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The rapid mutations on hemagglutinin (HA) of influenza A virus (IAV) can lead to significant antigenic
variance and consequent immune mismatch of vaccine strains. Thus, rapid antigenicity evaluation is
highly desired. The subtype-specific antigenicity models have been widely used for common subtypes
such as H1 and H3. However, the continuous emerging of new IAV subtypes requires the construction
of universal antigenic prediction model which could be applied on multiple IAV subtypes, including
the emerging or re-emerging ones. In this study, we presented Univ-Flu, series structure-based universal
models for HA antigenicity prediction. Initially, the universal antigenic regions were derived on multiple
subtypes. Then, a radial shell structure combined with amino acid indexes were introduced to generate
the new three-dimensional structure based descriptors, which could characterize the comprehensive
physical–chemical property changes between two HA variants within or across different subtypes.
Further, by combining with Random Forest classifier and different training datasets, Univ-Flu could
achieve high prediction performances on intra-subtype (average AUC of 0.939), inter-subtype (average
AUC of 0.771), and universal-subtype (AUC of 0.978) prediction, through independent test. Results
illustrated that the designed descriptor could provide accurate universal antigenic description. Finally,
the application on high-throughput antigenic coverage prediction for circulating strains showed that
the Univ-Flu could screen out virus strains with high cross-protective spectrum, which could provide
in-silico reference for vaccine recommendation.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Influenza virus is one of the most serious threats to human pub-
lic health, which causes about 3 million to 5 million cases of dis-
ease and 291,000 to 646,000 deaths globally each year [1].
Among all the human susceptible influenza types, influenza A virus
(IAV) was the major infectious type that is highly contagious to
human [2]. The subtypes of IAV are classified according to the
two surface glycoproteins, hemagglutinin (HA) and neuraminidase
(NA) proteins [3]. The IAV was currently divided into two main
groups, group 1 involved HA subtypes such as H1, H2, H5 H6 and
H9, while group 2 involved HA subtypes such as H3 and H7[4].
Due to the rapid mutation of HA, antigenic variance was frequently
occurred, resulting in the failure of vaccines effectiveness [5].
Therefore, accurate and rapid evaluation of antigenicity can not
only help identifying antigenic drift strains, but also be used for
vaccine recommendation [6].

Traditional experiment measurement of influenza antigenicity
was mostly performed by the hemagglutinin inhibition test (HI)
[7], which is the current golden standard for flu antigenicity crite-
rion. Nevertheless, the time-consuming and labor-intensive nat-
ure, as well as the critical experimental condition, makes it
unavailable for large-scale screening of IAV strains. More impor-
tantly, the sudden outbreak of new emerging IAVs such as H9 [8]
makes it difficult for quick response of laboratory-based vaccine
recommendation. Therefore, accurate and high-throughput
approaches for antigenic measurement of IVA are highly desired.

In 2004, Smith et al. provided a comprehensive study to indicate
the antigenic mapping of the historical influenza A/H3N2 viruses
circulating from year 1968 to 2003 [9]. This work tested the pair-
wise antigenic relationship through anti-serum experiments and
identified 11 antigenic clusters based on the two-dimensional
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antigenic mapping of multidimensional scaling (MDS) [9]. This
work was later defined as the standard dataset of H3 virus for mul-
tiple in-silico models. Since then, machine learning approaches
were applied on antigenicity prediction for specific influenza sub-
types. Most of them encoded the virus sequences or mutations
through different descriptors. Typically, Liao’s work generated a
series of scoring scale to describe residue mutations, which
involved amino acid groups with different polarity, charge, and ali-
phatic properties [10]. Combined with regression and classification
models, those scoring scale could be used to predict antigenic vari-
ation of influenza A /H3N2 viruses [10]. Later, it is realized that
structure information was critical for antigenicity measurement.
Representative work such as PREDAC proposed a Naive Bayes pre-
diction model, using a 12-bit binary vector to calculate structural
and physicochemical characteristic differences for each HA
sequence pairs [6]. To improve the prediction accuracy for fuzzy
regions, Qiu et al. added the structural context description of influ-
enza A/H3N2 HA protein into prediction model. Results showed
that the structure model could accurately detect antigenic-escape
strains, especially for those strain pairs around antigenic border
regions, the model could be used in identifying those to-be-failed
vaccine strains [5].

Besides H3 virus, the models for other subtypes were also con-
structed. For example, Peng’s work integrated the HA antigen sites
of human influenza H3 virus, the surface sites reported to be asso-
ciated with immune escape of H5 virus, and the mutation sites
with large historical information entropy to construct a compre-
hensive mutation sites [11]. Based on above sites, the computa-
tional model was constructed for the rapid and effective
investigation of the highly pathogenic avian influenza H5N1 [11].
Similarly, based on the previous PREDAC model for H3N2,
PREDAC-H1 was constructed to illustrate the antigenic evolution
of H1N1 virus, focusing on the antigenic patterns and mutations
of human influenza A/H1N1 virus from 1918 to 2014 [12].

