Such adjustment is consistent with the
well-known “adaptive resonance theory” (e.g., Grossberg, 2013),
which considers the brain is organized into complementary
parallel processing systems—respectively related to top-down
expectations and bottom-up sensory information—whose
interactions generate intelligent behaviors (Grossberg, 2000).
Contrary to adaptive resonance theory—emphasizing the
role of resonance among the processes—QPB considers
complementarity as a phenomenon that works precisely because
top-down and bottom-up processes cannot always be “reduced”
one to the other, but must preserve their incompatibility
to generate higher-order cognitive processes. In QPB, the
adjustment between predictions and evidence—corresponding
in our model to a rotation of one system with respect to the other
(as shown in Figure 3)—instantiates the complementarity of the
prediction, endogenizing error minimization and precision, both
constructs being central in predictive brain theory. Furthermore,
complementarity preserves the history of the dynamic interplay
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(through order effects) and the ability to reinvent the interaction
(through interference) in a non-trivial manner. In the QPB
framework, we speculatively posit that incompatibility is
necessary for higher-order surprisal. Specific forms of surprisal
(such as the deer metaphor, which makes sense precisely when
one oversteps the veil of sensory obviousness) occur when the
interaction between prediction and evidence presents a form
of non-reducible uncertainty, requiring some indeterminism
in the predictive brain (cf. De Ridder and Vanneste, 2013).
Such uncertainty preserves the degrees of freedom necessary to
instantiate such incommensurable-but-meaningful wild flights,
which are a mark of the human being.

Neural Reuse and Complementarity
The possibility of conceiving prediction and evidence as
complementary systems is not a hypothesis that is meaningful
only on a cognitive and computational level, but aims to find
evidence in the areas of the brain involved in predicting and
coding the sensory evidence. Despite the mounting (but also
mixed) neuroimaging research on predictive coding (Walsh et al.,
2020), and postulating distinct brain areas for prediction and
sensory evidence, we posit that QPB is more consistent with
neural reuse, hypothesizing that the same area of the brain can
be used for different purposes (Gallese, 2008; Anderson, 2010;
cf., Gatti et al., 2021). In particular, the possibility of conceiving
the same state vector through incompatible descriptions is a way
of modeling neural reuse, where the same neural endowments
admit a representation both in the predictive system and in
the evidence system. Hence, the possibility of adjusting the
prediction and the sensory-motor systems, preserving their
incompatibility, is strictly related to the idea of exploiting
the same neural resources for both predicting and coding
the sensory evidence. Incompatibility is what preserves the
specificities of prediction and evidence systems within the
same neural resources; speculatively, when a brain area is
involved in prediction, its role in coding evidence is uncertain,
and vice versa, that is to say, we hypothesize that the same
neural endowment enables partial determinations in the form of
prediction or evidence.

In QPB, predictions and evidence are not necessarily
distinct brain areas, but they are analytical distinctions that
identify specific functions, which share some neural resources.
This fundamental mechanism—the same neural resources for
different functions—challenges a fundamental property assumed
in existing predictive brain theories, that is, the existence of a
strictly hierarchical organization of the brain. QPB proposes an
alternative topological model that shifts the theoretical focus from
layers to orders. If we admit that the same neural resources enable
different functions, we are substituting the necessity for layers
with the possibility of instantiating specific functions, without a
strict functional topology but through complementarity. Indeed,
predictions and evidence can be determined only by assuming
that the same neural resources collapse in a system, while
preserving the indeterminacy of the complementary system
in a dynamic, non-commutative fashion. It can be noticed,
again speculatively, that by avoiding a strictly hierarchical
organization and allowing neural “shortcuts”, complementarity

can be also useful to shed new light on neuroplasticity. More
specifically, a Bayesian brain is not able to fully account for such
predictions that, being phylogenetically-determined adaptations,
are resistant to contextual changes (Yon et al., 2019). A QPB,
being consistent with neural reuse, preserves both the adaptive
functions and the degree of freedom for the instantiation of
high-level processes, to be intended as exaptations of the sensory-
motor system (Anderson, 2007; Mastrogiorgio et al., 2022).

