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Smad4 (DPC4) - a potent tumour suppressor?
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Summary The recently described family of Smad molecules are essential mediators of transforming growth factor 0i (TGF-P) signalling. To
date, seven members of this family have been kientified, each of which plays a specific and separate role in mediating TGF-3 superfamily
gene tansciption. At least two different Smads, Smad2 and Smad4 (DPC4), have been implicated in human cancer and appear to have
tumour-suppressor furctions. Loss of function of Smad4 is most strongly associated with human pancreatic and colorectal malignancy.
Furthermore, work from several different groups has suggested associations between Smad4 loss and malignancy in a number of other
tissues. Here, we present a revlew of the current state of the literature implicating the central Smad mediator, Smad4, in the development of
cancer.
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Some of the earliest theories of cancer predisposition have
proposed a close relationship between the processes that control
normal and malignant development. More recent work has estab-
lished that the cellular pathways critical to embryonic develop-
ment do indeed contain a number of genes which function as
tumour-suppressor genes. Twenty-seven years ago. Knudson
(1971) first proposed the existence of tumour-suppressor genes
(TSGs) based on an analysis of the predisposition to retino-
blastoma Since that time. nearly 20 TSGs. including the human
retinoblastoma gene (RB) itself, have been identified and cloned
and. in many cases. mouse models of gene deficiency have been
generated by gene targeting. For example. animals heterozygous
for Rb-i (the mouse homologue of the human RB gene) develop
tumours with almost 100% penetrance. This strain has also
demonstrated the absolute requirement for Rb-i in development.
as homozygous null animals die at day 13 of gestation. (e.g. Clarke
et al, 1992). Other TSGs have also revealed essential develop-
mental roles. Thus. Apc-deficient embryos die shortly after
implantation (Moser et al. 1989) and p53-deficient mice show
increased rates of neural tube abnormality (Armstrong et al. 1995:
Sah et al. 1995).
The Smad4 gene (also termed DPC4) is located on chromosome

1 8q21 and is perhaps the most recent addition to this group of genes
that show both developmental and tumour-suppressor functions. In
1996. Smad4 was discovered after genetic analysis of a panel of
pancreatc carcinomas, earning its original name of DPC4 from the
fact that it was homozygously deleted in a third of the cancers.
hence deleted in pancreatic carcinoma-4 (Hahn et al, 1996a).
Investigation of the gene showed that it had sequence homology to
the Drosophila melanogaster mothers against dpp (MAD) protein. a
transforming growth factor P (TGF-f) signalling homologue (Hahn
et al. 1996a). and the Caenorhabditis elegans Mad homologues
sma-2. sma-3 and sma4 (Sekelsky et al. 1995). The presence of
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strong homology to these genes implies that. as well as being a
tumour-suppressor gene. Smad4 is important in TGF-0 signalling
and mammalian development. Its association with human neoplasia
may entirely be a consequence of this significance. as is becoming
apparent for several other TSGs.

TGF-P family

The TGF-0 superfamily is one of the largest groups of polypeptide
growth and differentiation factors and mediates a wide range of
biological processes in both vertebrates and invertebrates
(Kingsley. 1994). Various functional criteria have been used to
group the superfamily (of currently around 25 different molecules)
into three classes: TGF-ps. activins and bone morphogenetic
proteins (BMPs). Different members of these groups are variously
implicated in the regulation of wound healing. immune responses
and. more importantly. in control of growth pathways. The TGF-j
family itself consists of at least five genes encoding distinct
proteins in vertebrates. referred to as TGF-j1-5. The biological
effects of TGF-P are mediated by specific TGF-4 receptors at the
surface of the target cells. which fall into two classes dependent
upon structure. The two types of receptor. both functional
serine/threonine kinases. form heteromeric complexes which bind
different ligands and initiate different intracellular responses.
Essentially. the type I receptors appear to be less selective and can
bind different ligands dependent on the more limited ligand
specificity of the type II receptor with which they associate
(Wrana et al. 1992a.b; Attisano et al. 1993: Massague et al. 1993).
Association of the two receptors leads to downstream phosphoryl-
ation events which eventually lead to transcription of the appro-
priate TGF-, superfamily gene (Maciassilva et al. 1996). Until
recently. these downstream events have remained undetermined.
A role for Smad4 has been proposed within the effector arm of

