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Suppression of symmetry-breaking
correlated insulators in a rhombohedral
trilayer graphene superlattice

Xiangyan Han1, Yuting Zou2,3, Qianling Liu1, Zhiyu Wang1, Ruirui Niu1,
Zhuangzhuang Qu1, Zhuoxian Li1, Chunrui Han 3,4, Kenji Watanabe 5,
Takashi Taniguchi 5, Baojuan Dong6,7,8, Zhida Song9, Jinhai Mao 10,
Zheng Han 6,7,8,11 , Zhi Gang Cheng 2,3 , Zizhao Gan1 & Jianming Lu 1

Counterintuitive temperature dependence of isospin flavor polarization has
recently been found in twisted bilayer graphene, where unpolarized electrons
in a Fermi liquid become a spin–valley polarized insulator upon heating. So far,
the effect has been limited to v = +/−1 (one electron/hole per superlattice cell),
leaving open questions such as whether it is a general property of symmetry-
breaking electronic phases. Here, by studying a rhombohedral trilayer gra-
phene/boron nitridemoiré superlattice, we report that at v = −3 a resistive peak
emerges at elevated temperatures or in parallelmagnetic fields. Concomitantly,
the Hall carrier density tends to reset at the integer filling, signaling spin–valley
flavor symmetry breaking. These phenomena can also be observed at v = −1 and
−2 when the displacement field is large enough to suppress correlated insula-
tors at low temperatures. Our results greatly expand the scope for observing
the counterintuitive temperature dependence of flavor polarization, i.e., the
regimes proximal to symmetry-breaking phases where the flavor polarization
order strongly fluctuates, encouraging more experimental and theoretical
exploration of isospin flavor polarization dynamics in flat-band moiré systems.

Moiré superlattices in twisted van der Waals heterostructures have
been found to host strongly correlated electrons, giving rise to exotic
phenomena1–21 such as correlated insulators, superconductivity, fer-
romagnetism, (fractional) Chern insulators, and the counterintuitive
isospin Pomeranchuk effect22–24. The Pomeranchuk effect is an entropy
driven liquid-to-solid transition in 3He, in which the system symmetry
is lowered with increasing temperature. By replacing the 3He atoms
with flavor polarized electrons, one can observe its electronic analogy

in twisted bilayer graphene (TBG)—isospin Pomeranchuk effect, where
spin–valley unpolarized electrons at low temperature turn to be flavor
polarized at high temperature. Correspondingly, the Fermi liquid
grows into an isospin-ordered insulator upon heating. Among various
theoretical models proposed for TBG, a consensus has been reached
that spin/valley symmetry breaking will result in energy gaps at com-
mensurate fillings, whereas there are occasional exceptions that the
ground state has no gap but exhibits a Fermi liquid owing to the
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restored flavor symmetry. The counterintuitive temperature depen-
dence of flavor polarization, and the inferred local magnetic moment
as proposed in previous theories and experiments25–28, gain renowned
interests about their role in shaping ground states of a flat bandmoiré
system. However, experiments so far have been mainly focusing on
filling factors v = ±1 in TBG, i.e., one electron/hole per moiré super-
lattice cell; even in twistedWSe2/MoTe2 bilayer

29,30, the effect emerges
only at v = −1. While signatures of the effect at v = −3 and 3.5 are
available11,31, its existence at filling factors other than one remains to be
confirmed. Whether this counterintuitive temperature dependence is
a general property of isospin flavor polarization is important for con-
straining various theoretical models.

As a tunable quantum simulator of the Hubbard model32,33,
rhombohedral trilayer graphene (r-TLG) moiré superlattices (formed
by crystallographic alignment with hexagonal boron nitride (hBN))
exhibit various exotic properties such as Chern insulators, ferro-
magnetismand signatures of superconductivity34–37. The advantages of
this system include the strong tunability of electronic correlation by
displacement fields, and more importantly, the clear and complete
characterization of its moiréless counterpart38,39. The high transpar-
ency of such a system is expected to be suitable for examining the
consistency between theories and experiments.

