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Abstract

Previous studies have demonstrated the genetic correlations between type 2 diabetes,

obesity and dyslipidemia, and indicated that many genes have pleiotropic effects on them.

However, these pleiotropic genes have not been well-defined. It is essential to identify

pleiotropic genes using systematic approaches because systematically analyzing corre-

lated traits is an effective way to enhance their statistical power. To identify potential

pleiotropic genes for these three disorders, we performed a systematic analysis by incor-

porating GWAS (genome-wide associated study) datasets of six correlated traits related

to type 2 diabetes, obesity and dyslipidemia using Meta-CCA (meta-analysis using canoni-

cal correlation analysis). Meta-CCA is an emerging method to systematically identify

potential pleiotropic genes using GWAS summary statistics of multiple correlated traits.

2,720 genes were identified as significant genes after multiple testing (Bonferroni cor-

rected p value < 0.05). Further, to refine the identified genes, we tested their relationship

to the six correlated traits using VEGAS-2 (versatile gene-based association study-2).

Only the genes significantly associated (Bonferroni corrected p value < 0.05) with more

than one trait were kept. Finally, 25 genes (including two confirmed pleiotropic genes and

eleven novel pleiotropic genes) were identified as potential pleiotropic genes. They were

enriched in 5 pathways including the statin pathway and the PPAR (peroxisome prolifera-

tor-activated receptor) Alpha pathway. In summary, our study identified potential pleiotro-

pic genes and pathways of type 2 diabetes, obesity and dyslipidemia, which may shed

light on the common biological etiology and pathogenesis of these three disorders and pro-

vide promising insights for new therapies.
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Introduction

Type 2 diabetes is a serious chronic metabolic disorder characterized by hyperglycemia, insulin

resistance (IR), destruction of pancreatic beta cells and impairment in insulin secretion [1].

Obesity, another serious universal health problem characterized by excess visceral fat and high

Waist-Hip Ratio (WHR)) and general obesity (defined as having a Body Mass Index (BMI) of

25 or higher, is related to several chronic diseases including type 2 diabetes [2].(Both type 2

diabetes and obesity are associated with dyslipidemia [2, 3], which is characterized by hypertri-

glyceridemia, hypercholesterolemia, decreased HDL (high-density lipoprotein) and/or

increased LDL (low-density lipoprotein). The coexistence of the three diseases is common

among the populations, which increases the prevalence of other serious fatal diseases such as

CVD (cardiovascular diseases) [4, 5] and stroke [6–8].

These three disorders are closely connected. Firstly, clinical observation and epidemiologi-

cal data show that a number of type 2 diabetes patients are obese with dyslipidemia before

receiving intervention or therapy [9]. Secondly, these three disorders have common risk fac-

tors and pathophysiological bases. For instance, a long term high fat diet is a significant risk

factor for type 2 diabetes [10], obesity and dyslipidemia [2]. IR is one of the common patho-

physiological bases for these three diseases [1, 11]. Moreover, previous studies have reported

genetic correlations among these three disorders and indicated that many genes have pleiotro-

pic effects [12–14]. For example, the SREBF1 gene was identified as a pleiotropic gene in the

progression of type 2 diabetes, obesity, and dyslipidemia [12]. In addition, common pathways

that could influence these three disorders were discovered in recent years, such as the AMPK

signal pathway (AMP-activated protein kinase signal pathway) and the JNK-1 pathway [11, 15,

16].

The pleiotropic genes and pathways of the three diseases can partially explain the common

biological pathogenesis of the three diseases. It is essential to identify pleiotropic genes that

exert their influence on potentially common biological etiology and pathogenesis of these

three disorders using systematic analysis approaches. Pleiotropic genes and their effects have

been successfully identified in bivariate analyses of type 2 diabetes with obesity, type 2 diabetes

with dyslipidemia, and obesity with dyslipidemia. Hasstedt et al [17] performed bivariate anal-

yses of type 2 diabetes with BMI and type 2 diabetes with WHR, which identified significant

pleiotropy loci (chromosome 13 at 26–30 MB) of type 2 diabetes with both. Li et al [3] found a

stronger correlation between dyslipidemia associated genes (APOB, APOE-C1-C2,CETP,

CYP7A1GCKR,MLXIPL, PLTP, TIMD4) and glycemic traits including FG (fasting glucose)

and HOMA-IR (homeostasis model assessment for IR, an important index for evaluating IR,

calculated by FG� FI(fasting insulin)/22.5), which revealed the pleiotropic effects of dyslipide-

mia-associated genes on glycemic traits. Despite the bivariate analyses of these three diseases

which have identified pleiotropic genes in recent years, multivariate analyses have not yet been

performed. Undertaking multivariate analysis is desirable because it allows us to more systemi-

cally explore the common underlying genetic architecture and common etiology of these three

disorders. Another important advantage of multivariate analysis is that it increases the statisti-

cal power for identifying associated genes exerting influences on multiple traits, which leads to

more novel insights for drug gable gene targets compared to univariate and bivariate analyses

[18].

Meta-CCA (meta-analysis using canonical correlation analysis) [19], a new systematical

multivariate analysis tool recently proposed by Anna Cichonska, allows multivariate analyses

between multiple SNPs and multiple traits [19], which enriches the pleiotropic information by

combining correlation signals among multiple traits.

The identification of potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia
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Inspired by this, we performed the current work to identify potential pleiotropic genes for

type 2 diabetes, obesity, and dyslipidemia using Meta-CCA. We used six correlated quantita-

tive traits reported to be established related factors for type 2 diabetes, obesity or dyslipidemia,

including FG, FI, BMI, WHR, HDL and triglyceride (TG). Interestingly, our findings indicated

that five pathways and 25 genes (including two confirmed pleiotropic genes and eleven novel

pleiotropic genes) were potential pleiotropic genes for type 2 diabetes, obesity, and dyslipide-

mia. These findings yielded some genetic basis for the common biological etiology and patho-

genesis, and thus provided promising insights for a potential common therapy for the three

disorders.

Materials and methods

GWAS datasets and processing

Step1: Annotation genes to SNPs, and SNP prune. The large-scale GWAS datasets of the

six correlated traits in the present study were downloaded from http://diagram-consortium.

org/2015_ENGAGE_1KG/ [20, 21]. The glycemic traits (FG and FI) data [20] were derived

from a meta-analysis of 13 original GWAS studies, including FG data for 46,694 individuals

and FI data for 24,245 individuals. The obesity-related data (BMI and WHR) [20] were derived

from a meta-analysis of 22 original GWAS studies, including BMI data for 87,048 individuals

and WHR data for 54,572 individuals. The lipids (HDL and TG) data [21] were derived from a

meta-analysis of 22 original GWAS studies, including 62,166 individuals for both HDL and

TG. The large-scale GWAS datasets were collected by the European Network for Genetic and

Genomic Epidemiology (ENGAGE) Consortium, and all samples were from individuals of

European ancestry (The details were shown in Table 1). The large-scale GWAS datasets were

the largest datasets that included all six correlated traits and contained all the information

needed to conduct the analyses in the Meta-CCA framework in one ethnicity (Caucasians).

We selected the overlapped SNPs (9,411,134 SNPs) of the six traits to perform the multivariate

analysis.

The analytical workflow of our study is presented in Fig 1. Firstly, we completed the gene

annotation according to the 1000 Genome datasets using PLINK1.9. We downloaded the ref-

erence data, which contained 26,291 genes from the website: https://www.cog-genomics.org/

static/bin/plink/glist-hg19. We recognized the transcript including all SNPs (both exonic and

Table 1. Details and phenotypic pearson correlation coefficients of the six traits in European ancestry.

Traits Number of SNPs Number of individuals The phenotypic correlation structures between traits

FG FI BMI WHR HDL TG

FG 9,967,161 46,694 1 0.35 0.24 0.17 -0.15 0.19

FI 9,837,043 24,245 0.35 1 0.52 0.39 -0.37 0.40

BMI 9,953,164 87,048 0.24 0.52 1 0.51 -0.32 0.30

WHR 9,954,793 54,572 0.17 0.39 0.51 1 -0.30 0.33

HDL 9,549,054 62,166 -0.15 -0.37 -0.32 -0.30 1 -0.52

TG 9,544,498 62,166 0.19 0.40 0.30 0.33 -0.52 1

FG Stands for: Fasting glucose.

