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Abstract

Motivation: Many methods for microbial protein subcellular localization (SCL) prediction exist; however, none is
readily available for analysis of metagenomic sequence data, despite growing interest from researchers studying
microbial communities in humans, agri-food relevant organisms and in other environments (e.g. for identification of
cell-surface biomarkers for rapid protein-based diagnostic tests). We wished to also identify new markers of water
quality from freshwater samples collected from pristine versus pollution-impacted watersheds.

Results: We report PSORTm, the first bioinformatics tool designed for prediction of diverse bacterial and archaeal
protein SCL from metagenomics data. PSORTm incorporates components of PSORTb, one of the most precise and
widely used protein SCL predictors, with an automated classification by cell envelope. An evaluation using 5-fold
cross-validation with in silico-fragmented sequences with known localization showed that PSORTm maintains
PSORTb’s high precision, while sensitivity increases proportionately with metagenomic sequence fragment length.
PSORTm’s read-based analysis was similar to PSORTb-based analysis of metagenome-assembled genomes
(MAGs); however, the latter requires non-trivial manual classification of each MAG by cell envelope, and cannot
make use of unassembled sequences. Analysis of the watershed samples revealed the importance of normalization
and identified potential biomarkers of water quality. This method should be useful for examining a wide range of mi-
crobial communities, including human microbiomes, and other microbiomes of medical, environmental or industrial
importance.

Availability and implementation: Documentation, source code and docker containers are available for running
PSORTm locally at https://www.psort.org/psortm/ (freely available, open-source software under GNU General Public
License Version 3).

Contact: brinkman@sfu.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ever since, PSORTb was first introduced in 2003, it has remained
one of the most precise, widely used protein subcellular localization
(SCL) predictors available (Gardy et al., 2003, 2005; Yu et al.,
2010). The initial version of PSORTb predicted protein SCL for
Gram-negative bacteria. PSORTb 3.0 onwards generates predictions
for all the main types of prokaryotic cell structures: archaea, trad-
itional Gram-positive bacteria (Gram-positive without an outer
membrane), traditional Gram-negative bacteria (Gram-negative
with an outer membrane), Gram-positive bacteria with an outer
membrane and Gram-negative bacteria without an outer membrane.

PSORTb 3.0 was also the first SCL predictor to include localization
subcategories (host-associated, type III secretion, fimbrial, flagellar
and spore).

In addition to PSORTb, there are a variety of other SCL predic-
tion tools that have been developed (see https://www.psort.org/). A
distinction can be made between tools that perform specialized pre-
dictions of one or a few SCLs, such as SignalP (Petersen et al.,
2011), or tools that can make broad predictions of multiple SCLs,
such as ProteomeAnalyst (Szafron et al., 2004). Several methods like
PSORTb, such as Gpos-ECC-mPLoc and Gneg-ECC-mPLoc (Wang
et al., 2015), are able to deal with proteins with multiple
localizations.
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Computational prediction is a relatively rapid and inexpensive
alternative to experimental methods for determining microbial pro-
tein SCL. It aids in identification of protein function and annotation
of genomes, plus the identification of cell surface/secreted proteins
for applications, such as the development of ELISA-based diagnostic
tests or identification of drug targets or vaccine components.
Despite the number of microbial SCL prediction methods that have
been developed, there is a notable lack of methods designed specific-
ally to work with metagenomic sequences. One method exists,
MetaP (Luo et al., 2009), however, it assumes all sequences are
from Gram-negative organisms, and is not made readily available
for online use or download except for potentially through contact
with the authors. Metagenome-assembled genomes (MAGs) can be
analyzed using PSORTb, but each MAG needs to have its cell enve-
lope type known or predicted (i.e. classic Gram-negative, Gram-
negative without an outer membrane, etc.), and unassembled
sequences are missed in such an analysis (Lau and Maguire et al.,
2019; Maguire et al., unpublished data). Thus, we developed
PSORTm, a PSORTb-derived program to enable direct-from-reads-
based SCL classification, as well as membrane-type (cell envelope
type) classification, for metagenomic sequences. Due to the package
complexity, Docker images are available (for running via a com-
mand line, or a web interface; https://www.psort.org/psortm/).
PSORTm maintains the high precision of PSORTb, with increasing
sensitivity as input fragment lengths get larger, and is the first bio-
informatics tool enabling more automated SCL analysis from meta-
genomics data, for all main cell envelope types.