TGF-0 on the basis of homology to Mad, a gene charactenrzed by
its interaction with the Drosophila homologue of the TGF-P
superfamily member BMP Smad4 is not the only gene to have
been implicated in this way. Indeed. analysis of Mad revealed it to
be homologous to the sma genes of C elegans. and seven distinct
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Figure 1 TGF-) superfamily signalling and Smads. In the presence of TGF-
P or other TGF-P superfamily member (here indicated by ligand') the type
and type 11 receptors dimerize and become phosphorylated to initiate Smad-
dependent signal transduction. This process is thought to be cribcally
dependent on the activity of Smad4 (see text)

vertebrate smalMad genes have subsequently been cloned of
which Smad4 (or DPC4) is one. These genes are now referred to as

Smad 1-7 according to the proposed nomenclature of Derynck et al
1996). Individual Smad proteins may mediate specific TGF-P
superfamily signals in development. For example. Smads I and 5
have been proposed to mediate BMP signal transduction as they
can functionally substitute for BMP2I4 in Xenopus embryos.
Smads 2 and 3 are implicated in TGF-P and activin induction. and
Smad 7 is currently thought to be an inducible antagonist of TGF-
P signalling. However. Smad4JDPC4 is apparently common to all
the ligand-specific Smad pathways and would appear to have a

role as a central mediator in TGF-P superfamily signalling (Lagna
et al. 1996: Heldin et al. 1997: Figure 1).

MADs

The primary structures of MAD proteins do not contain any motif
that clearly indicates their function. MADs are proteins of approx-
imately 450 amino acids with highly conserved N- and C-terminal
domains and a variable proline-rich intervening region. Smad4
has a structure consistent with a MAD-related protein: there are

conserved N- and C-terminal regions (termed MHI and MH2
respectively) connected by a poorly conserved linker domain rich
in serine. threonine and proline residues (Wrana and Attisano.
1996). This structure seems to suggest that the MH domains share
a tertiary structure critical to the regulation and function of the
protein. In support of this. all the mutations identified in genetic
screens map either to the MH 1 or the MH2 domain. and often
involve alterations in highly conserved residues.

Although MAD function within the nucleus is still largely unclear.
it has been observed that the C-domains of various MAD proteins
(and Smad4) display taanscriptional activity when bound to DNA via

a GAL4 DNA binding domain (Liu et al. 1996). The importance of
the C-terminal region is ftuther emphasized by studies of malignancy
(see below). which reveal that the primary hotspot for Smad4 muta-
tions is within the C-terminal domain (Savage et al. 1996). This is

confirmed by the recently described crystal structure of the Smad4 C-
terminal domain. which shows that the majority of tumour-derived
mutations map to five amino acids that are involved in essential

intermolecular contacts (Shi et al. 1997). These observations raise the
possibility that MAD proteins function by transactivation. In
Xenopus embryos. Smad2 has been shown to interact with FAST-1. a
transcription factor with a novel winged helix stucture. Furthermore.
Smad4 co-immunoprecipitates with this complex (Chen et al. 1997).

Although these data suggest a role for Smads in regulating tran-
scnption. the exact nuclear function of these heteromeric Smad
complexes remains largely unknown. It has been shown that
Smad3 and Smad4 can form a DNA-binding complex that acti-
vates transcription of a reporter gene. Furthermore. it has been
demonstrated that MAD protein can bind DNA (Xin et al. 1996).
and Smad4 itself has been shown to be a DNA-binding protein
(Liu et al. 1997). Recently. it has emerged from functional assay
studies in a Smad4 null cell line that the molecule does indeed
appear to have distinct activation and ligand response domains
within it (Caestecker et al. 1997). This suggests a model for
Smad4 similar to other archetypal signalling molecules: in the
absence of ligand. the N-terminal domain and possibly the middle
linker region may obscure the activation domain at the C-terminal
end of the molecule. After ligand activation. this results in expo-
sure of the activation domain and may allow the binding of other
molecules. The apparent role of Smad4 appears to be in mediating
the actions of the other Smads.

Perhaps one of the most powerful indicators of the importance
of Smad4's role comes from some recently published papers by
Sirard et al (1998) and Takaku et al (1998). who have produced
Smad4 knockout mice. Both groups have found that complete
inactivation of Smad4 results in embryonic death at around
7.5 d.p.c. due to failed gastrulation and poor anterior development.
a phenotype reported to arise from reduced cell proliferation rather
than increased apoptosis. Somewhat surprisingly. mice heterozy-
gous for Smad4 do not display any increase in spontaneous
tumorigenesis compared with wild-type mice. If the mechanism of
loss of Smad4 is indeed through a two-step hit. then heterozygous
mice would be predicted to be more cancer prone. especially
within the pancreas and intestine. Following this reasoning.
Takaku's group introduced the Smad4 mutation into the Apc 1'6
background. a murine model for familial adenomatous polyposis.
The resulting compound heterozygotes developed intestinal
polyps which evolved into more aggressive tumours than those
observed in the simple ApC>716 heterozygotes. suggesting that
mutations in Smad4 play a significant role in the progression of
colorectal tumours.