FI Stands for: Fasting insulin.

BMI Stands for: Body Mass Index.

WHR Stands for: Waist-Hip Ratio.

HDL Stands for: High-density lipoprotein.

TG Stands for: Triglyceride.

https://doi.org/10.1371/journal.pone.0201173.t001
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intronic SNPs) in the region as genes. We selected the overlapped SNPs between the six traits

and the reference data in our study. After the gene annotation of SNPs, we pruned the SNPs

for each gene using the parameter r2 = 0.01 [22]. r is the Pearson correlation coefficient

between any of the two SNPs in one region. The purpose of SNP pruning is to reduce potential

biases caused by the linkage disequilibrium (LD) among SNPs [22].

Fig 1. The analytical workflow of the present work.

https://doi.org/10.1371/journal.pone.0201173.g001
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For the present work, the GWAS datasets we used provided not only the p value of the

SNPs but also the regression coefficient β and the standard error (SE). We normalized the

regression coefficient β before conducting the Meta-CCA using the following equation (n is

the sample size in the corresponding GWAS dataset of each trait):

b
normal

¼
b
ffiffiffi
n
p
� SE

ð1Þ

Statistical analysis

Step 2: Meta-CCA analysis. The present work was conducted by the Meta-CCA R pack-

age, and each gene as a unit for Meta-CCA analysis. We recognized the transcript including

all SNPs (both exonic and intronic SNPs) in the region as genes. The program of Meta-CCA

required three basic data inputs: the genotypic correlation structures between SNPs (∑XX), the

correlation coefficients between SNPs and traits (∑XY), and the phenotypic correlation struc-

tures between traits (∑YY) (Table 1) [19]. In Meta-CCA, ∑XX was estimated using a reference

SNP dataset such as the HapMap data or the 1000 Genomes data representing the study popu-

lation. It is better if ∑XX was estimated from the target population or the same ethnicity from

the database used [19]. As all of the participants in our study were Caucasians, we calculated

the ∑XX based on the 1000 Genomes data and downloaded the reference data from 1000

Genomes Project (Phase 3 European (CEU) population reference data (https://www.cog-

genomics.org/static/bin/plink/glist-hg19). ∑XY was estimated by the normalized regression

coefficient β:

X
XY ¼

XTY
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G and P are the number of genotypic and phenotypic variables, respectively.

And ∑YY was estimated based on the Phenotypic Pearson Correlation Coefficients (YY),

which was shown in Table 1 [23]. In the original study, all of the participants had the clinical

data of the six traits (FG, FI, BMI, WHR, HDL and TG). The phenotypic Pearson correlation

coefficients between the six traits were calculated from the same corresponding individuals

[23]. The details of the exact procedures of Meta-CCA program were described in Anna

Cichonska’s paper [19]. After Meta-CCA, we obtained the output data of the relationship

between the genes and the six traits. We used a p value < 0.05 (after Bonferroni correction) as

the nominal significance threshold.

Step 3: Gene-based association analysis. To refine the identified genes by Meta-CCA, we

tested their specific relationships with the six traits respectively using VEGAS-2 (Versatile

Gene-based Association Study–2) [24, 25], a gene-based algorithm widely used for gene-based

p value calculation using GWAS summary statistics. VEGAS-2, an approach provides the cor-

relation of all the SNPs in one gene region for one single trait, also has lower false positive rates

compared with other gene-based approaches [26, 27]. We selected the potential pleiotropic

genes significantly associated with more than one trait (P value< 0.05/2720, Bonferroni cor-

rection) [28] after obtaining the gene-based p-value of each gene for the six traits using

VEGAS-2.
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Functional annotation and gene enrichment analyses

Step 4: Pathway and GO (Gene Ontology) term enrichment analyses of the potential

pleiotropic genes. To explore the biological functions of the identified potential pleiotropic

genes, we performed pathway enrichment analyses and GO enrichment analyses for the poten-

tial pleiotropic genes using Enrichr (a web server tool for gene set enrichment analysis: http://

amp.pharm.mssm.edu/Enrichr/) [29]. The Pathway and GO Term enrichment analyses also

provide a better understanding of the polygenic associations and the potential mechanisms of

the biological process. With this program, we used hypergeometric tests and Fisher’s exact

tests for the statistical analysis. Benjamini-Hochberg corrected p value <0.05 in the enrich-

ment analysis is used as the threshold for significance.

Results

After gene annotation and SNP pruning, 21,209 genes were left to conduct the Meta-CCA

analysis in our study. The number of SNPs in each gene ranged from 1 to 280; the average was

13. We used the threshold of 0.05/21209 (Bonferroni correction) as our target alpha level for

the Meta-CCA analysis [28]. For the Meta-CCA analysis, 2,720 genes with the p value < 0.05/

21209 were identified as potential pleiotropic genes for the six correlated quantitative traits.

After Meta-CCA analysis, we tested the 2,720 genes’ relationship to the six traits using

VEGAS-2. Only the genes significantly associated (Bonferroni corrected p value < 0.05) with

more than one trait were kept [24, 25]. There were 31, 0, 75, 1, 225 and 185 significant genes

(Bonferroni corrected p value < 0.05) for FG, FI, BMI, WHR, HDL, and TG respectively. By

screening the genes based on the results of gene-based p value, a total of 25 associated genes

related to more than one trait in VEGAS-2 analysis were identified as potential pleiotropic

genes for type 2 diabetes, obesity and dyslipidemia. The details are shown in Table 2.

Interestingly, four of the top five significant genes (GALNT2, SNX17,CETP, LIPC) were

regarded as dyslipidemia associated genes in the original GWAS study [21]. In particular,

two (GALNT2, SNX17) were also suggested to be associated with type 2 diabetes and obesity in

previous studies [35, 36]. All 25 potential pleiotropic genes were identified as the associated

genes/loci (with at least one SNP p value < 5�10−8) for TG in the original GWAS study, while

eight of these 25 genes (GALNT2,GCKR, LPL, FADS1, LIPC, CETP, APOA5, ZPR1) were

reported to be TG associated genes in the original GWAS study after validation [21]. Specifi-

cally, two of these 16 genes (FADS1, GCKR) have been identified as susceptibility candidate

genes for type 2 diabetes in early GWAS studies [37, 47, 51].

For the results of the pathway enrichment analyses, significant enrichment was observed in

five human pathways conforming to the up-to-date 2016 Wiki-pathway database (Table 3)

[29, 52], such as Statin Pathway (WP430), Composition of Lipid Particles (WP3601), Triacylgly-

ceride Synthesis (WP325), PPAR (Peroxisome proliferator-activated receptor) Alpha Pathway

(WP2878), Fatty Acid Beta Oxidation (WP143). The most significant pathway was the statin

pathway (WP430), which contains six potential pleiotropic genes (CETP, LIPC,APOC2,APOA1,
LPL, APOA5), suggesting a close relationship between the statin pathway and the three disorders.

GO enrichment analyses (conforming to the up-to-date 2017 database) [29, 52] revealed

that the biological functions of these pleiotropic genes were mainly involved in the metabolism

of lipids. For the GO biological process, the top five significant GO terms were Triglyceride

homeostasis (GO:0070328), Cellular triglyceride homeostasis (GO:0035356), Positive regula-

tion of lipoprotein lipase activity (GO:0051006), Cholesterol homeostasis (GO:0042632) and

Reverse cholesterol transport (GO:0043691). For the GO cellular component, the top five sig-

nificant GO terms were Very-low-density lipoprotein particle (GO:0034361), Spherical high-

density lipoprotein particle (GO:0034366), Early endosome (GO:0005769), Early endosome
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Table 2. The features of the significant potential pleiotropic genes.