2 Materials and methods

2.1 Software implementation
An overview of PSORTm, comparing it with PSORTb, is schematic-
ally shown in Figure 1.

Input files

For SCL prediction, existing widely used programs like PSORTb re-
quire a FASTA protein file (usually generated through separately
performed annotation of a genome or other sequence), and know-
ledge of the species associated with the protein(s), including the cell
envelope structure (i.e. the user must choose if the species is classic
Gram-positive, Gram-negative, etc.). PSORTm similarly requires
this information in two input files, a protein sequence file and a tax-
onomy file, but enables automated classification of cell envelope
type. For PSORTm, the protein sequence file, in FASTA format,
contains one or more read-derived protein sequence fragments from
organisms with different potential cell envelope structure (Gram-
positive, Gram-negative, Gram-positive with outer membrane or
Gram-negative without an outer membrane). The taxonomy file
contains the sequence IDs of each sequence from the corresponding
protein sequence fragment file and their associated NCBI taxonomy
name (e.g. Pseudomonas) or taxID (e.g. 286).

To generate a read-based protein sequence file for PSORTm,
protein-coding sequences first need to be identified from raw reads,
using assembly-free gene prediction tools designed for metagenomics
sequences, such as MetaProdigal (Hyatt et al., 2012; Joshi and Fass,
2011 ), FragGeneScan (Rho et al., 2010) or Glimmer-MG (Kelley
et al., 2012).

A taxonomy file is frequently already generated through other
metagenomics analyses, but can be generated using DIAMOND
(v0.9.25 or higher versions; Buchfink et al., 2015) and Kaiju
(Menzel et al., 2016). These tools compare read sequences from
metagenomic datasets to a reference database of microbial proteins,
such as NCBI RefSeq or nr databases, to assign taxonomy to reads
based on sequence similarity. The input taxonomy file should be for-
matted as a tab-delimited file comprising the read ID followed by
the NCBI taxonomy ID or taxa name.

The read-based protein sequence file and the taxonomy file are
then analyzed by two sets of modules in PSORTm: (i) a cell envelope
classification module, followed by (ii) a set of SCL prediction

modules, appropriately chosen for analysis of a set cell envelope
type, as described below.

Organism and membrane-type classification module

A taxonomic-based cell envelope classification tool was incorpo-
rated into PSORTm as a critical step, since it is usually not feasible
to manually identify the cell envelope structure for each taxon in a
metagenomics dataset. It automatically sorts input sequences
according to type of organism and membrane structure: archaea,
Gram-negative bacteria, Gram-positive bacteria, Gram-negative
bacteria without an outer membrane and Gram-positive bacteria
with an outer membrane. This tool utilizes the two input files of
read-based protein sequences along with their associated taxonomic
classification to generate a temporary output file of reads sorted into
the five aforementioned categories, as well as an additional file of
reads that could not be classified.

The cell envelope categorization scheme is derived from an ap-
proach, we previously developed and then improved to enable pre-
computed PSORTb SCL analyses of complete microbial genomes
(Peabody et al., 2016; Rey et al., 2005; Yu et al., 2011 ). This classi-
fication tool uses a combination of NCBI genomes with curated phy-
lum taxonomy and marker protein sequences, specific to certain cell
envelopes (e.g. the Omp85-type outer membrane protein is the only
essential outer membrane protein found in all classic Gram-negative
bacteria, and so acts as a marker for that cell envelope structure).
The marker sequences are used to categorize newly sequenced

Fig. 1. Comparison of PSORTb 3.0.2 and PSORTm 1.0.2 pipelines, from raw data

to final SCL prediction. PSORTb (left) requires a protein sequence file, in FASTA

format, as input which can be generated from sequence reads of a single genome or

multiple genomes from the same organism type with the same membrane structure.

It also requires knowledge of cell envelope structure as a manual analysis step.