Smad4 and human neoplasia

The primary report ascribing TSG status to Smad4 revealed loss of
function of this gene in 27% of human pancreatic malignancies
(Hahn et al. 1996b). Two additional reports have now been
published showing somewhat higher rates of Smad4 loss in this
tumour type (48% and 53%: Table 1). The predominant mutation
observed in these studies has been homozygous deletion of
Smad4. In these cases, it remains possible that additional linked
genes have been deleted, and that loss of Smad4 is irrelevant.
particularly in view of the close proximity of Smad4 to other TSG
loci. It is. therefore. of significance that a number of mutations
have been identified within the Smad4 gene itself. strongly
supporting a causal link between loss of function and malignancy.

These findings raise the possibility that Smad4 acts as a global
TSG. However. Smad4 loss has been found to be relatively rare in
a range of other tumour types (Table 1). One notable exception to
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Table 1 DPC4 loss in various cancers

Cancer type DPC4 lss Method of Type of mutaton Comments Reference
(%) ch

Colorectal cancer

Colitis-associated
neoplasia

Neuroblastoma

Prostate cancer

16

22

33

0

10

PCR, DNA seq

IVSP

PCR, DNA seq

RT-PCR. SSCP

SB. PCR. SSCP

Four missense mutations
and one 12-bp deletion
One dinucieotide substitubon and
three missense mutations

Baialelic inactivation in one of
three neoplasms shown to
have allelic loss of 18q
No mutations found in the DPC4
gene, although DPC4 mRNA
expression was reduced

Allelic loss of chromosone 18
markers but no point mutations
or deletions

Thirty-one cancers
were examined

Only six cancers
examined

Limited role for
DPC4 in this
cancer

Takagi et al (1996)

Thiagalingham
et al (1996)

Hoque et al (1996)

Kong et al (1997)

MacGrogan et al

(1997)

Oesophageal cancer 0

0

0

Gastric cancer

Lung cancer

0

2

9

0

HNSCC

Bladder cancer

Breast cancer

Hepatocellular cancer

Ovarian cancer

Renal cancer

Nerve cell cancers

Melanoma

Osteosarcoma

Pancreatic cancer

Leukaemia

Oral cancer

SB, PCR, SSCP
IVSP

LOH, SSCP

PCR. DNA seq

LOH, PCR, DNA seq

SB, PCR, SSCP

SB, PCR, SSCP

LOH, RT-PCR,
DNA seq

MA, PCR, DNA seq

MA, PCR, DNA seq

PCR, SSCP. SB

MA, PCR, DNA seq
PCR, LOH analyss

MA, PCR, DNA seq

0

12

2

0

7

12

0

0

0

0

0

48

53

27

0

6

MA, PCR, DNA seq

MA, PCR, DNA seq

MA, PCR, DNA seq

MA, PCR, DNA seq

PCR, SSCP, SB

MA, PCR, DNA seq

PCR, DNA seq

LOH, IVSP

PCR, SSCP, SB

PCR, SSCP,
LOH

None

None

None

One case of biallelic inactivation

Two missense mutations and two
frameshift mutations

One nonsense mutation in a cell
line, 47% LOH in primary tumours

None

Homozygous deletion of the
complete coding sequence of
DPC4 (MDA-MB468 breast
carcinoma line)
MD-MB-468 breast cancer cell line

None
LOH onty, no mutations assessed

Non-conservative amino acid
replacement (cell line SW626)

None

None

None

None

Frfteen homnozygous deletions,
nine intragenic alterations
G-A tansitions and, more

frequentty, transversions

Twenty-five homozygous deletions
(out of 84), one truncated protein,
six point mutations

Two point mutations, one missense
and one substtution

Only ten samples
tested
No DPC4 loss despite
high 18q21.1 loss

Onty ten samples
tested

DPC4 mutatons were
not present in all lung
cancers carrying 18q.21
deletions

High frequency of LOH
at the 1 8q region cannot
be explained by DPC4

Comparative study of
LOH among various
tumour-suppressor genes

Thirty-eight tumours
analysed in a three
tumour-suppressor
gene study
The original
DPC4 study

DPC4/DCC study

Verbeek et al (1996)
Lei et al (1996)

Barrett et al (1996)

Lei et al (1996)

Powell et al (1997)

Nagatake et al

(1 996)

Verbeek et al (1996)

Kim et al (1996)

Schutte et al (1996)

Schutte et al (1996)

Verbeek et al (1996)