Hence, we do not deny that the human brain presents
hierarchies in the topology of neural networks. However,
we think that the strict hierarchical organization assumed in
current theories of predictive brain seems to be more related
to the necessity of formulating a theory consistent with the
Bayesian framework, than to the opportunity of interpreting the
flourishing neuroimaging evidence through the Bayesian lens.
Put differently, it seems to us that a Bayesian framework imposes
specific and restrictive topological conditions to preserve its
theoretical consistency. This limitation is one that QPB tries to
overcome, endorsing the view that specific old brain structures
are, evolutionarily speaking, exapted to enable high-level faculties
employed in civilized niches.

CONCLUSION

While quantum cognition is, nowadays, mostly applied to
high-level processes, mainly in a computationalist, cognitivist
framework, QPB exploits quantum formalism to shed new light
on the role of embodied mechanisms in a predictive brain
framework. QPB is not a representationalist theory to be ascribed
to a pure “cognitive realm,” in which quantum principles have
been applied to model high-level information processing (e.g.,
Khrennikov, 2006, 2015; Aerts, 2009; Asano et al., 2015), nor
is it consistent with the controversial hypothesis—also known
as Orchestrated objective reduction (Orch OR)—stating that
consciousness originates from quantum states in microtubules
(Hameroff, 2012; Hameroff and Penrose, 2014).

QPB assumes that the brain is a predictive machine working
through conservative principles and proposes a quantum model
that is able to seize the complementarity between top-down
and bottom-up processes, within a predictive coding framework.
QPB challenges the implicit assumption of commensurability
between predictions and evidence (assumed in current views of
predictive brain) postulating that incompatibility is a mark of
human cognition. QPB assumes that prediction and evidence
could not be independent but complementary, as they can be
determined, one with respect to the other, only with a precision
trade-off. Complementarity—to be considered necessary for
higher-order surprisal—preserves the history of the dynamic
interplay of the systems (through order effects) and their non-
trivial interaction (through interference). QPB is an evolutionary
friendly framework, consistent with neural reuse (as the
same neural endowment enables partial descriptions in the
form of prediction or evidence) and can shed new light on
neuroplasticity.

While predictive coding, based on Bayesian principles, is
a consolidated domain of research, we are aware that QPB
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is a novel and speculative hypothesis. But, we think that our
hypothesis is no less speculative than a Bayesian brain, as a
Bayesian approximation can be considered a special case of QPB.
We also think that QPB presents theoretical parsimony and
elegance, as it allows considering the updating mechanisms also
in a complementary fashion, endogenizing precision and error
minimization (without requiring ad hoc assumptions).

Generally speaking, predictive brain (on the one side)
and quantum cognition (on the other) are two different
domains of investigation, each one characterized by well-
developed theoretical debates connoted by advanced, dedicated
mathematical formalism. We prudently opted for a stylized—
and speculative—model, precisely because of the scientific
inopportunity of matching the theoretical complexity of such
distinct domains of research (this type of matching has
been proposed by Fields et al., 2021). Notice that our
stylized quantum model is deliberately paired with a stylized
representation of a Bayesian brain. A less-stylized, more advanced
quantum model that is able to take into account more recent
articulation of research on active inference is postponed to
future research.

In conclusion, we think that QPB could represent a promising
framework for future investigations on the predictive nature
of the human brain. We also think that QPB deserves the
deepest theoretical articulation along with experimental research
and neuroimaging evidence to be fully substantiated. Building
a realistic model of the QPB represents a challenge for future
research. Such a model should be characterized by N dimensions
specified on the basis of neuro-cognitive evidence and should
take into account the role of quantum contextuality.
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