PSORTm (right) is a more automated process, requiring two input files generated

from metagenomics reads (can be from genomes with mixed organism and mem-

brane type): (i) a protein sequence file in FASTA and (ii) a taxonomy file containing

either the NCBI taxonomic name/ID of the reads in the corresponding protein se-

quence file. PSORTm contains an additional automated taxonomy classification

module to sort input reads by organism type and cell envelope type prior to running

the SCL prediction modules. PSORTm implements similar SCL analytical modules

used in PSORTb, with the following notable differences: (i) length restriction is

removed in the SCL-BLAST module (or else most reads would not have predictions)

and (ii) the signal peptide module is removed. While PSORTb generates a single out-

put file of SCL predictions, PSORTm generates five SCL prediction files—one for

reads from each of the four cell envelope types and one for reads with an unclassi-

fied type
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complete bacterial and archaeal genomes into organism/cell enve-
lope categories so that the appropriate set of SCL analytical modules
could be chosen. These data have now been used to curate the Gram
stain and cell membrane structure of taxa with NCBI genomes.
Using this resource, this PSORTm module was developed to assign
organism and cell membrane/envelope type to each metagenomic
read based on the corresponding taxonomy. For reads from which
the source organism is novel, PSORTm uses the Omp85 and cuti-
nase protein markers to predict cell structure. Omp85 aids differen-
tiation between classic Gram-negative and Gram-positive bacteria.
The cutinase protein is a signature marker for Corynebacteriales,
which are found in the classic Gram-positive phylum of
Actinobacteria but contain a non-classic waxy outer membrane that
is resistant to Gram-staining or is Gram-variable/acid fast. The cuti-
nase detector within this PSORTm module identifies reads from
which the source organism contains a Corynebacteriales outer mem-
brane, indicating an unusual Gram-positive structure with an outer
membrane and distinguishing it from the classic Gram-positive
membrane.

Using this organism and membrane-type classification module,
we could globally assign taxa to particular major cell envelope cate-
gories. Then, this is used to analyze the read-based protein sequence
using the appropriate modules for its deduced cell envelope
structure.

SCL prediction modules

PSORTm SCL prediction modules are adapted from PSORTb 3.0
(Yu et al., 2010), with two modules removed or modified (Table 1).
PSORTm did not incorporate PSORTb’s signal peptide module,
which predicts a protein as cytoplasmic or non-cytoplasmic based
on the absence or presence of an N-terminal signal peptide, respect-
ively, Protein sequences derived from metagenomic sequences may
start anywhere within the protein, so the first amino acids of a se-
quence may not reflect the N-terminal amino acids, hence the mod-
ule would not be effective. The SCL-BLAST module from PSORTb
was modified by removing the original restriction that the query se-
quence must be within 80–120% of the length of the subject protein,
to reduce errors due to the domain nature of proteins. This would
have been too restrictive for metagenomic fragments, many of which
would not meet the 80% length-of-the-protein cut-off, so the length
restriction was not implemented in PSORTm.

The remaining PSORTb analytical modules were implemented in
PSORTm without modifications. The support vector machine
(SVM) module consisting of 13 machine learning-based classifiers,
one for each Gram-negative and Gram-positive localization site, is
included to classify whether a protein belongs to a specific SCL. The
hidden Markov model-based ModHMM module identifies proteins
spanning the cytoplasmic membrane through the detection of trans-
membrane alpha helices. The PROSITE module scans the query
sequences for the presence of known protein motifs precisely indica-
tive of specific SCL sites. The Profile module similarly detects
localization-specific profiles in the query sequences. Finally, the
outer membrane motif module classifies a protein as outer mem-
brane or non-outer membrane, based on the presence/absence of
motifs associated with beta-barrel proteins that were previously
identified using a frequent subsequences data mining approach.