Schutte et al (1 996)
Piao et a] (1997)

Schutte et a] (1996)

Schutte et a] (1996)

Schutte et a] (1996)

Schutte et al (1996)

Schutte et al (1996)
Verbeek et at (1996)
Sch utte et at (1996)

RozenbJum et at

(1997)

Hahn et at (1996)

Verbeek et at (1996)

Watanabe et at

(1997)
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SSCP, single strand confomiation polymorphism; MA, microsatelite analysts; SB, Southem blot PCR, poymerase chain reacton; DNA seq, DNA sequencing;
LOH, loss of heterozygosity; IVSP, in vitro synthesized protein assay; HNSCC, head and neck squamous cell carcinoma; RT-PCR, reverse transcriptase
poymerase chain reacton.
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this is in colorectal cancer. in which there is good evidence for
low-frequency loss at this locus. Once again. mutations have been
identified within the Smad4 gene. strongly arguing against the
possibility that Smad4 loss is occurring as a consequence of other
genetic events. Using similar evidence. a role for Smad4 can be
argued in both lung and oral cancer. although the level of loss in
these tumour types is very low. Of the other tumour types listed in
Table 1. there is little evidence to directly implicate Smad4.
although these studies do provide some support for an involvement
of deletions of chromosome 18. The 12% losses of Smad4 in
ovarian and breast cancer are perhaps misleading as this estimate
of loss is derived from analysis of two cell lines. SW626 and
MDA-MB468 respectively.
The relatively restricted tissue specificity of Smad4 inactivation

in maligrnancy had suggested that the other MAD homologues
may be targets of tumour suppression in specific tumour subsets.
However, analysis of Smads 1.3.5 and 6 has revealed no mutations
in a total of 167 tumours. including colon, lung. breast and pancreas
(Riggens et al. 1997). Recently. 30 human-expressed sequence tags
with homology to Mad. the sma g:enes of C. elegans and/or Smad4
have been identified and five new genes termed JVJ8-J. JVI5-J.
JV15-2. J5-1 and JV4 have been subsequently characterized
(Riggtens et al. 1996). One gaene. JVJ8-I. was localized to 18q21.
adjacent to Smnad4 and DCC. an area of frequent gaenetic loss in
colorectal carcinoma. JV18-1 is somatically mutated in 2 out of 18
colorectal carcinomas that had been selected on the basis of loss of
heterozygaosity of polymorphic markers on 18q (Riggens et al.
1996). Based on homologay to other Smad gaenes. N1l8-1 has now
been assigned the new nomenclature of Smad2 and is the second
Mad homologue to be implicated in tumour suppression. The
prevalence of VJV8-JISrnad2 mutations in other neoplasms is not
well characterized to date. although there is evidence to sugest that
Smad2 may be mutated in a subset of leukaemias and lymphomas
(Ikezoe et al. 1998) and also in lunga carcinomas (approximately
4% (Uchida et al. 1996). Disruption of the Smad2gVene during
development results in a complete loss of embryonic gaerm-layer
tissues (Waldrip et al. 1998). confiainr that Smad2. like Smade.
has an essential role to play in development.

TGF-w is well known for its antiproliferative activits in the
majorityof mammalian epithelial cells. and loss ofTGF-l
responsiveness is documented to be associated withagaressive
neoplasms (Pommier. 1992: Arteaga et al. 1993: Polyak. 1996). It
has. therefore. been suggested that loss of components of the TGF-
,B pathway or its related gaenes. such as Smad4. would be selected
for in the clonal evolution of neoplasms. Significantly. two recent
reports (Grauldr etal. 1997Afet al. 1997) have linked Smad4 to
other pathways including the SAPK/JNK cascade. implicating
SmadT in both the control of cell cycle arrest and apoptosis. This
suggtests that Smad4-dependent malignancy may arise after
disruption of these key reaulatory mechanisms.

In summary. Smado has been shown to be a critical effector
of the TGF- response. a role apparently mediated through its
control orither Smad genes. Smad4 appears to be the key retula-
tory protein of this signalling pathwsay. ultimately controlling
transcription driven by the TGF-e superfamily. Loss of Smad4
has been shown to be associated primanly with pancreatic maig-
nancy and to a lesser extent withclcoloret ancer. Its involve-
ment in other cancer types is currently either 'erylimited or
unproven. Characterization of the role played by Smad4 will throw
light on the basic biology of pancreatic neoplasia and should also
suggest new therapeutic approaches to this disease. Finally, a

determination of the role played by Smad4 in malignancy should
provide an excellent paradigm for other components of this
signalling pathway. perhaps leading to the identification of a
family of genes with related TSG activity.
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