Genes r� P-value for one single trait

BMI# WHR# FG# FI# HDL# TG#

SIK3a[30, 31] 2.63E-01 6.08E-01 9.69E-02 4.19E-01 5.79E-01 1.00E-06 1.00E-06

CETPa[3, 32] 2.48E-01 2.70E-01 4.04E-01 5.90E-01 6.25E-01 1.00E-06 1.00E-06

LIPCa[33, 34] 2.27E-01 2.02E-01 6.78E-01 3.58E-02 2.05E-01 1.00E-06 1.00E-06

GALNT2a[21, 35] 2.05E-01 1.93E-01 6.87E-01 6.66E-01 3.09E-01 1.00E-06 1.00E-06

SNX17a[36] 1.10E-01 3.08E-01 6.89E-03 6.00E-06 1.19E-03 9.79E-02 1.00E-06

GCKRb[21, 37, 38] 9.73E-02 2.06E-01 6.89E-03 1.00E-06 6.10E-05 1.09E-01 1.00E-06

LIPC-AS1c 9.07E-02 5.01E-01 7.92E-01 1.09E-01 1.71E-01 1.00E-06 1.00E-06

LPLa[39, 40] 9.05E-02 5.51E-01 3.83E-01 1.57E-01 6.69E-01 1.00E-06 1.00E-06

HLA-DQA1d[21, 41] 8.42E-02 6.47E-01 2.18E-01 4.26E-01 8.84E-01 1.20E-05 1.00E-06

IFT172c 8.40E-02 3.57E-01 6.32E-03 4.00E-06 3.13E-04 8.69E-02 1.00E-06

KRTCAP3c 8.28E-02 3.30E-01 7.51E-03 1.00E-05 1.46E-03 1.30E-01 1.00E-06

CSGALNACT1c 8.26E-02 6.89E-02 7.66E-01 6.93E-01 2.44E-01 1.00E-05 1.00E-06

APOA5a[42, 43] 8.23E-02 5.21E-01 3.53E-01 2.22E-01 4.35E-01 1.00E-06 1.00E-06

EIF2B4c 7.28E-02 3.48E-01 7.18E-03 5.00E-06 1.48E-03 7.09E-02 1.00E-06

GTF3C2c 7.07E-02 4.26E-01 1.19E-02 1.20E-05 1.61E-03 7.19E-02 1.00E-06

ZNF513c 7.00E-02 3.19E-01 6.02E-03 1.10E-05 1.41E-03 9.69E-02 1.00E-06

NRBP1c 6.21E-02 3.22E-01 9.40E-03 9.00E-06 1.60E-03 1.46E-01 1.00E-06

FNDC4c 6.19E-02 3.39E-01 5.16E-03 1.00E-06 1.00E-04 1.02E-01 1.00E-06

APOA1a[44, 45] 5.52E-02 5.43E-01 2.43E-01 3.54E-01 4.51E-01 1.00E-06 1.00E-06

FADS1b[21, 46, 47] 5.22E-02 8.79E-02 5.49E-01 3.00E-06 6.44E-01 1.00E-06 1.00E-06

TMEM258c 5.15E-02 7.69E-02 6.77E-01 1.00E-06 7.05E-01 1.00E-06 1.00E-06

FEN1d[21, 48] 4.82E-02 1.35E-01 6.67E-01 1.00E-06 6.54E-01 1.00E-06 1.00E-06

ZPR1d[21, 49] 4.36E-02 5.01E-01 3.51E-01 2.39E-01 4.41E-01 1.00E-06 1.00E-06

APOC2d[21, 50] 4.04E-02 1.10E-01 5.32E-01 6.99E-02 7.43E-01 1.00E-06 1.00E-06

CLPTM1c 3.98E-02 1.96E-01 6.07E-01 9.79E-02 7.72E-01 1.00E-06 1.00E-06

� Stands for: Canonical correlation value for the six correlated traits which is the result of Meta-CCA.
# Stands for: P-value for each trait which is the result of gene-based analysis.
a Stands for: This gene hasn’t been identified by any previous GWAS studies for type 2 diabetes and obesity, but has been reported to be associated with hyperglycemia,

obesity and dyslipidemia in other types of previous studies.
b Stands for: This gene was previously reported to be associated with type 2 diabetes, obesity and dyslipidemia, which was confirmed by our present study.
c Stands for: Novel pleotropic gene for type 2 diabetes, obesity and dyslipidemia.
d Stands for: This gene hasn’t been identified by any previous studies for obesity, but has been reported to be associated with type 2 diabetes and dyslipidemia in

previous study.

https://doi.org/10.1371/journal.pone.0201173.t002

Table 3. Pathway enrichment analysis of the potential pleiotropic genes.

Term (Pathway) P-value Benjamini-Hochberg P-value Genes

Statin Pathway(WP430) 1.44E-12 4.03E-10 CETP, LIPC, APOC2,APOA1, LPL, APOA5
Composition of Lipid Particles(WP3601) 1.44E-07 1.35E-06 CETP, LPL, APOA1
Triacylglyceride Synthesis(WP325) 4.07E-04 1.89E-03 LIPC, LPL
PPAR Alpha Pathway(WP2878) 4.79E-04 1.91E-03 APOA1,APOA5
Fatty Acid Beta Oxidation(WP143) 8.21E-04 2.55E-03 LIPC, LPL

https://doi.org/10.1371/journal.pone.0201173.t003
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lumen (GO:0031905) and Integral component of Golgi medial cisterna membrane

(GO:1990703). For the GO molecular function, the top five significant GO terms were

Intermembrane cholesterol transfer activity (GO:0120020), Cholesterol transporter activity

(GO:0017127), Cholesterol binding (GO:0015485), Phosphatidylcholine-sterol O-acyltransfer-

ase activator activity (GO:0060228), and High-density lipoprotein particle receptor binding

(GO:0070653). The results of the GO enrichment analysis are summarized in Table 4. GO

Term is the gene collection of different arborescence types [53]. Therefore, some GO Term is

the branch of others. As a result, there is a considerable overlap of genes between related GO-

terms such as “Triglyceride homeostasis” and “Cellular triglyceride homeostasis”.

In summary, our present work identified twenty-five potential pleiotropic genes as well as

the enriched pathways and GO terms of potential pleiotropic genes for type 2 diabetes, obesity

and dyslipidemia.

Discussion

The present study, the first systemically multivariate analysis of genomics data for type 2 diabe-

tes, obesity and dyslipidemia jointly using Meta-CCA, identified potential pleiotropic genes as

Table 4. Top five significant GO term enrichment analysis of the potential pleiotropic genes.

Term (GO Biological Process) P-value Benjamini-Hochberg P-

value

Genes

Triglyceride homeostasis (GO:0070328) 3.19E-

16

2.44E-13 CETP, GCKR, LIPC, APOC2, LPL, APOA1,

APOA5
Cellular triglyceride homeostasis (GO:0035356) 2.21E-

15

8.42E-13 CETP, GCKR, LIPC, APOC2, LPL, APOA1,

APOA5
Positive regulation of lipoprotein lipase activity (GO:0051006) 2.29E-

11

5.83E-09 LIPC, APOC2, LPL, APOA1, APOA5

Cholesterol homeostasis (GO:0042632) 3.06E-

11

5.83E-09 CETP, LIPC, APOC2,LPL, APOA1,APOA5

Reverse cholesterol transport (GO:0043691) 1.58E-

10

2.01E-08 CETP, LIPC, APOC2,APOA1,APOA5

Term (GO Cellular Component) P-value Benjamini-Hochberg P-value Genes

Very-low-density lipoprotein particle (GO:0034361) 7.77E-

07

1.17E-04 APOC2,APOA1,APOA5

Spherical high-density lipoprotein particle (GO:0034366) 4.18E-

05

3.16E-03 APOC2,APOA1

Early endosome (GO:0005769) 8.43E-

04

2.09E-02 SNX17,APOC2,APOA1

Early endosome lumen (GO:0031905) 1.11E-

03

2.09E-02 SNX17,APOC2,APOA1

Integral component of Golgi medial cisterna membrane (GO:1990703) 1.08E-

03

2.09E-02 CSGALNACT1, GALNT2

Term (GO Molecular Function) P-value Benjamini-Hochberg P-value Genes

Intermembrane cholesterol transfer activity (GO:0120020) 9.56E-

07

1.71E-04 CETP, APOA1,APOA5

Cholesterol transporter activity (GO:0017127) 4.95E-

06

4.43E-04 CETP, APOA1,APOA5

Cholesterol binding (GO:0015485) 2.06E-

05

6.69E-04 CETP, APOA1,APOA5

Phosphatidylcholine-sterol O-acyltransferase activator activity

(GO:0060228)