Final SCL output

The final SCL prediction is generated by combining and assessing
the results from each of the analytical modules. A naı̈ve Bayes classi-
fier is used, generating a probability score, ranging from 0 to 10, of
a protein being at a specific SCL given the prediction of a certain
module. A localization can be assigned to a protein given the prob-
ability score is 7.5 or above. If the localization site has a lower score,
between 4.5 (for Gram-negative) and 5.0 (for Gram-positive) and
7.49, the final prediction will yield ‘Unknown—predicted localiza-
tion does not exist’. However, prediction outputs from the individ-
ual analytical modules can still be examined by the user to draw a
conclusion. In some cases, more than one localization site may ex-
hibit high score, indicating the protein may be present in multiple
(neighboring) localization sites, such as a protein with domains in
periplasm and outer membrane.

The output tab-delimited file is available in either the terse
(short) format or the long format. The terse output file returns a list
of input sequences, one per row, with their corresponding PSORTm
results in the columns. This format contains three columns: sequence
read ID, final prediction of localization site and the score for the
SCL prediction. The long format contains all the details in the terse
format, with the additional localizations and scores from each of the
individual prediction modules.

2.2 Training dataset
The training dataset of proteins of experimentally known localiza-
tion used to evaluate PSORTb 3.0.2 was also applied to PSORTm.
The full dataset (available at https://www.psort.org/dataset/data
setv3.html) is comprised of 8230 Gram-negative proteins, 2652
Gram-positive proteins and 810 archaeal proteins, based on experi-
mental data and literature curation (including Rey et al., 2005;
Wu et al., 2006). To simulate metagenomics fragments, sequences
were randomly fragmented in silico from lengths 60 to 450 in incre-
ments of 30. For each of these fragment lengths, fragments were
generated 10 times.

2.3 Watershed discovery datasets
Shotgun metagenomics sequencing and bacterial 16S rRNA (V3–V4
hypervariable region) amplicon sequencing datasets from the
Watershed Discovery Project (http://www.watersheddiscovery.ca/;
Supplementary Table S1) were also used to evaluate PSORTm and
demonstrate its utility in an analysis of real data.

2.4 Software evaluation
Five-fold cross-validation

PSORTm 1.0.2 was evaluated by a 5-fold cross-validation approach
described in the PSORTdb 3.0 paper (Yu et al., 2010). In brief, the
training dataset was randomly split into five subsets, of which four
were used for training and construction of the SCL analytical mod-
ules and the remaining subset was reserved for testing. Performance
metrics used for evaluating PSORTm include precision, defined as
TP/(TPþFP), and sensitivity (also known as recall), defined as TP/
(TPþFN), where TP, FP and FN represent the number of true posi-
tives, false positives and false negatives, respectively.

Table 1. List of modules used in PSORTb 3.0.2, and whether they were incorporated or modified in PSORTm 1.0.2

Module Features used for prediction SCLs predicted Incorporated Modified

Signal peptide N-terminal signal peptide Non-cytoplasmic No —

SVMs Frequent subsequences within protein sequences All SCLs Yes No

ModHMM Transmembrane a-helices CM Yes No

Motif SCL-associated motifs All SCLs Yes No

Profile SCL-associated motifs All SCLs Yes No

Outer membrane motifs Motifs associated with b-barrel OM proteins OM Yes No

SCL-BLAST Homology All SCLs Yes Yes

SMV, support vector machine; OM, outer membrane; CM, cytoplasmic membrane.
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Performance test

The run time of PSORTm 1.0.2 was assessed as a function of the
number of reads using a randomly chosen sample of real metage-
nomics data from the Watershed Discovery Project. The complete
sequence file for the sample was repeatedly split into 2, 4, 6, 8, 16,
32 and 64 parts separately. In each set of split reads, all or some of
the subsets were analyzed by PSORTm. For example, while all the
halved and quartered read subsets were analyzed by PSORTm, only
selected subsets containing 1/64 of the original reads were analyzed
by PSORTm. Run time was compared among the various number of
input sequences and also between the generation of the short- and
long-output formats.

