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Abstract: Polyhedral oligomeric silsesquioxane (POSS) has a nanoscale silicon core and eight organic
functional groups on the surface, with sizes from 0.7 to 1.5 nm. The three-dimensional nanostructures
of POSS can be used to build all types of hybrid materials with specific performance and controllable
nanostructures. The applications of POSS-based fluorescent materials have spread across various
fields. In particular, the employment of POSS-based fluorescent materials in sensing application can
achieve high sensitivity, selectivity, and stability. As a result, POSS-based fluorescent materials are
attracting increasing attention due to their fascinating vistas, including unique structural features,
easy fabrication, and tunable optical properties by molecular design. Here, we summarize the
current available POSS-based fluorescent materials from design to sensing applications. In the design
section, we introduce synthetic strategies and structures of the functionalized POSS-based fluorescent
materials, as well as photophysical properties. In the application section, the typical POSS-based
fluorescent materials used for the detection of various target objects are summarized with selected
examples to elaborate on their wide applications.

Keywords: polyhedral oligomeric silsesquioxane; hybrid materials; fluorescence; chemo-sensor

1. Introduction

Fluorescent hybrid materials, which combine the advantages of both organic and
inorganic material, have become one of the most popular star materials in modern society
due to their potential applications in many fields such as sensor technology [1–6], photo-
electric device [7–12], biomedicine [13–17], and environmental sciences [18–21]. However,
the demand for high-performance and multifunctional fluorescent materials has increased
dramatically along with the development of science and technology. Therefore, researchers
have been working on the design and development of high-performance materials to
expand application fields.

Among many hybrid materials, polyhedral oligomeric silsesquioxane (POSS) is fa-
vored by researchers because of its nanoscale size, well-defined framework, thermostability,
low toxicity, biocompatibility, as well as customizable properties by conventional physical
or chemical techniques. POSS is classified as hybrid inorganic-organic materials with
the empirical formula (RSiO1.5)n, in which R can represent the great variety of organic
substituents, while n is commonly 6, 8, 10, or 12. The cage-like octameric structures (n = 8)
are among the most promising precursors for further development [22–26], and are most
widely used in various fields [27–32]. Thus, in this review, the POSS specifically refers to its
structure containing cage-like (RSiO1.5)8, unless otherwise specified. In these compounds,
the cubic inorganic cores consisting of eight silicon corner atoms and twelve oxygen edge
atoms (Si-O-Si) are mono-dispersed (0.53 nm in diameter), while the eight organic arms (R)
attached to the eight silicon corner atoms are distributed in three dimensions. The rigid
cubic inorganic cores give them well-defined nanoscale size, while the R substituents give
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them tailorable chemical and physical properties. In the last three decades, the field of POSS
has developed greatly due to its well-defined nanostructures, facile chemical modification,
and inexpensive precursor materials. There are a number of reviews on the synthesis of
POSS compounds [22,33–35], and applications of POSS-based polymeric materials in drug
delivery, photodynamic therapy, and bioimaging [36–45]. However, we found no review on
the advancement of fluorescent hybrid materials based on POSS, describing their properties
and applications. In this review, we will mainly focus on the recent progress in the design
of POSS-based fluorescent materials and their sensing applications.

2. Synthesis and Design of POSS-Based Fluorescent Materials

The incorporation of POSS into fluorescent materials can greatly improve the perfor-
mance of the materials and give them more functionality. The preparation of POSS-based
fluorescent materials can be divided into chemical synthesis and physical blending. Re-
cently, a variety of the traditional and the burgeoning chemical synthesis methods have
been widely used in the design and synthesis of POSS-based fluorescent materials, such as
hydrolytic condensation [46], hydrosilylation [47–50], Heck reaction [51–54], atom transfer
radical polymerization (ATRP) [55–57], reversible addition-fragmentation chain transfer
polymerization [58], ring-opening metathesis polymerization [59], as well as “click” chem-
istry reaction [60–63]. The method of physical blending is mainly used in the quantum dots
(QDs) coated and lanthanide-doped POSS-based fluorescent materials [64–67].