Here we focus on the non-topological regime of a hole-doped r-
TLG moiré superlattice and find that at v = −3 (i.e., three holes per
moiré superlattice cell) a Fermi-liquid ground state turns into a cor-
related insulating peak upon either rising temperatures or applying
parallel magnetic fields. Such a counterintuitive phenomenon resem-
bles that in TBG, but takes place at a distinct filling factor. In addition,
this behavior is observed atv = −1 and−2when thedisplacementfield is
large enough to suppress the correlated insulators. At last, we discuss
the potential theoreticalmodels including isospin Pomeranchuk effect
and Kondo lattice. The wide exploration of the counterintuitive tem-
perature dependence in thephasediagramof various heterostructures
mayhelp establishing a theoreticalmodel of isospinflavor dynamics in
correlated electronic systems.

Results
The van der Waals heterostructure is schematically shown in the inset
of Fig. 1a, where the r-TLG is aligned with the top hBN to generate a
moiré superlattice. Top and bottom gates (Vt and Vb) are used to
independently control the displacement field D and carrier density n.
Herewe define n = (Db +Dt)/e,D = (Db-Dt)/2, withDb(t)= ε0εrVb(t)/db(t), εr
as the relative dielectric constant of hBN, db(t) as the thickness of the
bottom (top) hBN flake. For simplicity, a filling factor v = 4n/ns is used,
wherens is the density required to fully fill themoiré band. As shown in
Fig. 1a, theD-vphase diagram taken at 1.5 K displays resistancepeaks at
charge neutral point (CNP) at v =0 and full filling point (FFP) of the
moiré valence band at v = -4, and correlated peaks at fractional fillings
v = -1, -2 (See the full phase diagram of Sample 1 in Supplementary
Information (SI), Supplementary Note 1; Sample 2 in Supplementary
Note 2 and Sample 3 in Supplementary Note 3).

Symmetry-breaking phases
To gain more insight into the phase diagram, the corresponding
mapping of the normalized Hall carrier density, νH = 4nH/ns, is pre-
sented in Fig. 1b, where nH = -[e(dRxy/dB)]−1 (with e being the electron
charge and Rxy representing the Hall resistance, see more in Supple-
mentary Note 1.6). In this mapping, blue and red colors denote for
electron and hole carriers, respectively. There are three types of
transitions40,41 (insets of Fig. 1b): The ‘gap’means when the Fermi level
crosses a gap, nH continuously crosses zero. The ‘reset’ denotes the
behavior that nH drops suddenly to zero but it does not change sign,
which has been found at integer filling factors in twisted bilayer gra-
phene due to the Coulomb-induced phase transitions. The ‘VHS’

(abbreviated for Van Hove singularity) exhibits a divergent nH with a
zero crossing,which is typically observed at saddle-points on the Fermi
surface. Accordingly, three types of dashed lines divide the phase
diagram into several regions. Taking the white section line as an
example, we plot in Fig. 1c Hall resistance and carrier density to the left
and right axes, respectively. At v = −4and0, there are typical bandgaps
isolating the narrow moiré band. During the electron filling of the
moiré band, for −4<v < −2 electron density firstly increases linearly,
then gradually resets to zero at v = −2. Subsequently, it increases again
and resets at v = −1. In the region of −1<v <0, the carrier type changes
from electron to hole by crossing VHS. The carrier reset behavior
within aflatbandhas beenobserved in twisted bilayer graphene,which
is accompanied by spin and valley symmetry breaking42 evidenced by
reduced degeneracies. However, in the hole band of r-TLG moiré
superlattice quantumoscillation is found to be absent undermoderate
magnetic fields, prohibiting the confirmation of lifted degeneracy.

In contrast, for the conduction band we can readily observe cor-
related insulators andassociatedLandau levels (Fig. 1d, e).Obviously, the
degeneracy close to v= 1 is one and that close to v =2 is two. It’s inter-
esting to see that the sequence of lifted degeneracies is exactly the same
as that of r-TLG without moiré superlattice38, although the onset carrier
densities of the resetmay be different. At B= 1 T, no correlated insulator
can be seen (Fig. 1d), and the carrier reset (Fig. 1f, upper panel) is not
bound to integer filling; Only when B= 3T (Fig. 1f, lower panel), the
energy gaps can be observed at integer filling, in agreement with cor-
related insulators shown in Fig. 1d. To summarize, the degeneracy
sequence in the conduction band is not changed by themoiré potential.
We tentatively apply this argument to the valence band: it is spin–valley
polarized for v=−1 and spin polarized for v =−2. The former postulation
can be firmly established for D>0 where a spin–valley polarized flavor
with a nontrivial Chern number has been observed35. The latter is sup-
ported by strong magnetoresistance in in-plane magnetic field B//
(Fig. 1g), forwhich the extractedg factor agreeswith a spinpolarizedgap
(Fig. 1h). In addition, spin–valley polarization at v=−1 is in line with the
fact that the resistance peak changes little in B// fields but increases
significantly in B⊥ fields (Supplementary Fig. 2). To this end, we assign
the symmetry-breaking patterns, which is inherited from flavor polar-
ization of a moiréless r-TLG38, to different regions of the phase diagram.