2.5 Comparison of SCL prediction by PSORTm 1.0.2 and

PSORTb 3.0.2
A simulated metagenomics dataset was generated by selecting 30
NCBI RefSeq genomes, in April 2019, with one of the following cri-
teria: high-plasmid count, high-genomic island (GI) count or low GI
(O’Leary et al., 2016). Genome abundance and plasmid copy num-
ber were then randomly assigned a relative abundance following a
log-normal distribution and a scaled gamma distribution, respective-
ly. Sequences were subsequently concatenated into a single FASTA
file with the appropriate relative abundance. MiSeq v3 250 bp
paired-end reads with a mean fragment length of 1000 bp and SD of
50 bp were simulated using art_illumina v2016.06.05 (Huang et al.,
2012) at a fold coverage of 2.9, resulting in 31 174 411 read pairs.

In preparation of input reads for PSORTm, the simulated set of
metagenomics reads were trimmed and filtered to remove duplicate
reads using Trimmomatic with default parameters (Bolger et al.,
2014 ). Open-reading frames (ORFs) were directly predicted from
the processed reads using Prodigal in metagenome mode (Hyatt
et al., 2012). The resultant deduced protein sequences were filtered
once again to remove duplicates. Taxonomic assignment of reads
was performed by DIAMOND, based on similarity search against
NCBI’s nr database. The processed, deduced protein sequences with
their taxonomic assignment were inputted into PSORTm for read-
based SCL prediction.

To construct MAGs, the simulated metagenomics sequences
were trimmed using sickle (v1.33; https://github.com/najoshi/sickle)
(Joshi and Fass, 2011), assembled using metaSPAdes (v3.13.0)
(Nurk et al., 2017) and binned using DAS Tool (v1.1.1) (Sieber
et al., 2018). Prodigal in default mode was used for ORF prediction
in MAGs and the predicted protein sequences were inputted into
DIAMOND for taxonomic assignment. The MAG-derived protein
sequences and their manually determined taxonomic assignment
were inputted into PSORTb for MAG-based SCL predictions.

For both MAGs and the reads, antimicrobial resistance genes
were predicted using the list of deduced proteins and the Resistance
Gene Identifier using the default parameters (Alcock et al., 2020).

3 Results

3.1 Five-fold cross-validation
PSORTm shows similar or substantially higher sensitivity than
PSORTb at all the available localization sites for archaea, Gram-
negative and Gram-positive bacteria (Fig. 2). This is due in part to
the removal of the length restriction in the original SCL-BLAST
module in PSORTm. PSORTm enables SCL assignment of proteins
which fall outside of 80%–120% of length of the subject proteins
from the database of proteins of known SLC used in this module.
Although these proteins would likely have the correct SCL predic-
tion (true positives), they would not be assigned an SCL by
PSORTb’s SCL-BLAST module due to the failure to meet the se-
quence-length requirement. Therefore, sensitivity (proportion of
identified true positives) of PSORTm will likely be higher than that
of PSORTb. Sensitivity tends to increase with increasing fragment
length, whereas precision (proportion of true positives in all pre-
dicted positives) tends to stay consistently high and not shows a
clear trend in relation to fragment length (Fig. 3).

3.2 Performance test
PSORTm 1.0.2 performance was compared among different sizes of
the input dataset: full dataset (418 500 reads) or a half, a quarter,
one-eighth, one-sixteenth, one-thirty-second and one-sixty-fourth of

the dataset. Run time increased linearly with the number of input
reads (Fig. 4). Also, there was no difference in the time taken to gen-

erate the terse (short) or the long-output files, suggesting users can
choose to obtain a more detailed analysis report at no additional
time cost.

3.3 Comparison of PSORTm 1.0.2 to PSORTb 3.0.2
Using a simulated metagenomic dataset from 30 NCBI RefSeq bac-
terial genomes, SCL predictions from metagenomic reads using
PSORTm 1.0.2 and from MAGs using PSORTb 3.0.2 were com-

pared. The proportion of predicted localizations followed a similar
trend between read-based PSORTm and MAG-based PSORTb anal-

yses (Fig. 5). Results were also comparable to the results from
PSORTb ran on the reference dataset containing proteins from the
30 genomes used to construct the simulated dataset. This compari-

son suggests that PSORTm 1.0.2 is able to predict bacterial protein
SCLs directly from metagenomic reads while maintaining a similar

performance as PSORTb 3.0.2.