2.1. POSS-Based Organic-Molecule Fluorescent Materials

Organic small molecule fluorescent materials are favored by researchers because of
their simple structure, abundant commercially available raw materials, and easy to modify
properties. In 2005, Kawakami and co-workers were the first to introduce the photo- and
electroactive π–chromophore into the POSS system by hydrosilylation reaction (Figure 1a) [68].
The structure of cotakis [2 -(carbazol-9-yl)ethyldimethylsiloxy]silsesquioxane (POSS-Cz) was
characterized by 1H, 13C, and 29Si NMR, IR, and MALDI-TOF MS spectroscopies. POSS-Cz
had good solubility in general organic solvents, such as THF, toluene, dichloromethane,
and chloroform. The solid state emission showed a strong monomeric emission peak with
quantum yield φ = 0.27 (refer to p-terphenyl φ = 0.87), which indicated the suppression
of the formation of excimers even in the solid state. It provides a feasible idea for the
development of novel photo- and electroactive materials. Shim and co-workers synthesized
a POSS-based blue light electroluminescent nanoparticle (POSS-FL3) by the hydrosilation
reaction between octakis(dimethylsiloxy)silsesquioxane and an allylfunctionalized terfluo-
rene chromophore (Figure 1b) [69]. The maximum absorption of POSS-FL3 was found to
be 352 nm in THF, while the maxima of the fluorescence emission were at 394 and 415 nm.
Because of the good spectral overlap of the maximum absorption wavelength (391 nm) of
poly(dihexylfluorene) with the maximum emission wavelengths (394 nm) of POSS-FL3,
POSS-FL3 could be used as a nanoparticle-cored dopant chromophore to enhance the
quantum efficiency of poly(dihexylfluorene) through energy transfer.
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The naphthyl POSS mono/bisimide showed extremely weak fluorescence, while the 
perylene POSS bis-imide exhibited very strong fluorescence with a quantum yield ap-
proaching unity. The single crystal X-ray crystallography indicated that the bulky POSS 
partially isolated the perylene moieties and thus reduced the aggregation of the fluoro-
phore in the solid state. Subsequently, Li and co-workers synthesized a series of dumb-
bell POSS-PDI (POSS-perylene diimide) triads by the same method (Figure 2b) [71]. The 
photophysical properties of these compounds both in the solution and solid state were 
studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, and fluorescence 
quantum yield measurement. The spectroscopic properties of these compounds were in-
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er, the solid state fluorescence quantum yield, which is determined by the packing 
structure of the fluorophores, did not increase inevitably as expected. The large longitu-
dinal displacement resulted in the “J” aggregation form and increase of fluorescence 
quantum yields, while the small longitudinal displacement caused “H” aggregation 
form and small fluorescence quantum yields. 

Figure 1. (a) Molecular structures of POSS-CZ [68]. (b) Molecular structures of POSS-FL3 [69].

Clarke and co-workers synthesized a variety of POSS imides by condensation of
amine-POSS with a variety of mono- and bis-anhydrides (Figure 2a) [70]. Their structures
were characterized by FIRT, 1H, 13C, and 29Si NMR, and ESI mass spectrometry. The
naphthyl POSS mono/bisimide showed extremely weak fluorescence, while the perylene
POSS bis-imide exhibited very strong fluorescence with a quantum yield approaching unity.
The single crystal X-ray crystallography indicated that the bulky POSS partially isolated
the perylene moieties and thus reduced the aggregation of the fluorophore in the solid
state. Subsequently, Li and co-workers synthesized a series of dumbbell POSS-PDI (POSS-
perylene diimide) triads by the same method (Figure 2b) [71]. The photophysical properties
of these compounds both in the solution and solid state were studied by UV-vis absorption
spectroscopy, fluorescence spectroscopy, and fluorescence quantum yield measurement.
The spectroscopic properties of these compounds were infinitesimally affected by the POSS
groups in the solution, while there was a great influence in the solid state. In the solid state,
the bulky POSS groups changed the packing structure of the fluorophores, thus affecting the
solid state emission properties. However, the solid state fluorescence quantum yield, which
is determined by the packing structure of the fluorophores, did not increase inevitably as
expected. The large longitudinal displacement resulted in the “J” aggregation form and
increase of fluorescence quantum yields, while the small longitudinal displacement caused
“H” aggregation form and small fluorescence quantum yields.