2.24E-

05

6.69E-04 APOA1,APOA5

High-density lipoprotein particle receptor binding (GO:0070653) 2.24E-

05

6.69E-04 APOA1,APOA5

https://doi.org/10.1371/journal.pone.0201173.t004
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well as enriched pathways and GO terms. Importantly, two of the 25 identified genes (GCKR,

FADS1) were reported to be associated with type 2 diabetes, obesity and dyslipidemia in differ-

ent prior studies [21, 37, 38, 46, 47], validated by our present study. Other significant genes,

excluding the genes that were reported to be associated with hyperglycemia, obesity and dysli-

pidemia in other types of previous studies, might be novel pleiotropic candidate genes (such

as LIPC-AS1, IFT172,KRTCAP3, CSGALNACT1, EIF2B4,GTF3C2,ZNF513,NRBP1, FNDC4,

TMEM258, and CLPTM1) for the three disorders. We preformed the functional protein-

protein interaction network analysis for the potential pleiotropic candidate genes by using

STRING 10.5 (https://string-db.org/cgi/input.pl). Fig 2 shows that there are interactions

between most of the potential pleiotropic candidate genes. The results not only revealed some

of the shared genetic components but also provided novel insights for exploring the potential

common biological pathogenesis of these three disorders.

Many genes and pathways have pleiotropic effects on more than one disease, a common

phenomenon supported by this study of type 2 diabetes, obesity and dyslipidemia. Recently,

animal experiments and cross-sectional population-based studies have shown evidence of

large shared gene components. Pleiotropic genes have been successfully identified in bivariate

analyses of type 2 diabetes with obesity, type 2 diabetes with dyslipidemia, and obesity with

dyslipidemia. However, multivariate analysis had not previously been conducted for these

three disorders simultaneously. Systemically exploring the pleiotropic genes and their effects

on these three disorders is essential, and is possible because of the accessibility of the GWAS

summary statistics. The advantages of Meta-CCA are listed as follows. Firstly, Meta-CCA can

detect correlations between multiple variants and multiple traits based on GWAS summary

statistics [19], which might provide richer clues for finding novel gene targets in multivariate

analyses compared to the univariate and bivariate analysis [18]. For example, TMEM258, a

gene for adipose tissue regulation, was not identified by any previous GWAS studies for type 2

diabetes and obesity, but was one of the novel pleiotropic candidate genes for type 2 diabetes,

obesity and dyslipidemia identified in this study. Secondly and notably, Meta-CCA can iden-

tify novel candidates, since some of the associations become detectable only when multiple

variants and multiple traits are tested jointly [19]. For example, CETP, a well-known gene for

dyslipidemia, was not identified by any previous GWAS studies for type 2 diabetes, but it was

one of the novel findings in our study. Last but not least, Meta-CCA is a cost-effective analyti-

cal method based on the data of GWAS summary statistics, which provides an enlarged larger

effective sample size to detect potential pleiotropic genes for multivariate traits. Meta-CCA

and similar types of analyses are an emerging and powerful tool for detection of pleiotropic

genes of multiple correlated traits using GWAS summary statistics.

Among the 25 potential pleiotropic genes, two genes, GCKR, and FADS1, were suggested to

be pleiotropic genes for type 2 diabetes, obesity and dyslipidemia based on the results of previ-

ous studies [21, 37, 38, 46, 47]. GCKR, located in 2p23.3, which encodes the protein belonging

to the glucosidase regulatory subfamily, which in turn inhibits glucosidase by binding to

enzymes in pancreatic islet cells and liver. A recent study found that the variants of GCKR
were associated with obesity in postmenopausal women [38]. FADS1, located in 11q12.2,

encodes a protein that is a member of fatty acid desaturases. FADS1 was reported to be related

to type 2 diabetes by a previous GWAS study, but the mechanism was still unknown [51].

From a biochemistry point of view, eight (APOA5,APOA1,APOC2,CETP, LPL, LIPC,

GCKR,GALNT2) of the twenty-five potential pleiotropic genes were involved in important

metabolic routes. Details are summarized in Fig 3. APOA5,APOA1, and APOC2 encode lipo-

proteins which mainly ferry TG, HDL, and VLDL (very low density lipoprotein), respectively.

CETP encodes cholesteryl ester-transfer protein, which transfers HDL into VLDL and IDL

(intermediate density lipoprotein) by involving the transportation of cholesteryl ester. LPL is a
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Fig 2. The nodes represent proteins which were encoded by corresponding genes, edges represent the protein-

protein association, line color represents types of interaction evidence (e.g., text mining, co-expression and so on).

All of the interacting proteins with an interaction score� 0.15 (based on previous study).

https://doi.org/10.1371/journal.pone.0201173.g002
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lipoprotein lipase which plays a critical role in lipid metabolism such as transferring VLDL

into IDL. The function of the protein hepatic triglyceride lipase encoded by LIPC is important

in catabolism of lipids, including transferring IDL into LDL. GALNT2 and GCKR are involved

in the metabolism of glucose as mentioned above.

Our results, as previously described, have identified 25 genes and five pathways associated

with type 2 diabetes, obesity, and dyslipidemia. Interestingly, all 25 genes were identified as the

associated genes/loci for TG in the original GWAS study [21], though just eight of these 25

genes were refined in the validation stage [21]. All five pathways were associated with the

metabolism of lipids. Specifically, two types of lipid-lowering drugs successfully targeted the

statin pathway and PPAR Alpha pathway respectively, suggesting that abnormal plasma levels

of lipids play a critical role in the common biological pathogenesis of the three disorders.

Some drugs targeted on the statin pathway have been used successfully in therapy for type 2

diabetes patients with dyslipidemia. Another significant pathway is the PPAR Alpha pathway.

The PPAR pathway family, which includes the PPAR Alpha pathway, the PPAR Beta pathway,

and the PPAR Gamma pathway, plays a key role in substance metabolism (including glucose

metabolism, lipid metabolism, and protein metabolism). Specifically, PPAR Alpha was a core

Fig 3. Eight potential pleiotropic genes (the italic) affected the three disorders through these important metabolic

routes. From a biochemistry point of view, eight (APOA5, APOA1,APOC2,CETP, LPL, LIPC,GCKR,GALNT2) of the

twenty-five potential pleiotropic genes were involved in important metabolic routes. APOA5,APOA1, and APOC2
encode lipoproteins which mainly ferry TG, HDL, and VLDL, respectively. CETP encodes cholesteryl ester-transfer

protein, which transfers HDL into VLDL and IDL by involving the transportation of cholesteryl ester. LPL is a

lipoprotein lipase which plays a critical role in lipid metabolism such as transferring VLDL into IDL. The function of

the protein hepatic triglyceride lipase encoded by LIPC is important in catabolism of lipids, including transferring IDL

into LDL. GALNT2 and GCKR are involved in the metabolism of glucose. The dotted line stands for the complex

metabolic routes of gluconeogenesis.

https://doi.org/10.1371/journal.pone.0201173.g003
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factor for fatty acid oxidation in liver, which was activated by ligands or drugs such as fibrates,

resulting in a decrease in serum level of TG [54]. PPAR Gamma was also an important factor

for the etiology of IR [55]. Drugs targeting PPAR Gamma, such as thiazolidinedione, were

effective in the control of IR [56].

Our present study also indicated that TG played an important role in these three disorders,

as all 25 potential pleiotropic genes were identified as associated genes/loci for TG in the origi-

nal GWAS study (though eight of these 25 genes were reported to be TG associated genes

after validation) [21]. For type 2 diabetes, hypertriglyceridemia is the most common type of

dyslipidemia [57], which is mainly induced by IR and impairment in insulin secretion. Fur-

ther, genomic studies [57, 58] have indicated that hypertriglyceridemia has a higher genetic

correlation with type 2 diabetes than other types of dyslipidemia. For obesity, most of the

plasma TG is determined by the level of VLDL-TG (the balance between synthesis and clear-

ance of VLDL-TG), and the synthesis of VLDL-TG is associated with total fat mass and liver

fat [59]. Thus, the large amount of fat mass in obese patients leads to increasing synthesis of

VLDL-TG, but the clearance of VLDL-TG remains unchanged. Hypertriglyceridemia is a prin-

cipal characteristic of dyslipidemia and is linked to many other types of dyslipidemia such as

decreased HDL level and increased small dense LDL level [60]. Above all, the metabolism of

TG seems to play a core role in the common biological pathogenesis of these three disorders.