Above subtype-specific models provide accurate prediction on
antigenicity of influenza virus, while the application scope was
limited on individual subtype. Currently, since H1 and H3 are the
main IAV circulating in the community, their sequence data are
very abundant. However, for some rare but epidemic-causing sub-
types such as H5, H7, H9, or recombination cases such as the 2009
swine flu pandemic, the insufficient historical data makes it diffi-
cult for model construction. Thus, the need of universal computa-
tional model for influenza virus is ever-growing.

To solve this issue, some works have tried to reveal the common
features among different IVA subtypes. For example, PREDAV-FluA
analyzed the sequence mutation patterns of nine HA subtypes and
found that different subtypes shared similar mutation patterns on
HA protein, which provided the basis for the establishment of a
universal computational model [13]. Then regional bands on the
HA structure were divided based on the spatial distance of residues
to the top of HA1, the mutation number in each regional band was
calculated as descriptor. The universal model could achieve an
accuracy rate of 77 % [13]. Meanwhile, a subtype-independent
model, CFreeEnS was proposed using a context-free encoding
scheme for protein sequences, which encodes protein sequence
data sets into a numeric matrix and provide antigenic prediction
for different influenza subtypes [14].

These universal models provide great instruction on subtype-
free antigenic prediction. Nevertheless, the proposed descriptor
was based on the sequence features on the full length of HA pro-
tein, rather than the antigenic-related sites. It is well known that
the antigenicity changes were more related with the mutations
on specific region which caused structure deviation or physical–
chemical property changes [15], and it is urgently desired to design
a structure based descriptor for antigenic sites, which could be
suitable for different subtypes.
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In this study, a structure based universal model was con-
structed for multiple subtypes from both group 1 and group 2 of
IAV. By introducing the shell structure model on HA protein, the
structure information can be divided around the receptor binding
sites. Then, antigenic descriptors encoding property features were
generated to describe the property variance between two com-
pared HA proteins. Finally, by combining the descriptors with
machine learning approaches, a series of models were proposed
to predict the antigenic variance for different IAV subtypes. Results
showed that the Random Forest classifier with structure-based
descriptors could reach the good performance for intra-subtype,
inter-subtype, inter-group and universal prediction based on inde-
pendent testing dataset. Moreover, we tested the application abil-
ity of this model to calculate the antigenic coverage for circulating
strains of different subtypes. Several strains with high protective
spectrum were proved to be potential vaccine strains through
experimental validation [16,17].
2. Methods

2.1. Dataset

For model construction, three types of data are required: 1)
amino acid sequences of HA protein, 2) three-dimensional struc-
ture of HA protein, and 3) HI assays between multiple influenza
strain pairs. In this study, the HI assay for H1 and H3 were col-
lected from related papers [5,13], HI assay for H5, H7 and H9 were
collected from World Health Organization (WHO) Weekly Epi-
demiological Record (Supplementary Table S1).

Based on the HI test, the antigenic distance (Dab) for strain a and
strain b could be calculated as formula (1).

Dab ¼ 1
2
log

HaaHbb

HabHba

� �
ð1Þ

where the parameter of Hab represents the maximum dilution value
of antisera against strain a, which was effective to prevent the cell
agglutination caused by strain b. Considering the influence of differ-
ent experimental conditions, for the strain pair which obtained dif-
ferent Dab calculated from different HI tables, the outliers were
removed and the remained Dab were normalized to calculate the

final average Dab

�
[5,18]. Strain a and strain b were defined as anti-

genic escape (negative sample) pair, if log�1Dab was greater than or
equal to 4, otherwise, this pair was defined as the antigenic similar
(positive sample) [10].

Sequence data of HA1 were collected from published papers
[5,13] and Influenza Virus Resource [19]. All sequences were sepa-
rately aligned according to subtype by Clustal X [20] through mul-
tiple sequence alignment (MSA) to reach the type-specific
consensus length of HA1 sequences. After MSA, sequences with
inserted gaps over 10 % of the aligned sequence were removed.
Finally, a total number of 1,422 HA1 sequences were retained in
our dataset including 68 for H1, 725 for H3, 162 for H5, 437 for
H7 and 30 for H9, respectively. The consensus sequence length
for five subtypes were 327 (H1), 330 (H3), 320 (H5), 317 (H7)
and 317 (H9) amino acids, respectively. In MSA, the distribution
frequency of 20 amino acids on each position was calculated. For
each position or sites, if none of residues obtained distribution fre-
quency more than 0.8, it is illustrated that none of dominant resi-
dues occurred on this position. Then the position was defined as
frequently mutated sites.