Xu and co-workers reported a POSS-based white-light-emitting single molecular nano-
hybrid (POSS-WLED) vis a facile “Azide-acetylene” click chemistry reaction by simply
controlling the feed ratio of blue (9-ethynyl anthracene, mark as B) and yellow (2-(2-tert-
butyl-6-(4-alkynyl styrene)-4H-4-sub pyranyl) two propylene nitrile, mark as Y) emitting
units (Figure 3) [72]. The optimized molecular structure and composition of POSS-WLED,
in which the component ratio of B:Y is 6:2 (defined as W62), were obtained by theoretical
simulations and molecular design. The introduction of nano-sized POSS not only showed
a significant aggregation-induced enhancement effect and decoupling effect of the emitter,
but also exhibited high thermal stability and a significantly enhanced fluorescence emission
with φ = 0.95 in the solid film. This work provided a strategy for the design and preparation
of single white-light-emitting molecules with high thermal stability and emission efficiency.
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2.2. POSS-Based Polymer Fluorescent Materials

Organic fluorophores have high fluorescence efficiency in solution, but its lumines-
cence intensity will be greatly weakened in the condensed state. The unique cage-like
nanostructure of POSS can effectively inhibit intermolecular aggregation and enhance
fluorescence efficiency, thus it is widely used in the design of various organic fluorescent
materials including fluorescent polymers. The introduction of POSS into conventional fluo-
rescent polymers can not only improve the condensed fluorescent efficiency, but also endow
fluorescent materials with some excellent special properties to expand their applications.

Bai and co-workers synthesized a novel bis(8-hydroxyquinoline) zinc-based conju-
gated coordination polymer with POSS in the side chains by the dehydration condensation
reaction [73], which was the first example of the introduction of POSS units into the con-
jugated coordination copolymers to design solid state fluorescent materials, shown in
Figure 4. The introduction of nano-sized POSS not only effectively improved the solubility
of the coordination polymers, but also prevented the fluorescence quenching effect caused
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by intermolecular aggregation in the solid state. Compared to the polymer containing
dodecyl (φ = 0.02), the polymer containing POSS showed a strong fluorescence at 613 nm
with a much higher quantum yield φ = 0.26 in the solid state. The green fluorescent
nanoparticles with excellent stability, which showed strong fluorescence at 545 nm, were
obtained by facile self-assembly of POSS-based fluorescent polymers in chloroform solution.
Subsequently, they designed and synthesized a novel amphiphilic polymer in possession
of a perylene diimide bridge between a POSS unit and a PNIPAM chain by combining
condensation and ATRP reactions (Figure 5) [74]. The intermediate and the target poly-
mer were characterized by NMR, FT-IR, elemental analyses, and GPC. Hybrid fluorescent
nanoparticles were prepared by the self-assembly of the polymers in aqueous solution.
The hybrid fluorescent nanoparticles retained the luminescence in its aggregate state and
showed red emission at 645 nm with the quantum yield φ = 0.27. The fluorescence intensity
of the hybrid fluorescent nanoparticles could be adjusted by changing the temperature. The
red hybrid fluorescent nanoparticles with thermos-responsive had potential applications in
biosensors and drug delivery. Cihaner and co-workers synthesized the alkyl-substituted
POSS integrated poly(3,4-propylenedioxythiophene) conjugated polymer PProDOT-POSS
via both chemical and electrochemical polymerization methods (Figure 6) [75]. The corre-
sponding polymer was soluble completely in common organic solvents such as toluene,
dichloromethane, and chloroform. It showed a red/orange emission at 605 nm in toluene
when excited at 500 nm. The optical bandgap of its neutral film with a maximum absorption
band at 555 nm was calculated as 1.95 eV. The results indicated that the PProDOT-POSS
could be used as promising candidates for optoelectronic and bioelectronics applications.
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2.3. POSS-Based QDs Fluorescent Materials

