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Silent speech command word 
recognition using stepped 
frequency continuous wave radar
Christoph Wagner1,3*, Petr Schaffer2,3*, Pouriya Amini Digehsara1, Michael Bärhold2, 
Dirk Plettemeier2 & Peter Birkholz1

Recovering speech in the absence of the acoustic speech signal itself, i.e., silent speech, holds great 
potential for restoring or enhancing oral communication in those who lost it. Radar is a relatively 
unexplored silent speech sensing modality, even though it has the advantage of being fully non-
invasive. We therefore built a custom stepped frequency continuous wave radar hardware to measure 
the changes in the transmission spectra during speech between three antennas, located on both 
cheeks and the chin with a measurement update rate of 100 Hz. We then recorded a command word 
corpus of 40 phonetically balanced, two-syllable German words and the German digits zero to nine for 
two individual speakers and evaluated both the speaker-dependent multi-session and inter-session 
recognition accuracies on this 50-word corpus using a bidirectional long-short term memory network. 
We obtained recognition accuracies of 99.17% and 88.87% for the speaker-dependent multi-session 
and inter-session accuracy, respectively. These results show that the transmission spectra are very well 
suited to discriminate individual words from one another, even across different sessions, which is one 
of the key challenges for fully non-invasive silent speech interfaces.

Silent speech interfaces (SSI) have received considerable attention over the last decade1–3. All of them have in 
common that they aim at restoring or enhancing oral communication from coexistent, non-audible (bio)signals 
which are generated during speech production, even in the absence of the acoustic speech signal itself. Their 
potential applications range from voice restoration for patients who underwent laryngectomy4,5 to enabling 
private conversations in public areas and enhancing speech intelligibility in noisy environments3. For this pur-
pose, a number of measuring modalities have been proposed that differ with respect to the type of biosignal they 
leverage, and whether these signals can be measured invasively or non-invasively.

Invasive measuring techniques include permanent magnetic articulography (PMA)4,6–8, electromagnetic 
articulography (EMA)9–12, electropalatography (EPG)13,14 and electro-optical stomatography (EOS)15,16, a com-
bination of EPG and optopalatography17. Whereas only implant-based PMA is truly invasive, the remaining 
techniques require at least some components of the measuring device to reside inside the oral cavity, either by 
attaching magnets or coils to the tongue and lips (PMA, EMA) or by placing the sensing device against the hard 
palate (EPG, OPG, EOS).

Non-invasive measuring techniques are surface electromyography (sEMG)18–22, ultrasound (US) doppler23, 
US imaging24, video imaging25,26 (or a combination of both27) and radar-based sensing (RBS)28–34. For sEMG, 
the electrodes are placed on specific locations on the neck, face and chin (above the muscles involved in speech 
production21), whereas for US, the ultrasound probe is either placed below the chin, facing upwards, to capture 
tongue movements27, or in front of the mouth23. Video imaging captures the lips and for RBS, one or several 
antennas are placed either on the facial skin31 or in front of the mouth, as well28–30.

Especially sEMG and RBS have a number of advantages over the other methods: their non-invasive nature is 
naturally more appealing to a broader range of potential users and does not impair speech movements as much 
(or at all). The sensing probes (electrodes or antennas) can be made relatively small and are light-weight, while 
the size constraints are not as rigorous as compared to intraoral sensors, which need to be as small as possible17. 
They can also be placed on, or in very close proximity to the skin, which is more difficult for, e.g., the proposed 
video imaging based lip reading methods. Given the body of literature and its recent advances in large vocabulary 
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recognition21, sEMG is currently the most developed measuring technique for SSIs. sEMG requires the use of 
secondary articulatory signals (i.e., the muscle’s electrical surface potential) as opposed to direct measurement 
techniques like US, EMA, PMA, OPG or EOS, which capture the actual location of the tongue (or part of it) 
and lips in 2D or 3D space. As a result, sEMG has historically suffered from high signal variability when the 
electrodes were replaced or moved slightly. Several methods have been proposed to reduce this so called inter-
session variability substantially35, but it remains an intrinsic difficulty of SSIs that use sensors which can vary in 
their placement.

In contrast to sEMG, radar-based SSIs are still largely unexplored, although the idea has been around for over 
20 years28. Additionally, most work has focused on inferring articulator movements from reflected electromag-
netic waves (effectively a form of remote sensing) with antennas placed in front of visible articulators (without 
contact), instead of placing the antennas directly on the skin. In that manner, Holzrichter et al. performed quali-
tative interferometric measurements of the reflected signals from mouth, larynx and glottis with a continuous 
wave (CW) radar at a frequency of 2.3 GHz28,36. Eid and Wallace used ultra-wideband impulse radar (UWB-IR) 
to measure the reflection coefficient Ŵ ( S11 ) with a frequency range of around 3-10 GHz29 and conducted a 
proof-of-principle recognition experiment on ten english digits “zero” to “nine”. Shin et al. also used UWB-IR 
to interferometrically measure the frequency-dependent displacement between the radar sensor and the mouth 
& lips, expanding the same ten digit corpus to five English vowels30. Wen et al. presented qualitative CW inter-
ferometric displacement measurements during speech with a frequency of 120 GHz, but without a follow-up 
recognition experiment33. Only recently Birkholz et al. demonstrated that both the reflection and transmission 
spectrum of antennas placed directly on the facial skin also carry valuable information about the vocal tract shape 
to distinguish a set of 25 German context-dependent vowels and consonants from one another31. The measure-
ments were recorded with a conventional spectrum analyzer, however, which limited the acquisition speed for 
a full sweep to around 2.7 Hz, which is too slow to measure speech in real-time.