For HI assays, a standard pair should involve two HA sequences
of compared strains and their corresponding antigenic distance
from HI test. If one strain included several different HA sequences,
due to variation in different viral quasispecies or sequencing error,
all of the sequences were included. All the possible sequences were
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considered for one strain pair, which meant multiple HA pairs were
derived for one strain pair. This may happen in the most abundant
dataset of H3, in which 3,867 HA pairs were defined from 3,539
strain pairs for H3. In total, 355 pairs for H1, 3,867 pairs for H3,
317 pairs for H5, 6 pairs for H7 and 89 pairs for H9 were collected
for further analysis.

For three abundant datasets of H1, H3 and H5, 80 % of the pairs
for each subtype were randomly divided to construct the training
dataset, without changing the proportion of positive samples.
The remained 20 % of the dataset was defined as the independent
testing dataset. The small dataset of H7 and H9 were used for inde-
pendent testing set and application cases.

Protein structure of HA-antibody complexes were collected
from Protein Data Bank [21], the dataset included 8 PDB structures
for H1, 9 PDB structures for H3 and 3 PDB structures for H5, respec-
tively (Supplementary Table S2). In each complex structure, the
epitope regions were defined as those residues on HA with nearest
atom distance towards the corresponding antibody less than 4 Å
[15]. Template PDB structures for each subtype were also collected
from Protein Data Bank [21] (pdb_id: 3LZG for H1, pdb_id 6AOU for
H3, pdb_id: 2IBX for H5, pdb_id: 4KOL for H7, pdb_id: 1JSD for H9)
[22–26]. The epitopes derived from different complexes were
mapped on the template structures according to each subtype.
Finally, the non-redundant epitope dataset can be derived for each
subtypes.
2.2. Antigenic descriptor

The antigenic descriptors were designed to describe the influ-
ence of residue mutation on antigenicity, the generation of anti-
genic descriptors contains the following steps:

(1) Defining the center of antigenic sites on HA1 protein.

In order to construct an antigenic prediction model for all sub-
type influenza virus, a common region on HA1 protein should be
selected as the target sites. Thus the receptor binding sites on
HA1 protein, which was recognized by human receptor, were
selected as the core region. According to Gamblin and colleagues
[27], the receptor binding sites for the HA1 protein is formed by
three secondary structural elements: the 130 loop, the 190 helix,
and the 220 loop. The amino acids for three regions were mapped
on the template structure of each subtype and the geometric cen-
ter for three sub-regions was calculated through the Euclidean dis-
tance to determine the antigenic center.

(2) Dividing the spatial layout of residues by shell structure.

For each subtype, a sphere structure was generated by taking
the antigenic center as the core with radius of 40 Å. By taking
the step size as 4 Å, 10 shells can be divided for each sphere struc-
ture. Then, based on the Euclidean distance towards the antigenic
center, each residue r can be divided into the certain layers of the
shell structure, as formula (2) illustrated.

if i� 1ð Þ � 4Å � ED r; cð Þ < i � 4Å; r 2 layer i� 1ð Þ ð2Þ

where ED r; cð Þ represented the Euclidean distance between residue
r and antigenic center c, r 2 layer i� 1ð Þ means residue r located in
layer i� 1ð Þ.

(3) Antigenic descriptor generation

There are many factors associated with HA protein that can
influence the antigenicity of influenza viruses, including physico-
chemical characteristics [28], such as hydrophobicity, and spatial
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conformation characteristics [5]. At the same time, Yao et al.
proved that these influencing factors do not exist independently,
but work as a combination of multiple influencing factors [29].
By targeting the residues located in each layer of constructed shell
structure, quantitative antigenic descriptors, included property
descriptor and glycosylation descriptor, were calculated.

For property descriptor, the physical–chemical properties
which affect the antigenic change were quantified. Properties
which affect the protein interaction and immune-recognition such
as isoelectric point score [15], van der Waals volume scores [15],
and hydrophobicity-related indices [30] were introduced to quan-
tify the property score of each residue. Here, four indices describ-
ing the hydrophobic property (AAindex ID: EISD840101,
ARGP820101, PONP800101, GOLD730101) of each amino acid from
AAindex [31] were used in this study. The hydrophobic score, along
with the isoelectric point score (AAindex ID: ZIMJ680104), van der
Waals volume score (AAindex ID: FAUJ880103, LEVM760106) were
introduced to quantify the property score of each residue. For a
specific HA, the score for each layer in shell structure were calcu-
lated as the total AAindex scores of residues included in the layer.
For two compared virus pair, the score for each layer were calcu-
lated as the absolute difference between two HA proteins.