Quantum dots (QDs) are fluorescent semiconductor nanoparticles composed of groups
II–VI or III–V elements with a diameter of 2–10 nm [76–78]. QDs have unique optical and
electronic properties due to the quantum confinement effects. However, the practical
applications of QDs are impeded by their water solubility and toxicity. The development
and search for novel ligands for QDs providing them desirable functionalities constitutes a
hot research field nowadays [79]. In 2013, the POSS-based CdSe quantum dots, denoted
as POSS-CdSe QDs, were reported by Rogach and co-workers (Figure 7a) [80]. They
synthesized the QDs using a mercapto-substituted polyhedral oligomeric silsesquioxane
(POSS-SH) as ligand. Due to the bulkiness of the siloxane core, the POSS-CdSe QDs
had adjustable particle size and improved light-emission characteristics (Figure 7b). The
absorption and photoluminescence (PL) spectra were used to monitor the growth kinetics of
POSS-CdSe QDs in chloroform. After 2 min of growth, the size of particles was 1.8 nm with
a characteristic absorption maximum at 430 nm and a broad PL spectrum (near-white light
emission). The absorption maximum shifted to 527 nm after 3 min of growth with the size
of particles 2.8 nm, the narrow PL peak in the green spectral range. After 10 min of growth,
the size of particles was 3.7 nm with the emission color of the growing samples gradually
changed from green to red. Subsequently, low toxicity near-infrared-emitting QDs were
fabricated in aqueous medium by conjugating octa-aminopropyl polyhedral oligomeric
silsesquioxane (OA-POSS) to CdSeTe QDs through condensation reaction, namely POSS-
CdSeTe QDs (Figure 8a) [81]. The POSS-CdSeTe QDs had improved biocompatibility
and retained the unique photophysical properties of CdSeTe quantum dots, in which the
PL peak reached 681 nm with a quantum yield of 0.26 (Figure 8b). The toxicity of CdSeTe
quantum dots to living cells was significantly reduced by covering the surface with OA-
POSS. These results indicated that POSS-CdSeTe QDs were very promising fluorescent
labels in the biomedical field.
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Graphene quantum dots (GQDs) [82], as nanometer-sized graphene derivatives with
low toxicity, low-cost processing, and unique PL properties, provide new possibility to
replace the aforementioned QDs due to their high PL stability. However, the strong π–π
stacking interactions induce the aggregation-caused PL quenching (ACQ) in the solid state,
which greatly limits their application. Recently, Jeon and co-workers demonstrated for the
first time that surface functionalization of QDs (F-GQDs) by POSS, poly(ethylene glycol)
(PEG), and hexadecylamine (HDA) could effectively reduce ACQ (Figure 9) [83]. The
surface functionalization was achieved by the carbodiimide coupling chemistry between
the primary amine of POSS, PEG, and HDA with the carboxyl groups on the edge of the
GQDs. In solutions, the photophysical properties of F-GQDs were similar to those of bare
GQDs with the absorption peak at less than 300 nm and PL peak at about 400 nm. While
the POSS-GQDs, PEG-GQDs, and HDA-GQDs showed a significant enhancement in PL
intensity compared to bare GQDs by 9.5-, 9.0-, and 5.6-fold in spin-coated film form and by
8.3-, 7.2-, and 3.4-fold in drop-casted film form, respectively. The results indicated that the
POSS was an excellent functionalizing reagent for GQDs.
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quantum dots (F-GQDs). The fluorescence quenching of bare GQDs without functionalization due
to π−π stacking [83]. (b) Synthetic procedure of F-GQDs (POSS-GQDs, PEG-GQDs, and HDA-
GQDs) [83]. (c) PL spectra of F-GQDs and bare GQDs in spin-coated film [83]. (d) PL spectra of
F-GQDs and bare GQDs in drop-casted film [83].