Our study not only provides a better understanding of the shared genetic background for

the three disorders, but also produced a list of potential novel pleiotropic candidate genes for

follow-up study in further biological experiments. Some of the 25 pleiotropic genes (LIPC-AS1,

IFT172,KRTCAP3, CSGALNACT1, EIF2B4,GTF3C2,ZNF513,NRBP1, FNDC4,TMEM258,

and CLPTM1) were first reported to be associated with type 2 diabetes, obesity and dyslipide-

mia. The findings of our present work were not completely consistent with the findings in pre-

vious GWAS studies or other types of systematically analysis studies in type 2 diabetes and

other metabolic related diseases (The details of the overlapped identified genes and the novel

potential pleiotropic candidate genes were shown in Table 2). The reason for the different find-

ings in type 2 diabetes might be the using of different datasets and different methods in these

studies. For example, one published work that using integrative omics data shown that 15

SNPs and the corresponding genes were associated with type 2 diabetes [61]. However, these

genes were not identified by our present work. Our present work did not identify all the genes

that were identified in GWASs or other types of studies, as it was only a supplementary study

to identify the potential pleiotropic genes for chronic complex diseases. We hope that the

potential novel pleiotropic candidate genes can provide some clues for molecular biologists

performing future functional validation studies to determine whether the findings truly have

pathophysiological significance for type 2 diabetes, obesity and dyslipidemia.

Conclusion

In this study, we identified and assessed some potential pleiotropic genes and pathways for

type 2 diabetes, obesity and dyslipidemia using novel Meta-CCA analysis. The findings vali-

dated two previously identified pleiotropic genes (GCKR, FADS1) for these three disorders and

highlighted another eleven significant genes (LIPC-AS1, IFT172,KRTCAP3, CSGALNACT1,

EIF2B4,GTF3C2,ZNF513,NRBP1, FNDC4,TMEM258, and CLPTM1) as potential novel pleio-

tropic candidate genes for the three disorders. Further, the potential pleiotropic genes were

significantly enriched in five pathways including the statin pathway and PPAR Alpha pathway.

In conclusion, our findings may yield novel insights into exploring the common biological

pathogenesis of these three disorders, which ultimately may lead to the development of effec-

tive drug therapies.

The identification of potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0201173 August 15, 2018 12 / 16

https://doi.org/10.1371/journal.pone.0201173


Acknowledgments

All authors read and approved the final manuscript. The manuscript has been revised and

checked by the Office of Research of Tulane University. We acknowledged their service in the

manuscript.

Author Contributions

Conceptualization: Ji-Gang Zhang, Hong-Wen Deng.

Data curation: Yuan-Cheng Chen, Chao Xu, Ji-Gang Zhang, Chun-Ping Zeng, Xia-Fang

Wang, Rou Zhou, Xu Lin, Zeng-Xin Ao, Jun-Min Lu, Hong-Wen Deng.

Formal analysis: Yuan-Cheng Chen, Chao Xu.

Funding acquisition: Yuan-Cheng Chen, Hong-Wen Deng.

Methodology: Yuan-Cheng Chen, Chao Xu, Ji-Gang Zhang, Chun-Ping Zeng, Hong-Wen

Deng.

Project administration: Yuan-Cheng Chen, Chao Xu, Hong-Wen Deng.

Resources: Jie Shen.

Software: Yuan-Cheng Chen, Chao Xu.

Supervision: Hong-Wen Deng.

Validation: Hong-Wen Deng.

Writing – original draft: Yuan-Cheng Chen.

Writing – review & editing: Yuan-Cheng Chen, Hong-Wen Deng.

References
1. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complica-

tions. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation.

Diabetic medicine: a journal of the British Diabetic Association. 1998; 15(7):539–53. Epub 1998/08/01.

https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539::aid-dia668>3.0.co;2-s PMID: 9686693.

2. Haslam DW, James WPT. Obesity. The Lancet. 2005; 366(9492):1197–209. https://doi.org/10.1016/

s0140-6736(05)67483-1

3. Li N, van der Sijde MR, Bakker SJ, Dullaart RP, van der Harst P, Gansevoort RT, et al. Pleiotropic

effects of lipid genes on plasma glucose, HbA1c, and HOMA-IR levels. Diabetes. 2014; 63(9):3149–58.

Epub 2014/04/12. https://doi.org/10.2337/db13-1800 PMID: 24722249.

4. Cho E, Manson JE, Stampfer MJ, Solomon CG, Colditz GA, Speizer FE, et al. A prospective study of

obesity and risk of coronary heart disease among diabetic women. Diabetes care. 2002; 25(7):1142–8.

Epub 2002/06/28. PMID: 12087011.

5. Jorgensen AB, Frikke-Schmidt R, West AS, Grande P, Nordestgaard BG, Tybjaerg-Hansen A. Geneti-

cally elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for

myocardial infarction. European heart journal. 2013; 34(24):1826–33. Epub 2012/12/19. https://doi.org/

10.1093/eurheartj/ehs431 PMID: 23248205.

6. Goldstein LB, Bushnell CD, Adams RJ, Appel LJ, Braun LT, Chaturvedi S, et al. Guidelines for the pri-

mary prevention of stroke: a guideline for healthcare professionals from the American Heart Associa-

tion/American Stroke Association. Stroke. 2011; 42(2):517–84. Epub 2010/12/04. https://doi.org/10.

1161/STR.0b013e3181fcb238 PMID: 21127304.

7. Zhang S, Liu Z, Liu YL, Wang YL, Liu T, Cui XB. Prevalence of stroke and associated risk factors

among middle-aged and older farmers in western China. Environmental health and preventive medi-

cine. 2017; 22(1):6. Epub 2017/11/23. https://doi.org/10.1186/s12199-017-0621-z PMID: 29165114.

8. Read SH, McAllister DA, Colhoun HM, Farran B, Fischbacher C, Kerssens JJ, et al. Incident ischaemic

stroke and Type 2 diabetes: trends in incidence and case fatality in Scotland 2004–2013. Diabetic

The identification of potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0201173 August 15, 2018 13 / 16

https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539::aid-dia668>3.0.co;2-s
http://www.ncbi.nlm.nih.gov/pubmed/9686693
https://doi.org/10.1016/s0140-6736(05)67483-1
https://doi.org/10.1016/s0140-6736(05)67483-1
https://doi.org/10.2337/db13-1800
http://www.ncbi.nlm.nih.gov/pubmed/24722249
http://www.ncbi.nlm.nih.gov/pubmed/12087011
https://doi.org/10.1093/eurheartj/ehs431
https://doi.org/10.1093/eurheartj/ehs431
http://www.ncbi.nlm.nih.gov/pubmed/23248205
https://doi.org/10.1161/STR.0b013e3181fcb238
https://doi.org/10.1161/STR.0b013e3181fcb238
http://www.ncbi.nlm.nih.gov/pubmed/21127304
https://doi.org/10.1186/s12199-017-0621-z
http://www.ncbi.nlm.nih.gov/pubmed/29165114
https://doi.org/10.1371/journal.pone.0201173


medicine: a journal of the British Diabetic Association. 2018; 35(1):99–106. Epub 2017/10/19. https://

doi.org/10.1111/dme.13528 PMID: 29044687.

9. Cui R, Qi Z, Zhou L, Li Z, Li Q, Zhang J. Evaluation of serum lipid profile, body mass index, and waistline

in Chinese patients with type 2 diabetes mellitus. Clinical interventions in aging. 2016; 11:445–52. Epub

2016/05/05. https://doi.org/10.2147/CIA.S104803 PMID: 27143868.