Glycosylation, one of the important post-transcriptional modifi-
cations, could provide great impact on antigenic recognition
between antigen and antibody. The appearance of glycosylation
shields underlying residues from the contact of immune-
antibodies [32]. The N-glycosylation occurred in the sequons of
Asn-X-Ser/Thr, where X represents any amino acid other than pro-
line, and the glycan chain is modified on the sequencer’s aspara-
gine (Asn) [33]. In this study, the number of glycosylation sites
was counted. For a virus pair, score for each layer was calculated
as the absolute difference of glycosylation sites included in corre-
sponding layer.

Finally, for each pair of virus strains, 10 layers of shell structure
was constructed for 7 amino acid indexes and 1 glycosylation
descriptor, which lead to the total number of 80-bits quantitative
descriptors for antigenic model construction.

2.3. Model construction

To construct the universal antigenic prediction model, 80-bit
antigenic descriptor was used as the feature vector and the anti-
genic classification (antigenic similar or antigenic variant) was
treated as label. Different machine learning approaches, including
Logistic Regression, Bayes Net, Random Forest were introduced
to build the in-silico model through Weka software [34]. The
machine learning approach which could provide optimal predic-
tion performance was chosen. The universal computational model
to calculate antigenic relationship for different influenza virus sub-
types was constructed according to the workflow shown in Fig. 1.

2.4. Model evaluation

The model was tested in three levels: 1) intra-subtype evalua-
tion, 2) inter-subtype evaluation and 3) universal model evalua-
tion, and the following parameters were introduced to evaluate
model performance as formula (3) to (6) illustrated.

Sensitivity ¼ TP
TP þ FN

ð3Þ

Specificity ¼ TN
TN þ FP

ð4Þ

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð5Þ



Fig. 1. The flowchart of model construction for antigenicity prediction. (A) HA sequences were collected from public resources. Antigenic center and shell structure were
determined to describe the residue layout. Antigenic descriptor was designed to describe the property change of each HA pair. (B) Antigenic relationship was determined by
HI assay. (C) Antigen prediction model was constructed.
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BalancedAccuracy ¼ Sensitivityþ Specificity
2

ð6Þ

Here, TP stands for true positive samples, TN stands for true
negative samples, FP stands for false positive samples and FN
stands for false negative samples.

2.5. Antigenic network construction for each virus subtype

For model application, all pairs of HA between any two influ-
enza virus within each subtype were predicted by the proposed
model in this study. And the antigenic network was constructed
using Cytoscape [35], influenza strains were treated as nodes and
the edge between two nodes referred to antigenic similar relation-
ship. In antigenic network, the value of degree for each node was
calculated [36,37] referring to the number of connected nodes.
All the influenza nodes were ranked according to the degree value
in descending order and top-ranked influenza strains refers to the
strain with broad antigenic coverage.
3. Results

3.1. New determined antigenic regions could measure antigenic
mutations on different subtypes of virus

The foundation of constructing the universal model for all influ-
enza subtypes was to determine the universal antigenic regions
that could be applied on all HA proteins. It was noted that different
influenza subtypes had different determined antigenic sites, such
as the Sa, Sb, Ca, Cb, Pa, and Pb sites for H1 [38], the A, B, C, D,
and E regions for H3 [39], these sites were overlapped but not com-
pletely identical. However, to make the universal antigenic regions
applicable for all subtypes, the general antigenic sites should be
derived.

To derive the general antigenic regions which could be applied
for all influenza subtypes, the well-studied receptors binding sites
on HA including the 130-loop (6 amino acids), 190-helix (10 amino
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acids) and 220-loop (10 amino acids) (Supplementary Table S3–S5)
were introduced to generate the universal antigenic sites, which
were illustrated in Fig. 2A. The center of antigenic regions was
set as the geometric center within the receptor binding sites, as
illustrated in Fig. 2B. Then, residues located within 40 Å around
the antigenic center were defined as antigenic region for model
construction. The selected antigenic region was included in both
head and stem [40] sub-domain of HA protein.

Even through, the length of HA protein for different virus types
ranged from 317 to 330 amino acids, the receptor binding sites
were located on the similar regions on the HA structure (Fig. 2A).
The standard deviation of the geometric distances between the
centers of three sub-regions and the defined antigenic centers in
three influenza subtypes were only 0.09 Å to 0.54 Å (Supplemen-
tary Table S6), indicating similar structure shape of the antigenic
regions in different HA subtypes. Thus, the antigenic site and shell
structure division might be applied on different virus subtypes.