Suppression of the symmetry-breaking insulator at v=−3
At low temperatures, the correlated insulator at v = −3 is missed
(Fig. 1a). The absence is understandable because the state with a
degeneracy of three is also lacking in its moiréless counterpart38.
However, at high temperature (e.g., 20 K in Fig. 2a), a resistive peak
emerges within −0.45 <D < −0.25 V/nm. Also, for v = −1 the D range for
correlated insulators increases rather than decreases. To quantify the
difference, we remove the smooth background (dashed curves in
Fig. 2c) that originates from thermal broadening of adjacent resistive
peaks and denote R* as the indicator that evaluates the influence of the
emerging correlated gap (See Supplementary Note 1.4 for more dis-
cussion). Then the contours can be compared in Fig. 2d, where sig-
nificant differences could be found at v = −3, and v = −1 at a large
displacement field (D < −0.55V/nm). Intriguingly, the recovery of
resistive peaks is also found by applying strong in-plane magnetic
fields (Fig. 2b). The duality between temperature and magnetic field
suggests that the counterintuitive behavior may stem from magnetic
interaction. In the following, we firstly examine the case of v = −3.

Figure 3a shows the temperature dependence of resistance at
D = −0.3 V/nm, where the resistance peak at v = −3 gradually decreases
and vanishes at 1.5 K. The transfer curves at various temperatures are
compared in Fig. 3b. Corresponding nH(v) is presented in Fig. 3c (See
more details of the analysis in Supplementary Note 1.6). Below 15 K,
the absolute value of nH increases monotonically, accompanied by an
emergent dip at v = −3. The dip, ascribed to the incomplete carrier

Article https://doi.org/10.1038/s41467-024-54200-6

Nature Communications |         (2024) 15:9765 2

www.nature.com/naturecommunications


reset at v = −3, grows stronger at 7.5 K and then gradually diminishes at
lower temperatures. This carrier reset should not be mixed with the
one for v = −2. The latter starts to develop right after v = −3, and grows
stronger towards lower temperature.

The carrier reset at v = −3 also develops with growing (Fig. 3d).
Compared to the weak temperature-driven dip, the field driven reset
close to v = −3 is much stronger. With increasing B// fields, the reset
shifts towards v = −3, consistent with the varying position of resistive
peaks (Fig. 3e). The duality between temperature (Fig. 3a) and B// field
(Fig. 3e) can be further confirmed in Fig. 3f, in which at elevated

temperature 12.5 K the B// field continues to strengthen the correlated
peak (i.e., promoting the symmetry-breaking insulator).

Before discussing its mechanism, we need to firmly exclude
another mechanism, i.e., a semimetal due to the small correlation gap.
For a correlated semimetal, during cooling process the resistance peak
first increases because of the growing gap size owing to increasing
correlation, then decreases due to suppressed electron-phonon scat-
tering. While the temperature dependence of resistance seems to be
similar, its carrier density is expected to decrease monotonically dur-
ing cooling down, in contrast to the growing Fermi surface in Fig. 3b.
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Fig. 1 | Flavor polarization in a r-TLG superlattice. a The D-v phase diagram at
1.5 K. Inset: Device schematic showing the direction of displacement fields from
moiréless to moiré interfaces. b Normalized Hall carrier density νH = 4nH/ns at
B = ± 1 T, versus v and D. Inset: definitions of three colored dashed lines for band
gap (blue), VHS (yellow) and reset (red). See details in the main text. c Profiles of
carrier density (right axis) and Hall resistance (left axis) along the white dot line in
(b) where phase boundaries are denoted by colored bar. d–f Correspondence
between symmetry breaking and phase boundaries is evidenced in the moiré
conduction band (D =0.5 V/nm). Here, symmetry breaking among spin and valley