3.4 Analysis of watershed datasets
Analysis of the watershed samples, to demonstrate an analysis with
real-read data, revealed the importance of normalization and identi-

fied potential biomarkers of water quality. A full analysis of this

Fig. 2. Five-fold cross-validation of PSORTm sensitivity over differing organism

type, SCL, and sequence fragment length. PSORTm 1.0.2 has higher sensitivity than

PSORTb 3.0.2, and sensitivity tends to increase with increasing fragment length.

Error bars show SD, fragment lengths were subsampled 10 times. CM, cytoplasmic

membrane; OM, outer membrane

Fig. 3. Five-fold cross-validation of PSORTm 1.0.2 precision over differing organ-

ism type, SCL, and sequence fragment length. Precision remains consistently high in

PSORTm. Error bars for some categories are larger due to the smaller number of

these proteins in the test data
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watershed dataset using PSORTm can be found in the
Supplementary Materials.

4 Discussion

We have developed PSORTm, a novel SCL prediction tool derived
from PSORTb 3.0.2, with implementation of an automated cell en-
velope classifier, to enable automated analysis of proteins encoded
by metagenomic sequences for the first time. PSORTm is unique in
that it is both optimized for unassembled reads, and is able to auto-
matically predict SCL from mixed organisms of different envelope
types, as is characteristic in a metagenomics dataset. PSORTb ana-
lyzes complete protein sequences from organisms of one cell enve-
lope type at a time, and the appropriate cell envelope type must be
manually chosen to enable the analysis. PSORTm performs well ver-
sus PSORTb, maintaining a high level of precision over a range of
fragment lengths. Sensitivity also generally remains high, tending to
show a modest improvement as input fragment length increases.
However, certain categories of localization benefited much more
from increased fragment lengths, such as outer membrane proteins
in Gram-negative bacteria. Sensitivity increased from 25% to almost
75% as input fragment length increased from 60 to 450 amino
acids, demonstrating the value of longer sequence reads—which can
be reasonably achieved with the improved lengths of single or

paired-end reads generated by current next-generation sequencing
platforms. For MAGs (Parks et al., 2017), PSORTb or other
sequence-assembly-dependent protein SCL predictors can be used.
However, it must be emphasized that PSORTm, as a read-based
SCL predictor, provides an important complement to MAG-based
PSORTb analysis. Assembly-based methods can miss SCL or gene
predictions in unassembled reads, and MAGs are prone to false pre-
dictions from chimeras resulting from incorrect assembly during
MAG construction (Lau et al., 2019; Maguire et al., unpublished
data). For example, we identified the gene EmrA in our synthetic
reads but not MAGs. EmrA is a membrane localized efflux pump
subunit responsible for macrolide resistance. This example high-
lights the importance of using a read-based method (e.g. PSORTm)
to complement draft genome/MAG-based methods (e.g. PSORTb
applied to MAGs manually classified by cell envelope). We foresee
the need in the future to make a separate cell envelope-prediction
tool to enable more automated classification of MAGs as well, as
combinations of MAGs and read-based analyses, using both long-
and short-read sequence technologies, become more commonly used
for robust metagenomic analyses.

5 Conclusion

PSORTm is the first readily available protein SCL predictor
designed for metagenomic sequences for all the main cell envelope
types, with open-source code freely available, and Docker images
for running locally (through the command line or a web interface)
due to the package complexity and large size of metagenomics data-
sets commonly analyzed. It maintains high precision across a wide
range of sequence lengths. The primary utility of this assembly-free
tool is to enable SCL prediction from short reads (i.e. Illumina
sequences), which are currently most commonly used by public
health agencies worldwide, and to enable analysis of more complex
microbiome environments where MAGs may be challenging to as-
semble. MAG-based analysis can also miss key genes in their assem-
blies, and requires manual assignment of classification of cell
envelope type as is necessary for protein localization prediction.
PSORTm has many potential applications, such as in the identifica-
tion of cell-surface based biomarkers for protein-based diagnostic
tests, or to aid annotation or identification of potential vaccine com-
ponents. PSORTm should complement PSORTb, aiding in a wide
range of microbial community analyses of medical, agricultural (i.e.
agri-foods pathogen monitoring) or environmental interest.
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