2.4. POSS-Based Lanthanide Fluorescent Materials

Lanthanide fluorescent materials are widely used in various fields due to the fasci-
nating optical properties such as sharp emission, high quantum yield, large stock’s shifts,
good optical stability, and low toxicity [84]. Unfortunately, the practical applications of
the lanthanide fluorescent materials are severely impeded by their inherent drawbacks
such as low thermal stability, poor mechanic properties, as well as the tendency to aggre-
gate [85]. Li and coworkers reported a europium (III) β-diketonate complex functionalized
POSS by the complexation of Eu3+ ions with thenoyltrifluoroacetone functionalized POSS
for the first time, namely POSS-TTA-Eu (Figure 10a) [86]. The as-prepared fluorescent
material was a viscous liquid at room temperature, and showed a bright-red emission
with long lifetime, high color purity, as well as good thermal stability and processibility.
Recently, Li and coworkers used a similar method to synthesize a series of lanthanide (Er3+,
Yb3+, and Nd3+) 8-hydroxyquinoline complex-functionalized POSS, namely POSS-Q-Ln
(Figure 10b) [87]. Compared with the POSS-free lanthanide complexes, the POSS-Q-Ln
showed obviously enhanced fluorescence emission intensity, which was mainly due to the
steric-hindrance effects of the POSS moiety in the complexes. In contrast, Boccaleri and
co-workers synthesized a novel fluorescent europium (III)-containing POSS (denoted as
POSS-Eu), in which the europium ion existed in the cage-like structure (Figure 10c) [88].
The Eu3+ ion caped the POSS core by the dangling oxygen groups of the open corner and
water and tetrahydrofuran molecules in the reaction medium, which was confirmed by
NMR, FT-IR, and MALDI-TOF analyses.
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3. Sensing Application of POSS-Based Fluorescent Materials
3.1. Metal Ion Sensing

The identification and detection of metal ions are very important for monitoring environ-
mental pollution, food safety, and human health. Copper is one of the earliest metals used by
humans and an essential trace element in many living biological systems, but an excess of Cu2+