10. Thanopoulou AC, Karamanos BG, Angelico FV, Assaad-Khalil SH, Barbato AF, Del Ben MP, et al. Die-

tary fat intake as risk factor for the development of diabetes: multinational, multicenter study of the Medi-

terranean Group for the Study of Diabetes (MGSD). Diabetes care. 2003; 26(2):302–7. Epub 2003/01/

28. PMID: 12547853.

11. Yazici D, Sezer H. Insulin Resistance, Obesity and Lipotoxicity. Advances in experimental medicine

and biology. 2017; 960:277–304. Epub 2017/06/07. https://doi.org/10.1007/978-3-319-48382-5_12

PMID: 28585204.

12. Sewter C, Berger D, Considine RV, Medina G, Rochford J, Ciaraldi T, et al. Human obesity and type 2

diabetes are associated with alterations in SREBP1 isoform expression that are reproduced ex vivo by

tumor necrosis factor-alpha. Diabetes. 2002; 51(4):1035–41. Epub 2002/03/28. PMID: 11916923.

13. Song YM, Sung J, Lee K. Genetic and environmental relationships of metabolic and weight phenotypes

to metabolic syndrome and diabetes: the healthy twin study. Metabolic syndrome and related disorders.

2015; 13(1):36–44. Epub 2014/10/22. https://doi.org/10.1089/met.2014.0087 PMID: 25333649.

14. Temprano A, Sembongi H, Han GS, Sebastian D, Capellades J, Moreno C, et al. Redundant roles

of the phosphatidate phosphatase family in triacylglycerol synthesis in human adipocytes. Diabetolo-

gia. 2016; 59(9):1985–94. Epub 2016/06/28. https://doi.org/10.1007/s00125-016-4018-0 PMID:

27344312.

15. Angin Y, Beauloye C, Horman S, Bertrand L. Regulation of Carbohydrate Metabolism, Lipid Metabo-

lism, and Protein Metabolism by AMPK. Exs. 2016; 107:23–43. Epub 2016/11/05. https://doi.org/10.

1007/978-3-319-43589-3_2 PMID: 27812975.

16. Day EA, Ford RJ, Steinberg GR. AMPK as a Therapeutic Target for Treating Metabolic Diseases.

Trends in endocrinology and metabolism: TEM. 2017; 28(8):545–60. Epub 2017/06/26. https://doi.org/

10.1016/j.tem.2017.05.004 PMID: 28647324.

17. Hasstedt SJ, Hanis CL, Das SK, Elbein SC. Pleiotropy of type 2 diabetes with obesity. Journal of

human genetics. 2011; 56(7):491–5. Epub 2011/04/29. https://doi.org/10.1038/jhg.2011.46 PMID:

21525879.

18. Inouye M, Ripatti S, Kettunen J, Lyytikainen LP, Oksala N, Laurila PP, et al. Novel Loci for metabolic

networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS genetics. 2012; 8

(8):e1002907. Epub 2012/08/24. https://doi.org/10.1371/journal.pgen.1002907 PMID: 22916037.

19. Cichonska A, Rousu J, Marttinen P, Kangas AJ, Soininen P, Lehtimaki T, et al. metaCCA: summary sta-

tistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation

analysis. Bioinformatics (Oxford, England). 2016; 32(13):1981–9. Epub 2016/05/07. https://doi.org/10.

1093/bioinformatics/btw052 PMID: 27153689.

20. Horikoshi M, Mgi R, van de Bunt M, Surakka I, Sarin AP, Mahajan A, et al. Discovery and Fine-Mapping

of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS genetics. 2015; 11

(7):e1005230. Epub 2015/07/02. https://doi.org/10.1371/journal.pgen.1005230 PMID: 26132169.

21. Surakka I, Horikoshi M, Magi R, Sarin AP, Mahajan A, Lagou V, et al. The impact of low-frequency and

rare variants on lipid levels. Nature genetics. 2015; 47(6):589–97. Epub 2015/05/12. https://doi.org/10.

1038/ng.3300 PMID: 25961943.

22. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-

genome association and population-based linkage analyses. American journal of human genetics.

2007; 81(3):559–75. Epub 2007/08/19. https://doi.org/10.1086/519795 PMID: 17701901.

23. Vattikuti S, Guo J, Chow CC. Heritability and genetic correlations explained by common SNPs for meta-

bolic syndrome traits. PLoS genetics. 2012; 8(3):e1002637. Epub 2012/04/06. https://doi.org/10.1371/

journal.pgen.1002637 PMID: 22479213.

24. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A versatile gene-based test for

genome-wide association studies. American journal of human genetics. 2010; 87(1):139–45. Epub

2010/07/06. https://doi.org/10.1016/j.ajhg.2010.06.009 PMID: 20598278.

25. Mishra A, Macgregor S. VEGAS2: Software for More Flexible Gene-Based Testing. Twin research and

human genetics: the official journal of the International Society for Twin Studies. 2015; 18(1):86–91.

Epub 2014/12/19. https://doi.org/10.1017/thg.2014.79 PMID: 25518859.

26. Wojcik GL, Kao WH, Duggal P. Relative performance of gene- and pathway-level methods as second-

ary analyses for genome-wide association studies. BMC genetics. 2015; 16:34. Epub 2015/04/19.

https://doi.org/10.1186/s12863-015-0191-2 PMID: 25887572.

The identification of potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0201173 August 15, 2018 14 / 16

https://doi.org/10.1111/dme.13528
https://doi.org/10.1111/dme.13528
http://www.ncbi.nlm.nih.gov/pubmed/29044687
https://doi.org/10.2147/CIA.S104803
http://www.ncbi.nlm.nih.gov/pubmed/27143868
http://www.ncbi.nlm.nih.gov/pubmed/12547853
https://doi.org/10.1007/978-3-319-48382-5_12
http://www.ncbi.nlm.nih.gov/pubmed/28585204
http://www.ncbi.nlm.nih.gov/pubmed/11916923
https://doi.org/10.1089/met.2014.0087
http://www.ncbi.nlm.nih.gov/pubmed/25333649
https://doi.org/10.1007/s00125-016-4018-0
http://www.ncbi.nlm.nih.gov/pubmed/27344312
https://doi.org/10.1007/978-3-319-43589-3_2
https://doi.org/10.1007/978-3-319-43589-3_2
http://www.ncbi.nlm.nih.gov/pubmed/27812975
https://doi.org/10.1016/j.tem.2017.05.004
https://doi.org/10.1016/j.tem.2017.05.004
http://www.ncbi.nlm.nih.gov/pubmed/28647324
https://doi.org/10.1038/jhg.2011.46
http://www.ncbi.nlm.nih.gov/pubmed/21525879
https://doi.org/10.1371/journal.pgen.1002907
http://www.ncbi.nlm.nih.gov/pubmed/22916037
https://doi.org/10.1093/bioinformatics/btw052
https://doi.org/10.1093/bioinformatics/btw052
http://www.ncbi.nlm.nih.gov/pubmed/27153689
https://doi.org/10.1371/journal.pgen.1005230
http://www.ncbi.nlm.nih.gov/pubmed/26132169
https://doi.org/10.1038/ng.3300
https://doi.org/10.1038/ng.3300
http://www.ncbi.nlm.nih.gov/pubmed/25961943
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1371/journal.pgen.1002637
https://doi.org/10.1371/journal.pgen.1002637
http://www.ncbi.nlm.nih.gov/pubmed/22479213
https://doi.org/10.1016/j.ajhg.2010.06.009
http://www.ncbi.nlm.nih.gov/pubmed/20598278
https://doi.org/10.1017/thg.2014.79
http://www.ncbi.nlm.nih.gov/pubmed/25518859
https://doi.org/10.1186/s12863-015-0191-2
http://www.ncbi.nlm.nih.gov/pubmed/25887572
https://doi.org/10.1371/journal.pone.0201173


27. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel

locus at 10q24.32 and a significant overlap with schizophrenia. Molecular Autism. 2017; 8. https://doi.

org/10.1186/s13229-017-0137-9 PMID: 28540026.

28. Armstrong RA. When to use the Bonferroni correction. Ophthalmic & physiological optics: the journal of

the British College of Ophthalmic Opticians (Optometrists). 2014; 34(5):502–8. Epub 2014/04/05.

https://doi.org/10.1111/opo.12131 PMID: 24697967.

29. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehen-

sive gene set enrichment analysis web server 2016 update. Nucleic acids research. 2016; 44(W1):

W90–7. Epub 2016/05/05. https://doi.org/10.1093/nar/gkw377 PMID: 27141961.

30. Wang Q, Grainger AT, Manichaikul A, Farber E, Onengut-Gumuscu S, Shi W. Genetic linkage of hyper-

glycemia and dyslipidemia in an intercross between BALB/cJ and SM/J Apoe-deficient mouse strains.

BMC genetics. 2015; 16:133. Epub 2015/11/12. https://doi.org/10.1186/s12863-015-0292-y PMID:

26555648.

31. Sall J, Pettersson AM, Bjork C, Henriksson E, Wasserstrom S, Linder W, et al. Salt-inducible kinase 2

and -3 are downregulated in adipose tissue from obese or insulin-resistant individuals: implications for

insulin signalling and glucose uptake in human adipocytes. Diabetologia. 2017; 60(2):314–23. Epub

2016/11/04. https://doi.org/10.1007/s00125-016-4141-y PMID: 27807598.

32. Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, et al. An analysis of DNA methyla-

tion in human adipose tissue reveals differential modification of obesity genes before and after gastric

bypass and weight loss. Genome biology. 2015; 16:8. Epub 2015/02/05. https://doi.org/10.1186/

s13059-014-0569-x PMID: 25651499.

33. Kilpelainen TO, Lakka TA, Laaksonen DE, Mager U, Salopuro T, Kubaszek A, et al. Interaction of single

nucleotide polymorphisms in ADRB2, ADRB3, TNF, IL6, IGF1R, LIPC, LEPR, and GHRL with physical

activity on the risk of type 2 diabetes mellitus and changes in characteristics of the metabolic syndrome:

The Finnish Diabetes Prevention Study. Metabolism: clinical and experimental. 2008; 57(3):428–36.

Epub 2008/02/06. https://doi.org/10.1016/j.metabol.2007.10.022 PMID: 18249219.

34. Yin RX, Wu DF, Miao L, Aung LH, Cao XL, Yan TT, et al. Several genetic polymorphisms interact with

overweight/obesity to influence serum lipid levels. Cardiovascular diabetology. 2012; 11:123. Epub

2012/10/09. https://doi.org/10.1186/1475-2840-11-123 PMID: 23039238.

35. Marucci A, di Mauro L, Menzaghi C, Prudente S, Mangiacotti D, Fini G, et al. GALNT2 expression is

reduced in patients with Type 2 diabetes: possible role of hyperglycemia. PloS one. 2013; 8(7):e70159.

Epub 2013/07/31. https://doi.org/10.1371/journal.pone.0070159 PMID: 23894607.

36. Sajuthi SP, Sharma NK, Chou JW, Palmer ND, McWilliams DR, Beal J, et al. Mapping adipose and

muscle tissue expression quantitative trait loci in African Americans to identify genes for type 2 diabetes

and obesity. Human genetics. 2016; 135(8):869–80. Epub 2016/05/20. https://doi.org/10.1007/s00439-

016-1680-8 PMID: 27193597.

37. Gao K, Wang J, Li L, Zhai Y, Ren Y, You H, et al. Polymorphisms in Four Genes (KCNQ1 rs151290,

KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and Their Correlation with Type 2 Diabe-

tes Mellitus in Han Chinese in Henan Province, China. International journal of environmental research

and public health. 2016; 13(3). Epub 2016/03/02. https://doi.org/10.3390/ijerph13030260 PMID:

26927145.

38. Jung SY, Sobel EM, Papp JC, Crandall CJ, Fu AN, Zhang ZF. Obesity and associated lifestyles modify

the effect of glucose metabolism-related genetic variants on impaired glucose homeostasis among

postmenopausal women. Genetic epidemiology. 2016; 40(6):520–30. Epub 2016/07/06. https://doi.org/

10.1002/gepi.21991 PMID: 27377425.

39. Pardina E, Ferrer R, Rossell J, Baena-Fustegueras JA, Lecube A, Fort JM, et al. Diabetic and dyslipi-

daemic morbidly obese exhibit more liver alterations compared with healthy morbidly obese. BBA

clinical. 2016; 5:54–65. Epub 2016/04/07. https://doi.org/10.1016/j.bbacli.2015.12.002 PMID:

27051590.

40. Gao Y, Vidal-Itriago A, Kalsbeek MJ, Layritz C, Garcia-Caceres C, Tom RZ, et al. Lipoprotein Lipase

Maintains Microglial Innate Immunity in Obesity. Cell reports. 2017; 20(13):3034–42. Epub 2017/09/28.

https://doi.org/10.1016/j.celrep.2017.09.008 PMID: 28954222.

41. Scott RA, Scott LJ, Magi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An Expanded Genome-Wide

Association Study of Type 2 Diabetes in Europeans. Diabetes. 2017; 66(11):2888–902. Epub 2017/06/

02. https://doi.org/10.2337/db16-1253 PMID: 28566273.

42. Yin YW, Sun QQ, Wang PJ, Qiao L, Hu AM, Liu HL, et al. Genetic polymorphism of apolipoprotein A5

gene and susceptibility to type 2 diabetes mellitus: a meta-analysis of 15,137 subjects. PloS one. 2014;

9(2):e89167. Epub 2014/03/04. https://doi.org/10.1371/journal.pone.0089167 PMID: 24586566.

43. Lakbakbi El Yaagoubi F, Charoute H, Bakhchane A, Ajjemami M, Benrahma H, Errouagui A, et al. Asso-

ciation analysis of APOA5 rs662799 and rs3135506 polymorphisms with obesity in Moroccan patients.

The identification of potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0201173 August 15, 2018 15 / 16

https://doi.org/10.1186/s13229-017-0137-9
https://doi.org/10.1186/s13229-017-0137-9
http://www.ncbi.nlm.nih.gov/pubmed/28540026
https://doi.org/10.1111/opo.12131
http://www.ncbi.nlm.nih.gov/pubmed/24697967
https://doi.org/10.1093/nar/gkw377
http://www.ncbi.nlm.nih.gov/pubmed/27141961
https://doi.org/10.1186/s12863-015-0292-y
http://www.ncbi.nlm.nih.gov/pubmed/26555648
https://doi.org/10.1007/s00125-016-4141-y
http://www.ncbi.nlm.nih.gov/pubmed/27807598
https://doi.org/10.1186/s13059-014-0569-x
https://doi.org/10.1186/s13059-014-0569-x
http://www.ncbi.nlm.nih.gov/pubmed/25651499
https://doi.org/10.1016/j.metabol.2007.10.022
http://www.ncbi.nlm.nih.gov/pubmed/18249219
https://doi.org/10.1186/1475-2840-11-123
http://www.ncbi.nlm.nih.gov/pubmed/23039238
https://doi.org/10.1371/journal.pone.0070159
http://www.ncbi.nlm.nih.gov/pubmed/23894607
https://doi.org/10.1007/s00439-016-1680-8
https://doi.org/10.1007/s00439-016-1680-8
http://www.ncbi.nlm.nih.gov/pubmed/27193597
https://doi.org/10.3390/ijerph13030260
http://www.ncbi.nlm.nih.gov/pubmed/26927145
https://doi.org/10.1002/gepi.21991
https://doi.org/10.1002/gepi.21991
http://www.ncbi.nlm.nih.gov/pubmed/27377425
https://doi.org/10.1016/j.bbacli.2015.12.002
http://www.ncbi.nlm.nih.gov/pubmed/27051590
https://doi.org/10.1016/j.celrep.2017.09.008
http://www.ncbi.nlm.nih.gov/pubmed/28954222
https://doi.org/10.2337/db16-1253
http://www.ncbi.nlm.nih.gov/pubmed/28566273
https://doi.org/10.1371/journal.pone.0089167
http://www.ncbi.nlm.nih.gov/pubmed/24586566
https://doi.org/10.1371/journal.pone.0201173


Pathologie-biologie. 2015; 63(6):243–7. Epub 2015/11/04. https://doi.org/10.1016/j.patbio.2015.09.002

PMID: 26524954.