flavors is identified by the lifted degeneracy of Landau levels associated with cor-
related insulators (d, e). The degeneracy is one for v = 1 and two for v = 2. The phase
boundaries (bandgap, VHS and reset) can also be found at low (1 T in the upper
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Extension to more filling factors
The counterintuitive temperature dependent isospin flavor polarization
is not limited to v=−3. As shown in Fig. 4a, the phenomenon also exists
at v=−1 at D=−0.7V/nm (see more in Supplementary Note 1.5). The B//
dependence is also depicted in Fig. 4c. As expected, the resistive peak at
v=−1 becomes more significant at higher temperature and in-plane
magnetic field. Corresponding carrier reset shows similar dependence
on temperature (Fig. 4b) and B// field (Fig. 4d). Note that the carrier reset
and resistive peak still survive at 1.5K, although severely suppressed. For
a complete suppression, amuch lower temperature and/or a higherD are
needed (Fig. 4e, and Supplementary Fig. 18 and Supplementary Note 2).

For v = −2, the temperature dependence of resistive peaks and
carrier reset are similar to that of v = −1. One should be cautious about
the field dependence, since the intrinsic spin polarized gap at v = −2
may also give rise to similar behavior. Nevertheless, the overall simi-
larity between these three filling factors probably suggests the same
working mechanism.

Discussion
Proximity to boundaries of symmetry-breaking phases
The requirement for observing the counterintuitive effect can be
probed by examining the similarities between r-TLGmoiré superlattice
and other systems. The most significant phenomenon takes place at
v = −3 in r-TLG, whereas it happens at v = ±1 in TBG. Superficially, they
are different filling factors. However, in r-TLG the carrier at v = −3 is of
electroncharacteristics inferred fromHall effects (Fig. 1b),which isdue
to the proximity of VHS to CNP under a large displacement field.
Consequently, the state at v = −3 stands for one electron per super-
lattice cell. This is actually similar to the case of TBG in which the

Pomeranchuk effect occurs for one electron/hole per superlattice cell.
More importantly, both of them stay between a phase with a full
degeneracy (i.e., four around v = 0 and +/−4) and a phase with lifted
degeneracy (i.e., two around v = +/−2). The reduction in degeneracy
indicates spin–valley symmetry breaking at v = −2, resulting in a fer-
romagnetic order (with ordered magnetic moment), e.g., spin polar-
ization in r-TLG moiré superlattice. This rule is also valid for the effect
at v = −1 and −2 in r-TLG and v = −1 in MoTe2/WSe2, where a large D
drives the metal-insulator transition and the counterintuitive phe-
nomenon is observed on themetallic side. The insulating phase itself is
of spin/valley symmetry breaking: although a long-range magnetic
order may be not available29, abundant spatially localized magnetic
moments are expected to exist. Note that, for the small D where the
insulating phase also disappears, at present we cannot firmly exclude
anothermechanism, i.e., the weak correlation at a smallDwill lead to a
normal metal. This is because the behavior of carrier reset cannot be
reliably characterized by Hall effects due to the proximity to VHS
(Fig. 1b). Overall, fluctuation of ordered phases resulted by tuning
carrier density or displacement field may be the prerequisite for
observing this phenomenon. Otherwise, when the interaction of local
moment is strong, a ferromagnetic ordermaybepreferred, resulting in
a symmetry-breaking insulator.

Possible theoretical models
We now discuss possible mechanisms for the observed phenomena.
One is the isospin Pomeranchuk effect22,23, in which local moment of
flavor polarized electrons is developed from unpolarized Fermi liquid
upon increasing temperature. In the r-TLG moiré superlattice, the
growing feature of the carrier reset at v = −3 upon increasing
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temperature or B// fields is consistent with this scenario, but a direct
evidence of entropy is required to substantiate this proposal. Another
is the Kondo lattice model based on the topological heavy fermion
model43,44, where the resistance grows significantly when the heavy
Fermion liquid turns into a state with incoherent scatterings between
itinerant electrons (c-electron) and localized electron (f-electron). It
was developed specifically for twisted bilayer graphene45–50 that also
exhibits the counterintuitive temperature dependence, and signatures
of Kondo effect – zero-bias conduction peak in the tunneling spectra –
has been found10,28,51,52. Nevertheless, for the r-TLG moiré superlattice,
theoretically a concretemodel is required to checkwhether the Kondo
latticemodel is appropriate in this crystallographically distinct system.
On the experimental side, we need to further examine the signature of
heavy Fermions (see Supplementary Note 1.3 for r-TLG), and search for
the direct spectroscopic evidence in the future.