concentration may cause environmental contamination and biological toxicity. It is extremely
important to detect the concentration of Cu2+ in environmental and biological samples with
high selectivity and sensitivity. In 2013, Hao and coworkers reported a POSS-coated CdTe QDs
fluorescent sensor for detecting Cu2+ in aqueous medium based on selectively fluorescence
quenching (ON-OFF) [65], as shown in Figure 11. Upon addition of Cu2+, the fluorescence
intensity of the POSS-CdTe QDs sensor was obviously quenched due to Cu2+ ions binding
on the surface of the sensor (Figure 11a). The selective fluorescence quenching experiment
indicated that the sensor had more sensitivity to Cu2+ than to Ni2+, Co2+, Ag+, and little
effect on the other cations (Na+, Ca2+, Mn2+, Hg2+, Mg2+, K+, Al3+, and Zn2+) in the PBS
buffer solution at pH 7.4 (Figure 11b). Later, a similar turn-off fluorescent material based
on POSS-Eu(dpa)3 was reported by Li and co-workers (Figure 11c) [89]. Compared to other
common metal ions, the as-prepared fluorescent material presented an effective fluorescence
quenched for Cu2+ in aqueous media with the largest Ksv value of 2359.6 M−1 (based on the
Stern–Volmer equation). Recently, Li and co-workers reported a ionic liquid functionalized
POSS fluorescent sensor (POSS-min-[Eu(tta)4]) that had selective fluorescent quenching effect
for Cu2+ with fast response, high sensitivity and selectivity (Figure 12) [90]. Due to the strong
effect of the exchange interaction between Cu2+ and Eu3+ of POSS-min- [Eu(tta)4], the Ksv
value for Cu2+ was 17,160 M−1. The detection limit of POSS-min- [Eu(tta)4] (based on the
standard of IUPAC LOD = 3σ/k) for Cu2+ in water is 0.011 µM with detection interval ranging
from 0 to 1000 µM. Furthermore, Zuo and co-workers reported a new “ON-OFF-ON” type
POSS-based fluorescent probe (denoted as PSI-A) for the reversible detection of Cu2+, Fe3+, and
amino acids (Figure 13) [91]. The fluorescence emission of PSI-A was dramatically quenched
by adding Cu2+ and Fe3+, while the emission recovered by adding different kinks of amino
acids because of the weak coordination bond between Cu2+ and Fe3+ and PSI-A. The detection
limit of PSI-A for Cu2+ and Fe3+ was approximately 0.0019 µM and 0.0032 µM, respectively.
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Figure 11. (a) Effect of Cu2+ on the luminescence of the POSS-CdTe QDs at pH 7.4. The concentrations
of Cu2+ (µmol/L) in (a–i) are 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1 [65]. (b) Quenching effect of different
ions on the fluorescence intensity of the POSS-CdTe QDs in a PBS buffer solution at pH 7.4 [65].
(c) Schematic diagram of the sensing process of POSS-Eu(dpa)3 toward Cu2+ [89].
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Compared to other metal ions, mercury ion (Hg2+) possesses much more serious
toxicity and causes more widespread environmental pollution. New fluorescent sensors
with high selectivity and sensitivity for Hg2+ have drawn extensive research attention.
In 2018, Ervithayasuporn and co-workers reported a dual-mode optical sensor based on
rhodamine functionalized POSS for Hg2+ [92], namely T10Rh. Upon interacting with
Hg2+, the color of T10Rh in the 10% aqueous ethanol solutions changed from colorless to
pink-red, and the intensity of the fluorescence emission was greatly enhanced with the
emission peak at 580 nm (OFF-ON), as shown in the Figure 14. The detection limit of T10Rh
for Hg2+ was approximately 0.00314 µM. Subsequently, a novel selenone-functionalized
polyhedral oligomeric silsesquioxane (POSS-Se) for selective detection and adsorption of
Hg2+ in aqueous solutions was reported by Feng and co-workers (Figure 15) [93]. The
addition of Hg2+ had little effect on the solution color and emission intensity of POSS-
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Se, while the POSS-Se after acid treatment (denoted as POSS-Se (HCl)) could be used
as a dual-mode optical sensor for Hg2+. As the concentration of mercury ions increases,
the colors of the POSS-Se (HCl) solution gradually changed from dark-yellow to pale-
yellow, and the intensity of fluorescence emission significantly strengthened (OFF-ON).
The detection limit of POSS-Se (HCl) for Hg2+ was approximately 0.00848 µM. Moreover,
the POSS-Se and POSS-Se (HCl) could be used as excellent adsorbent for mercury ions
with the maximum adsorption capacity of 952 and 907 mg/g, respectively. Recently,
Wang and co-workers reported a dual-function sulfur-containing POSS-based fluorescent
polymer material (denoted as HPP-SH) for selective detection and adsorption of Hg2+ ions
(Figure 16) [94]. Upon the addition of Hg2+ ions, the fluorescence intensity of HPP-SH was
significantly decreased (ON-OFF) because of the interaction between Hg2+ ions and the
thioether or thiol groups of HPP-SH. The detection limit of HPP-SH for Hg2+ in water was
approximately 0.00448 µM. It should be noted that the sulfur content of HPP-SH played
an important role in the detection for Hg2+ ions. The higher sulfur contents resulted in a
lower limit of detection. Similarly, the HPP-SH could be used as an excellent adsorbent
for mercury ions with the maximum adsorption capacity of 900.9 mg/g. In addition, if the
initial concentration of mercury ions was less than 20 ppm, the removal efficiency was up
to 99.99%.
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Figure 16. (a) Molecular structures of HPP-SH [94]; (b) the PL spectra of the HPP-SH suspension (0.1
mg/mL) in 50% aqueous ethanol in the presence and absence of Hg2+ (100 ppm) [94]; (c) selectivity of
the HPP-SH suspension (0.1 mg/mL) for Hg2+ [94]; (d) the removal efficiency of HPP-SH suspension
(1 mg/mL) for Hg2+ in the presence of various metal ions (50 ppm) [94].