Further, the statistical analysis of mutation distribution was
performed to evaluate whether the antigenic region determined
by shell structure could include the majority of the frequently
mutated sites on all HA subtypes. Here, the frequently mutated
sites were defined as those sites with the maximum amino acid
frequency less than 0.8 (see Methods), as illustrated in Fig. 2C–E.
For those frequently mutated sites, the maximum residue fre-
quency ranged from 0.507 to 0.783 for H1, 0.429 to 0.799 for H3,
0.374 to 0.791 for H5, indicating the variable mutation happened
on each sites. Among these mutation sites, 89.19 % (33/37),
90.91 % (20/22) and 91.30 % (21/23) sites were included in the
determined antigenic region for H1, H3, and H5, respectively. It
is showed that the antigenic region divided by shell structure could
incorporate approximately 90 % of the mutation sites. As been
illustrated in Fig. 2F–H, the mutation sites included in antigenic
region obtained more variable amino acid distribution and more
possible residue types.

Previous studies have also shown that the antigenic drift of
influenza virus is mainly mediated by mutations in HA epitopes
[41,42]. By mapping the epitope regions on the HA protein of H1,
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H3 and H5, the non-redundant epitope dataset of H1, H3 and H5
includes 61 residues, 58 residues and 31 residues respectively
(Supplementary Table S7), these epitopes located on both the head
and the stem region of HA. It could be found that 78.7 % (48/61),
75.4 % (43/57) and 90.3 % (28/31) of the epitopes were included
in the antigenic region derived by shell structures, for H1, H3
and H5 virus respectively. Moreover, for epitope located on the
head region of HA, 100 % (31/31), 93.5 % (43/46) and 100 %
(28/28) of the epitopes were involved in antigenic region, for H1,
H3 and H5 respectively. In general, the common antigenic region
proposed in this study contained the majority of reported epitopes
for different HA types including H1, H3 and H5.

3.2. Performance of intra-subtype, inter-subtype and universal model
on antigenic prediction

By incorporating the antigenic descriptor and HI test between
two compared strains, different machine learning approaches can
be introduced to constructed classification model. Here, we have
introduced three types of model including intra-subtype, inter-
subtype and universal model to validate the applicability of our
structure-based descriptors. The intra-subtype model was trained
with specific HI-test of individual HA type and tested by the same
HA type, for example, H1-intra-model used the HI-test of H1 for
modeling and was also evaluated on the testing dataset of H1 vari-
ants. The inter-subtype model was trained with one specific type
and tested by another type, for example, one inter-model used
the HI-test of H1 for modeling and was evaluated on the testing
dataset of H3. The universal model was training by mixed dataset
of multiple HA types, and was also tested by any type of influenza
virus.

3.2.1. Intra-subtype antigenic prediction performance
Initially, the intra-subtype models were constructed by Logistic

regression, Bayes Net and Random Forest classifiers, and were eval-
uated by the specific subtype through 10-fold cross-validation. It
can be found that Random Forest classifier could maintain the
highest performance for all subtype by intra-subtype models of
H1 (Fig. 3A), H3 (Fig. 3B), and H5 (Fig. 3C). Thus, Random Forest
was used to construct antigenic prediction model in the following
analysis. Results showed that, the H3 intra-subtype model could
achieve the highest AUC value of 0.986 among all three subtypes,
and followed by 0.928 for H5 intra-subtype model and 0.867 for
H1 intra-subtype model. Moreover, for all three models, the accu-
racy, sensitivity and specificity could achieve a high level over 0.8
(Supplementary Table S8), indicating high prediction performance
for 10 fold cross-validation. In addition, we performed an indepen-
dent test (see Method) for each subtypes through Random Forest
classifier (Fig. 3D). Similarly, the H3 intra-subtype model could
achieve the highest AUC value of 0.988 on independent testing
dataset. The similar good performance with AUC of 0.951 for H5
and AUC of 0.877 for H1 could also been observed (Supplementary
Table S9).

3.2.2. Inter-subtype antigenic prediction performance
Further, the applicability of descriptors was evaluated by inter-

subtype model. The training datasets including H1, H3 and H5,
Fig. 2. Antigenic region for different virus subtypes. (A) Illustration of receptor binding s
220 loop were labeled in yellow, blue and red for H1 (3LZG), H3 (6AOU) and H5 (2IB
Frequently mutated sites of H1, H3 and H5 subtypes. Each bar refers to one mutation site,
represent the site located in antigenic region, black bar refers to the mutation sites loca
located with antigenic region. The horizontal axis labeled the mutation sites in antigenic r
site. The residues of K, T, H were labeled in orange, D and Q were labeled in blue, residues
purple. (For interpretation of the references to colour in this figure legend, the reader is
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while the testing datasets including H1, H3, H5 and H9. As been
illustrated in Fig. 3E, the inter-subtype model could achieved a
AUC value ranged from 0.646 to 0.861, and the accuracy ranged
from 0.676 to 0.797 (Supplementary Table S10). The performance
was slightly lower than the results from intra-subtype model.
Moreover, according to previous knowledge, the IAVs can be
divided into two groups, group 1 and group 2 [4]. Thus, we con-
structed the inter-group model, which was trainined by one group
and evaluated on the other one. In our dataset, the H1, H5 and H9
belonged to group 1, while H3 and H7 belonged to group 2. As been
shown in Fig. 3F, the intra-group model illustrated better predic-
tion performance (average AUC of 0.931) than the inter-group
model. For inter-group prediction, the prediction AUC value and
accuracy could still maintain the level over 0.7 (Supplementary
Table S11). This results indicate that the inter-group prediction
based on antigneic descriptors could also provide tolerable perdic-
tion performance.