44. Chen ES, Furuya TK, Mazzotti DR, Ota VK, Cendoroglo MS, Ramos LR, et al. APOA1/A5 variants and

haplotypes as a risk factor for obesity and better lipid profiles in a Brazilian Elderly Cohort. Lipids. 2010;

45(6):511–7. Epub 2010/05/19. https://doi.org/10.1007/s11745-010-3426-z PMID: 20480398.

45. Wu X, Yu Z, Su W, Isquith DA, Neradilek MB, Lu N, et al. Low levels of ApoA1 improve risk prediction of

type 2 diabetes mellitus. Journal of clinical lipidology. 2017; 11(2):362–8. Epub 2017/05/16. https://doi.

org/10.1016/j.jacl.2017.01.009 PMID: 28502492.

46. Hotta K, Kitamoto T, Kitamoto A, Mizusawa S, Matsuo T, Nakata Y, et al. Association of variations in

the FTO, SCG3 and MTMR9 genes with metabolic syndrome in a Japanese population. Journal of

human genetics. 2011; 56(9):647–51. Epub 2011/07/29. https://doi.org/10.1038/jhg.2011.74 PMID:

21796137.

47. Fujita H, Hara K, Shojima N, Horikoshi M, Iwata M, Hirota Y, et al. Variations with modest effects have

an important role in the genetic background of type 2 diabetes and diabetes-related traits. Journal of

human genetics. 2012; 57(12):776–9. Epub 2012/09/21. https://doi.org/10.1038/jhg.2012.110 PMID:

22992776.

48. Moreli JB, Santos JH, Lorenzon-Ojea AR, Correa-Silva S, Fortunato RS, Rocha CR, et al. Hyperglyce-

mia Differentially Affects Maternal and Fetal DNA Integrity and DNA Damage Response. International

journal of biological sciences. 2016; 12(4):466–77. Epub 2016/03/29. https://doi.org/10.7150/ijbs.12815

PMID: 27019630.

49. Tokoro F, Matsuoka R, Abe S, Arai M, Noda T, Watanabe S, et al. Association of a genetic variant of

the ZPR1 zinc finger gene with type 2 diabetes mellitus. Biomedical reports. 2015; 3(1):88–92. Epub

2014/12/04. https://doi.org/10.3892/br.2014.379 PMID: 25469254.

50. Gomez JA, del Pozo C, Sorribas A, Serrat J, Gonzalez-Sastre F, de Leiva A. Apolipoprotein C subtype

distribution in type 2 diabetes mellitus. Diabetic medicine: a journal of the British Diabetic Association.

1989; 6(2):127–30. Epub 1989/03/01. PMID: 2522853.

51. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci

implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature genetics.

2010; 42(2):105–16. Epub 2010/01/19. https://doi.org/10.1038/ng.520 PMID: 20081858.

52. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative

HTML5 gene list enrichment analysis tool. BMC bioinformatics. 2013; 14:128. Epub 2013/04/17. https://

doi.org/10.1186/1471-2105-14-128 PMID: 23586463.

53. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the compre-

hensive functional analysis of large gene lists. Nucleic acids research. 2009; 37(1):1–13. Epub 2008/

11/27. https://doi.org/10.1093/nar/gkn923 PMID: 19033363.

54. Palladino EN, Wang WY, Albert CJ, Langhi C, Baldan A, Ford DA. Peroxisome proliferator-activated

receptor-alpha accelerates alpha-chlorofatty acid catabolism. Journal of lipid research. 2017; 58

(2):317–24. Epub 2016/12/23. https://doi.org/10.1194/jlr.M069740 PMID: 28007964.

55. Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, et al. Dominant negative muta-

tions in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hyperten-

sion. Nature. 1999; 402(6764):880–3. Epub 2000/01/06. https://doi.org/10.1038/47254 PMID:

10622252.

56. Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2

diabetes. Cell metabolism. 2014; 20(4):573–91. Epub 2014/09/23. https://doi.org/10.1016/j.cmet.2014.

08.005 PMID: 25242225.

57. Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and

diabetes. Archives of medical research. 2005; 36(3):232–40. Epub 2005/06/01. https://doi.org/10.1016/

j.arcmed.2005.01.005 PMID: 15925013.

58. Hasstedt SJ, Hanis CL, Elbein SC. Univariate and bivariate linkage analysis identifies pleiotropic loci

underlying lipid levels and type 2 diabetes risk. Annals of human genetics. 2010; 74(4):308–15. Epub

2010/07/06. https://doi.org/10.1111/j.1469-1809.2010.00589.x PMID: 20597901.

59. Bjornson E, Adiels M, Taskinen MR, Boren J. Kinetics of plasma triglycerides in abdominal obesity. Cur-

rent opinion in lipidology. 2017; 28(1):11–8. Epub 2016/11/30. https://doi.org/10.1097/MOL.

0000000000000375 PMID: 27898581.

60. Reiner Z. Hypertriglyceridaemia and risk of coronary artery disease. Nature reviews Cardiology. 2017.

Epub 2017/03/17. https://doi.org/10.1038/nrcardio.2017.31 PMID: 28300080.

61. Mercader JM, Puiggros M, Segre AV, Planet E, Sorianello E, Sebastian D, et al. Identification of novel

type 2 diabetes candidate genes involved in the crosstalk between the mitochondrial and the insulin sig-

naling systems. PLoS genetics. 2012; 8(12):e1003046. Epub 2012/12/14. https://doi.org/10.1371/

journal.pgen.1003046 PMID: 23236286.

The identification of potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0201173 August 15, 2018 16 / 16

https://doi.org/10.1016/j.patbio.2015.09.002
http://www.ncbi.nlm.nih.gov/pubmed/26524954
https://doi.org/10.1007/s11745-010-3426-z
http://www.ncbi.nlm.nih.gov/pubmed/20480398
https://doi.org/10.1016/j.jacl.2017.01.009
https://doi.org/10.1016/j.jacl.2017.01.009
http://www.ncbi.nlm.nih.gov/pubmed/28502492
https://doi.org/10.1038/jhg.2011.74
http://www.ncbi.nlm.nih.gov/pubmed/21796137
https://doi.org/10.1038/jhg.2012.110
http://www.ncbi.nlm.nih.gov/pubmed/22992776
https://doi.org/10.7150/ijbs.12815
http://www.ncbi.nlm.nih.gov/pubmed/27019630
https://doi.org/10.3892/br.2014.379
http://www.ncbi.nlm.nih.gov/pubmed/25469254
http://www.ncbi.nlm.nih.gov/pubmed/2522853
https://doi.org/10.1038/ng.520
http://www.ncbi.nlm.nih.gov/pubmed/20081858
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1186/1471-2105-14-128
http://www.ncbi.nlm.nih.gov/pubmed/23586463
https://doi.org/10.1093/nar/gkn923
http://www.ncbi.nlm.nih.gov/pubmed/19033363
https://doi.org/10.1194/jlr.M069740
http://www.ncbi.nlm.nih.gov/pubmed/28007964
https://doi.org/10.1038/47254
http://www.ncbi.nlm.nih.gov/pubmed/10622252
https://doi.org/10.1016/j.cmet.2014.08.005
https://doi.org/10.1016/j.cmet.2014.08.005
http://www.ncbi.nlm.nih.gov/pubmed/25242225
https://doi.org/10.1016/j.arcmed.2005.01.005
https://doi.org/10.1016/j.arcmed.2005.01.005
http://www.ncbi.nlm.nih.gov/pubmed/15925013
https://doi.org/10.1111/j.1469-1809.2010.00589.x
http://www.ncbi.nlm.nih.gov/pubmed/20597901
https://doi.org/10.1097/MOL.0000000000000375
https://doi.org/10.1097/MOL.0000000000000375
http://www.ncbi.nlm.nih.gov/pubmed/27898581
https://doi.org/10.1038/nrcardio.2017.31
http://www.ncbi.nlm.nih.gov/pubmed/28300080
https://doi.org/10.1371/journal.pgen.1003046
https://doi.org/10.1371/journal.pgen.1003046
http://www.ncbi.nlm.nih.gov/pubmed/23236286
https://doi.org/10.1371/journal.pone.0201173