Fe3+ is one of the essential trace elements to maintain human life and health. In 2019, Xu
and coworkers reported a highly selective fluorescence sensor by combining octavinyl-POSS
with amine-containing polyacrylamide (denoted as OV-POSS co-poly(acrylamide)) for repetitive
detection of Fe3+ in pure water (Figure 17) [95]. The sensing mechanism was mainly attributed to
the complexation reaction between OV-POSS co-poly(acrylamide) and Fe3+. Upon the addition
of Fe3+ into the OV-POSS co-poly(acrylamide) solution, the fluorescence intensity significantly
enhanced, while the other metal ions had no obvious effect. The detection limit of OV-POSS
co-poly(acrylamide) for Fe3+ was approximately 0.0009 µM. Moreover, compared with other
metal ions, Fe3+ caused a visible color change to the naked eye from colorless to bright yellow.
Feng and coworkers also reported a fluorescence sensor by combining functionalized ionic
liquids and POSS (denoted as ILs-POSS) for the detection of Fe3+ [96]. The ILs-POSS was used
as an “ON-OFF” fluorescent sensor for Fe3+ with the detection limit of 0.0791 µM.
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Nowadays, Ru3+ is widely used in catalytic reactions and industrial processes, thus,
the rapid detection and efficient removal of Ru3+ from water is extremely important to
environment protection and human health. Liu and coworkers reported a POSS-based fluo-
rescent nanoporous polymer (denoted as THPP) by Friedel–Grafts reaction of 2-(2,6-bis((E)-
4-(diphenylamino)styryl)-1-methylpyridin-4(1H)-ylidene)malononitrile (TPA-TCMP) with
octavinyl-POSS for concurrent detection and adsorption of Ru3+ (Figure 18) [97]. THPP
demonstrated obvious fluorescence ON-OFF sensing for Ru3+ ion in DMF/water (5/5, v/v)
solution with the detection limit of 5.2 µM. The THPP could be used as an adsorbent for
Ru3+ ions with an equilibrium adsorption capacity of 208 mg/g.
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3.2. Anion Sensing

Fluoride is widely used in dental care and the pharmaceutical industry; however, defi-
ciency or excess of F¯ can cause serious health and environmental problems. The detection
of F¯ is undoubtedly important for both human health and environment protection. In
2013, Bai and coworkers reported “ON-OFF” POSS-based red fluorescent nanoparticles
(denoted as POSS-PBI-PEO NPs) for the rapid detection of F¯ in water by the fluoride-
triggered Si-O bond cleavage mechanism (Figure 19a) [98]. The nanoparticles presented a
strong excimer-like emission at 660 nm with a fluorescence quantum yield of 0.26 at room
temperature. Upon the addition of F¯ into the POSS-PBI-PEO solution, the fluorescence
intensity significantly decreased in less than 10 s with the detection limit of 10 µM, while the
other anions had no obvious effect. The selective sensing was due to the specific reaction
between F¯ and Si-O bond of the POSS, the decomposition of the POSS cages in the parti-
cle cores, which in turn induced aggregation of PBIs groups, thus resulting in quenched
fluorescence. However, Ervithayasuporn and coworkers reported pyrene functionalized
POSS (denoted as PySQ) for the detection of F¯ by encapsulation-induced fluorescent
change (Figure 19b) [27]. The PySQ presented different fluorescent properties in different
solvents. PySQ possessed a strong excimer-like emission in DMSO, while the monomer
emission of the pyrene groups on PySQ in THF was dominant. Upon the addition of F−