3.2.3. Universal antigenic prediction performances
Finally, the universal model of Univ-Flu was trained based on

different subtypes and was expected to predict the antigenic rela-
tionship for all different IAV subtypes. Here, the most abundant
dataset including subtype H1, H3 and H5 were used for model con-
struction. By the 10-fold cross-validation based on the mixed data-
set of H1, H3 and H5, the Random Forest classifier could achieve
the best prediction performance with AUC of 0.977 and accuracy
of 0.929 (Fig. 3G, Supplementary Table S12).

Moreover, the universal model Univ-Flu was evaluated through
five independent testing dataset: 1) mixed dataset of H1, H3 and
H5, 2) mono-type dataset of H1, 3) mono-type dataset of H3, 4)
mono-type dataset of H5, and 5) mono-type dataset of H9. Results
showed that the best prediction performance was achieved on H3
testing dataset with AUC value of 0.987 and accuracy of 0.937, fol-
lowed by mixed dataset with AUC of 0.978 and accuracy of 0.915
(Fig. 3H, Supplementary Table S13). The performance on H1 and
H5 testing set were higher than those of H9, which could achieve
the AUC of 0.843 for H1 and AUC of 0.938 for H5. Even for H9,
the performance could obtain with AUC value of 0.800 and accu-
racy of 0.730 (Fig. 3H, Supplementary Table S13).

It should be noted that, the dataset of H9 was not introduced to
construct the universal model, thus the H9 testing set is totally
independent. The above results indicated that the universal model
trained by mixed subtypes could perform antigenicity prediction
for different subtypes with good prediction performance. The anti-
genic descriptors of the universal model could integrate the HA
and HI-test of different subtypes and be applied for other influenza
virus.

3.3. Better antigenic escaping detection and application for vaccine
recommendation

To explore the application scope of our method, the perfor-
mance of Univ-Flu was evaluated and compared with available
tools. Till now, only a few works [13,14] attempt to construct uni-
versal model for influenza virus and PREDAV-FluA [13] is the cur-
rent cutting-edge algorithm with a user-friendly online server. The
performances of two methods were evaluated through the testing
ites on HA protein of different virus subtypes. Residues on 130-loop, 190-helix and
X). (B) Illustration of antigenic region determined by shell structure model. (C–E)
the height of the bar refers to the maximum residue frequency on the sites. Blue bar
ted on the outside of antigenic region. (F–H) Residue distribution on mutation sites
egion, and the vertical axis is sequence conservation for different amino acid at each
of A, V, L, I, P, W, F, M, N were labeled in red, residues of S, Y, R and E were labeled in
referred to the web version of this article.)



Fig. 3. Model performance on antigenic prediction. (A–C) Tenfold cross validation of intra-subtype classification based on different machine learning approaches. (D)
Independent test performance of intra-subtype model. (E) Independent test performance of inter-subtype model. (F) Independent test performance of inter-group prediction.
(G) Tenfold cross validation of universal antigenic prediction model based on the mixed training dataset of H1, H3 and H5. (H) Independent test of universal model. The
integrated test set includes the test set of H1, H3 and H5.
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Table 1
Comparison of model performance.

Influenza subtype of test set Prediction model Accuracy Sensitivity Specificity Balanced Accuracy

H1 Univ-Flu 0.747 0.746 0.744 0.745
PREDAV-FluA [13] 0.662 0.632 0.697 0.665

H3 Univ-Flu 0.937 0.937 0.933 0.935
PREDAV-FluA [13] 0.780 0.800 0.750 0.775

H5 Univ-Flu 0.844 0.844 0.857 0.851
PREDAV-FluA [13] 0.813 0.923 0.640 0.782

H9 Univ-Flu 0.730 0.730 0.632 0.681
PREDAV-FluA [13] 0.753 0.984 0.222 0.603

J. Qiu, X. Tian, Y. Liu et al. Computational and Structural Biotechnology Journal 20 (2022) 4656–4666
dataset of H1, H3, H5 and H9. Among them, H1, H3 and H5 training
set were used for model construction in both Univ-Flu and
PREDAV-FluA, while H9 was totally new for evaluation.