To conclude, we report transport evidences of counterintuitive
temperature dependence of isospin flavor polarization in a rhombo-
hedral trilayer graphenemoiré superlattice. The observation at various
filling factors and displacement fields enriches the exploration of this
counterintuitive phenomenon in a quantum simulator of Hubbard
model, shedding light on the controlled interplay between Coulomb
and spin interactions of correlated electronic states in moiré super-
lattice systems.

Methods
Sample fabrication
Rhombohedral trilayer graphene flakes are mechanically exfoliated
from natural graphite crystals, whose stacking order is identified by

Raman spectroscopy. Standard dry transfer using polycarbonate film
is used to sequentially pick up hexagonal boron nitride and graphene
flakes on demand. After finishing the multilayer heterostructure,
Raman mapping is conducted to confirm the rhombohedral stacking
order. At last, e-beam lithography/evaporation and reactive ion etch-
ing are used to define a metallic top gate (Cr/Au 5/30 nm) and one-
dimensional edge contact.

Electrical measurement
Most transport measurements (above 1 K) were carried out in a 4He
cryostat with base temperature of 1.5 K and a superconductingmagnet
up to 14 T. Unless specified otherwise, the sample temperature was at
base temperature. A standard four-probe method of constant current
was performed. The AC current (10 nA) was supplied by Stanford
Research Systems SR830 lock-in amplifiers with a ballast resistor at
frequency of 17.777Hz. The DC gate voltages were output by two
Keithley 2400 Source Meters.

The ultralow temperaturemeasurements (below 1 K) were carried
out in a dilution refrigerator (Oxford Instrument Triton500) with a
base temperature of 8.7mK and a highest magnetic field of 12 T.
Composite low-pass filters (LPF) are installed for every lead, each
including a 3-meter long thermocoax between the 3 K stage and the
mixing chamber stage, followed by a RC filter on the mixing chamber
stage. The cutoff frequency is 400MHz with an attenuation of −100
dB, minimizing the electron temperature. Lock-in amplifiers (NF5640)
were used to measure the resistance, with an excitation ac current of
2 nA at frequency of 17.77Hz. Bias current was supplied by aDC source
meter (Keithley 2612B) for the differential resistance measurements.

c

ν

n H
 (×

10
12

 cm
-2
) -0.4

0

-0.2

-0.6

d

n H
 (×

10
12

 cm
-2
)

-0.4

0

-0.2

-0.6

-0.8

D/ε0 = -0.3 V/nm
 

T (K)
1.45
2.5
3.8
5.2
7.5
12.5
15

B┴ =1 T

Btotal (T)
1
3
6
9

12

ν

R
X

X 
(k

Ω
)

10

0.1

100

1

ν

b

1.6
5
7
10
15
30

T (K)

ν

T 
(K

)

25

15

5

20

10

30
ea

ν

0

10

6B
// (

T)

2

8

4

12

f

-3 -2 -1-4-3 -2 -1 0-4 -3.5 -3 -2.5
ν

0

10

6B
// (

T)

2

8

4

12

14
T = 12.5 K

T = 1.5 K

0 5RXX (kΩ)

RXX (kΩ) 0 15

-3 -2 -1-4 -3.5 -3 -2.5-3 -2 -1 0-4

RXX (kΩ) 0 2

D/ε0 = -0.3 V/nm 

Fig. 3 | Temperature and B field dependences at v = −3. a In the T-v diagram with
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The extraction and physical meaning of R*
The parameter R*, obtained by subtracting a smooth background from
the transfer curve R(v), is used to identify the potential regions with
counterintuitive temperature dependence of isospin flavor polariza-
tion. In some circumstances, the feature of a resistance peak R(v) has a
non-monotonic evolution as a function of temperature, whereas the
absolute value of the peak resistance decreases upon cooling the
sample. The inconsistency obviously stems from the incomplete flavor
polarization and the coexistence of carriers with distinct character-
istics, which complicate the macroscopic electronic transport. To
derive the key information on a qualitative level, the smooth back-
ground is removed to highlight the behavior of R*. In essence, R*
represents the variation of resistance resulted from the emerging
carrier localization, which simultaneously affects the carrier density
and mobility. Consequently, R* remains a convolution of changes in
carrier density andmobility. Nevertheless, it can be taken as a sensitive
indicator to detect whether the state has an emerging gap at the Fermi
surface. More concrete examples can be found in Supplementary
Note 1.4.

Data availability
The data that support the findings of this study are available from the
corresponding author on request.
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