into the PySQ solution, the excimer-like emission and the monomer emission were both di-
minished in the low polarity solvent THF, while the excimer-like emission was diminished
and the monomer emission was enhanced due to the increased pyrene–pyrene distance
in the high polarity solvent DMSO. The response time of the PySQ selective capture of
fluoride ions was less than 2 min with the detection limit of 0.00161 µM. Recently, another
POSS-based fluorescent porous polymer was reported for fluoride sensing and removal
by a similar mechanism, in which anthracene and pyrene were used as polyaromatic
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spacer groups [99]. In 2019, Tang and coworkers reported a ratiometric fluorescence sensor
based on octa-pyrene-modified POSS organic framework nanoparticles for the detection
of F¯ (Figure 20a) [100]. The as-prepared nanoparticles possessed excimer-like emission
(green emission at 489 nm) due to the stacking of pyrene in their hydrogen-bonded organic
framework (HOF) structures. The addition of fluoride ions destroyed the cage structure
of POSS and in turn dissociated the HOF structure of the nanoparticles, which resulted in
monomer emission (blue emission at 377 nm) of the nanoparticles. The response time of
the nanoparticles for fluoride ions was within 10 min with the detection limit of 50 µM. An
“OFF-ON” POSS-based hydrophilic luminescent polymer (denoted as AE-PDI) for fluoride
ion detection in water/DMSO (98/2, v/v) solution was reported by Lv and coworkers
(Figure 20b) [101], in which perylene diimide was used as fluorophore. Due to the in-
termolecular photo-induced electron transfer (PET) between amino-POSSs and PDI, the
fluorescence emission of the AE-PDI polymer was ultra-weak with a maximum peak at
575 nm. The addition of fluoride ions destroyed the cage structure of POSS and induced
fluorescent enhancement at 572 nm by nearly 41 times. The fluorescence enhancing accom-
panied with the color change (wine red to orange) led to high sensitivity in detection of
F¯ ion down to the level of 0.85 µM in water/DMSO media. Recently, Ren and coworkers
reported a novel “OFF-ON” fluorescent sensor based on tetraphenylethylene derivative
tethered with POSS (denoted as TPE-POSS) for the detection of F¯ (Figure 21) [102]. The
TPE-POSS possessed aggregation induced fluorescence enhancement (AIE) features due
to the typical AIE luminogen TPE. Upon the addition of F¯ into the TPE-POSS solution,
the POSS nanoparticles was collapsed, which resulted in the aggregation of TPE cores and
further enhanced the intensity of fluorescence. The fluorescence enhancing led to high
sensitivity in detection of F¯ ion down to the level of 0.166 µM.
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Hypochlorous acid (HClO) plays an important defensive role in the biological im-
mune system, while it may cause many diseases at abnormal concentration. Lin and
coworkers reported a dual channels fluorescent probe with both heptamethine cyanine (Cy7)
and 1,8-naphthimide based on POSS (denoted as POSS-Cy7-N) for the detection of ClO¯
(Figure 22) [103]. The POSS-Cy7-N possessed a dual emission in the green (510 nm) and
the NIR (820 nm) channels. The fluorescence quenching of both channels occurred after
the addition of ClO¯ ions, which was due to the disruption of the excited-state (ICT). The
POSS-Cy7-N presented high sensitivity in detection of ClO¯ ion down to the level of 0.15 µM.
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4. Conclusions and Perspectives

This review presents a comprehensive analysis of the design and sensing applications
of the POSS-based fluorescent hybrid materials. The different strategies and different
types of POSS fluorescent materials were summarized. With the assistance of POSS, the
developed fluorescent sensors exhibited high sensitivity, selectivity, and stability for the
detection of target object. Although remarkable strides in sensing application were obtained,
POSS-based fluorescent hybrid materials still face some challenges in practical application.
First, the variety of such fluorescent materials needs to be further enriched. Especially, more
high performance chromophores should be developed in POSS-based organic-molecule
fluorescent materials. Second, the scope of detection should be further extended, such as
explosives, organic pollutant, and so on. Third, the sensing mechanism of POSS-based
fluorescent hybrid materials should be further studied. Finally, further strengthening the
development of POSS-based fluorescent hybrid materials with both efficient detection and
removal functions is conducive to environmental protection.

We anticipate that future research will focus on the development of the following areas,
which will benefit the variety and application of POSS-based fluorescent hybrid materials:

(1) Facile and controllable synthesis of POSS-based fluorescent hybrid materials. The
“click” chemistry reaction, especially metal-free “thiol-ene” click chemistry, will bril-
liantly shine in this respect.

(2) Sensing mechanism. Theoretical calculation may be a very effective and practical
method to study the sensing mechanism of POSS-based fluorescent hybrid materials
by using the density functional theory (DFT) and time-dependent density functional
theory (TDDFT).

(3) Sensing application and the others. The detection of explosives and organic small
molecular pollutants and the application of fluorescent materials in photodynamic
therapy and biological imaging are attracting more and more researchers’ attention.
POSS-based fluorescent hybrid materials will make great progress in these areas.
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