As been illustrated in Table 1, by setting the threshold, Univ-Flu
could obtain the best prediction performance on H3 with accuracy
of 0.937, and the accuracy reduced to 0.844 for H5, 0.747 for H1
and 0.730 for H9, respectively. For comparison, the classification
results of Univ-Flu performed better than PREDAV-FluA in H1
and H3, and provided similar performance in H5. For the model-
free subtype of H9, PREDAV-FluA performed slightly better than
Univ-Flu. Above results showed that Univ-Flu could provide
equally comparable classification than popular peer approach. On
the other hand, the sensitivity and specificity between two
approaches illustrated different application scope. It can be found
that, the Balanced Accuracy (BA) of Univ-Flu (0.681–0.935) could
outperform the BA of PREDAV-FluA (0.603–0.782) in all four inde-
pendent testing dataset. Further, PREDAV-FluA provides high sen-
sitivity rather than specificity on most of the subtype. This was
more obvious in the prediction of H9, while sensitivity of 0.984
and specificity of 0.222 were obtained by PREDAV-FluA. The high
sensitivity and relatively low specificity indicated the approach
could provide high positive detection rate (antigenic similar
events) and high false detection rate. In general, Univ-Flu could
provide high prediction performance in H1, H3 and H5. For H9,
Univ-Flu provides an improvement on specificity, which illustrated
the advantages in detecting antigenic escape events (negative
sample).

In the prevention and control of influenza virus, vaccine is one
of the most effective measurements. For vaccine recommendation,
the antigenic match between emerging strains and vaccine strain
was of importance to guarantee the effectiveness of vaccine. Most
importantly, the antigenic escape of vaccine strains should be
detected, or considered for vaccine recommendation. Above results
showed that our model could better perform on specificity, which
indicated the better ability of antigenic escape detection. Thus, it
could be used to predict the protective spectrum of potential vac-
cine strain with high-throughput antigenic screening.

To achieve that, the antigenic relationship of pair-wised strains,
which including 2,278 for H1, 262,450 for H3, 13,041 for H5,
95,266 for H7 and 435 for H9, were predicted through the above
universal antigenic model. Then, an antigenic network could be
constructed to illustrate the antigenic relations between different
strains. As been illustrated in Fig. 4A, each node refers to a strain
and each line refers to antigenic similar relationship between
two connected nodes. The size of nodes was proportioned to the
degree, while higher degree refers to larger antigenic protection
spectrum. By taking the smaller group of H9 as example for illus-
tration, the results showed that A/swine/Hongkong/9/1998-like
virus hold the highest degree, followed by A/swine/Shandong/Fj
n/2003-like, A/chicken/Shenzhen/U/1999-like, and A/chicken/Hon
gkong/G9/1997-like. Among them, A/chicken/Hongkong/G9/1997
was selected as vaccine candidate for preventing highly pathogenic
avian influenza in 2009 [16], indicating the successful detection of
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potential vaccine strain by our model. Moreover, the HA of this
potential vaccine strain shared 97.8 % (310/317) sequence identity
with the HA of top 1 ranked strain of A/swin/Hongkong/9/1998-
like in our profile (Fig. S1).

Results for other subtypes are showed in Fig. 4B, we found that
the top 1 ranked strains for H1, H3, H5 and H7 were A/
Virginia/1/2006-like (H1N1), A/England/700/2009-like (H3N2), A/
chicken/India/NIV-33487/2006-like (H5N2), and A/wild bird/
Korea/5-77/2005-like (H7N9), respectively. Interestingly, by
checking the top ranked strains in each subtype, A/turkey/
Turkey/1/2005-like (H5N2) which ranked as top 3 in the protective
spectrum list of H5, was selected as vaccine candidate for avian
influenza in 2017 [17]. More importantly, the HA of recommended
vaccine strain A/turkey/Turkey/1/2005-like (H5N2) and the HA of
top 1 ranked vaccine candidate A/chicken/India/NIV-33487/2006-
like (H5N2) shared 98.75 % (316/320) identity in amino acid
sequence (Fig. S2). Above illustrated that Univ-Flu could be used
to calculate antigenic coverage among the circulating strains. Fur-
ther, it could provide guidance for vaccine recommendation. The
top 10 ranking strains for four subtypes were listed in Supplemen-
tary Table S14–17 as reference.

4. Discussion

Due to the rapid evolution of virus and the constant antigenic
drift events, high-throughput antigenicity measurement is a diffi-
cult but urgently desired task. By taking advantage of the accumu-
lated HI assay and HA sequences, computational methods could be
constructed for rapid and high-throughput antigenicity prediction.
However, for new emerging subtypes, it is difficult to construct the
subtype-specific model without enough historical data. Thus, it
will be of great interests to construct a universal model which
could be applied on different subtypes of influenza, especially for
those new emerging or re-emerging influenza subtypes.

The key point to build a universal model is to derive the appli-
cable features which could describe the characteristics of the
mutants for each subtype. To achieve those, peers introduced the
whole sequence features or whole structure features, such as
whole sequence based mutation matrix [14] or regional bands
which divided the HA spatial structure from top to the bottom to
describe the amino acid mutations on different regional bands
[13]. However, it is well known that antigenic drift events depend
on the mutations located on the antigenic site, or epitopes [41,42].
Moreover, the mutations which caused the antigenicity variance
may frequently involve large changes of structure or physical–
chemical property, and whole HA-based descriptors might involve
noises rather than information. For example, in the comparison of
HA sequences between A/California/7/2009(H1N1) and A/Michi-
gan/45/2015 (H1N1), there were 12 mutations on the whole HA1
sequence, which contains over 3.72 % (12/323) of mutations. For
the whole sequence or whole structure based approaches [13,14],
this pair was predicted as antigenic drift, due to the large number
of mutations. However, by checking the mutations on the well-



Fig. 4. Antigenic network illustration and antigenic degree distribution. (A) Antigenic network of H9 subtype, each strain node is arranged into circle from outside to inside
according to degree value from high to low. (B-F) Degree distribution of virus strains for H1, H3, H5, H7 and H9 subtypes. X-axis refers to the emerging time for each strain. Y-
axis refer to specific degree value ranked in descending order.
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defined antigenic regions of Sa, Sb, Ca, Cb, Pa and Pb [38], 6
mutations were detected, including N84S, N97D, N162S, Q163K,
T203S and T216I, among which only N97D, Q163K and T216I
involved property change (Supplementary Figure S3). By checking
the influenza surveillance report from WHO, those two strains
were defined as antigenic similar through HI test [16], which was
consisted with the prediction of Univ-Flu. The successful predic-
tion of Univ-Flu may benefit from the physical chemical descrip-
tors of the antigenic region, which could radially describe the
local micro-environment around the antigenic regions. In this
study, instead of the full-length mutation, the most common char-
acter of receptor binding sites shared by HA proteins from different
influenza subtypes was considered for descriptor generation. In
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fact, the positions involved in our shell structure shared an overlap
with 79.07 % (102/109) of the well-defined H1 antigenic sites and
83.21 % (109/131) of the well-defined H3 antigenic sites [38] (Sup-
plementary Table S18–S19).

The prediction performance of Univ-Flu illustrated that the uni-
versal model could be applied on different influenza subtypes, even
for those not involved in the training set. Due to the high similarity
of structures in each subtype, it is reasonable that the prediction
result of intra-subtype is better than those of inter-subtype or
inter-group models. Nevertheless, in the inter-subtype prediction,
the model constructed with H1 and H3 could provide accurate
antigenic prediction for H5 and H9, which showed that the
designed descriptor and model could make full use of data from
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different subtypes and applied for other new emerging or re-
emerging influenza viruses. More importantly, besides high AUC
and BA performance, Univ-Flu seems to provide better specificity
than sensitivity, which means it could accurately detect those anti-
genic drift events. For vaccine recommendation, the key issue is to
calculate the protection spectrum of the immunogen. Although,
relatively lower sensitivity indicated the potential miss of inspec-
tion on antigenic similar events and would lead to the decrease
of the protective spectrum predicted in our model. The strains with
high protective spectrum could still be considered as potential vac-
cine strains. As mentioned before, the strains of A/turkey/
Turkey/1/2005-like (H5N2) and A/chicken/Hongkong/G9/1997-like
(H9N2), which ranked as top 3 and top 4 in our list were validated
to be potential vaccine. Those two strains hold high sequence iden-
tity with our top 1 strain in the prediction list.

Although, the Univ-Flu could provide good prediction perfor-
mance for universal antigenic prediction of influenza A virus, there
is still room for future improvement. For example, the accumula-
tion of HI assays or new immune-recognition sites with experi-
mental evidences will help improving the performance of our
training-based model. Beside prediction performance, it also
should be noticed that the application scope of our universal model
is designed for fast response to new emerging influenza viruses.
This could be used as a preliminary prediction tools for new
occurred subtypes or subtypes without enough historical data.
For the intensive prediction, such as predicting the antigenic rela-
tionship near the fuzzy region around the cutoff for specific sub-
types [5] the subtype-specific model should be recommended.

On the other hand, it is also worth noting that this model pro-
vided is an ‘‘after mutation antigenic evaluation”, which means
the model could evaluate the consequences of mutation rather
than ‘‘how it will mutate”. In future, by incorporating with the
mutation variants prediction, the universal model constructed in
this study could provide comprehensive analysis of antigenic evo-
lution for influenza virus.
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