Building on these results, we developed a custom acquisition hardware (introduced in the next Section), 
capable of measuring the transmission spectra through the vocal tract with a measurement update rate of at 
least 100 Hz, which is usually set as the lower bound for real-time speech acquisition in SSIs. To evaluate the 
potential of inferring silently uttered speech, we conducted an offline isolated word recognition experiment and 
determined both the speaker-dependent multi-session and inter-session recognition accuracies. We conclude 
with a detailed discussion on our findings.

Methods
General system requirements, antennas and placement.  To reach the required measurement 
update rate of 100 Hz, the radar hardware needed to measure a single sweep for all input channels in less than 
10 ms. This frame rate is necessary to capture short phonemes sufficiently well. The frequency range was set to 
1–6 GHz. The lower bound (1 GHz) was primarily limited by the selected frequency mixer, whereas the upper 
bound was chosen because of high attenuation below the device’s noise floor observed above this frequency. The 
selected antenna type was an antipodal Vivaldi antenna, very similar to the one used in our previous study31, 
except for a more rigid substrate. Three antennas were placed on the left and right cheek and on the chin (Fig. 1). 
The antenna on the left cheek was always the sending (TX) antenna, whereas the right cheek’s antenna was 
always the receiving port 2 antenna (RX2), and the chin’s antenna the receiving port 1 antenna (RX1). As such, 
both antennas measured the transmission of the electromagnetic waves through the vocal tract for two different 
locations and orientations. All antennas were fixated to their location with a double-sided medical-grade skin 
adhesive tape (type 1510, 3M) and their edges further fixated with a single-sided medical-grade tape.

Figure 1.   (a) Display of the used Vivaldi antenna’s side oriented towards the skin and (b) away from the skin. 
Dashed lines indicate the location of the two diametrically opposite antenna parts (c) Depiction of the location 
of the three antennas as placed on the cheeks and chin. The non-visible antenna for port RX2 on the right 
cheek is placed exactly like the left cheek’s TX antenna. Dashed blue lines mark the zygomatic bone, part of the 
mandibula and the chin’s center line, all of which served as landmarks during placement.
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System design and architecture.  The measuring system was a stepped frequency continuous wave 
(SFCW) radar with a 2 (+1) heterodyne architecture, i.e., there were two receiving signal ports and a reference 
signal port. A block diagram of the hardware implementation is displayed in Fig. 2. The corresponding hardware 
prototype is displayed in Fig. 3.

The receiver part of the system consisted of the four independent inputs with two of them connected to a 
receiving antenna (RX1 and RX2) and one driven by a reference signal (REF) (and one spare input for future 
use). Each input channel implemented a low-noise amplifier, a downmixer stage to convert the radio-frequency 
(RF) signal down to a fixed intermediate frequency (IF) fIF of 1 MHz, a low-pass filter (type LTC6603, Linear 
Technology) with its programmable cut-off frequency and gain set to 1.407 MHz and 24 dB, respectively, and a 
final sampling stage with two 14-bit dual-channel SAR ADCs. The RF transmitter frontend used two wideband 
RF synthesizers (type LMX2594, Texas Instrument) to generate two frequencies with a predefined offset over 

Figure 2.   Block diagram of the SFCW radar system, including the antennas. Power-, control-, and 
measurement signals are displayed as red, blue and black connections, respectively.

Figure 3.   Actual hardware implementation according to the block diagram depicted in Fig. 2 (excluding the 
antennas).
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the entire system bandwidth. Using both outputs of the two synthesizers provided 4 signals in total, labelled LO 
(2x), TX and REF. The output level of the TX synthesizer were set to the part’s specific, dimensionless minimal 
power level of 0, whereas the power level of the LO synthesizer was set to 50, resulting in an approximately 6-7 
dBm maximal output power according to the devices’ datasheet. The REF signal was attenuated by -23 dB to 
prevent clipping, since both the REF and TX signals were generated from the same synthesizer with the same 
output power level, but the TX signal would experience significantly more attenuation through the vocal tract. 
The power card block supplied all modules from a single +20 VDC power supply. DC/DC conversion for the 
various components of each module was done on the respective module itself and left out for clarity. A MicroZed 
development board (containing a Xilinx Zync7020 SoM) in combination with a MicroZed I/O Carrier Card was 
used to control the radar system. Sequencing (SEQ) control and signal acquisition (ACQ) was implemented 
on the FPGA in separate logic modules, whereas baseband conversion and communication with the host PC 
was realized on the embedded ARM microcontroller. The ACQ module was clocked with 150 MHz, which was 
necessary to reach the ADC’s sampling rate of 4 MHz, whereas all other modules were clocked with 100 MHz. 
A set of SCPI commands were used to control the hardware device via the host PC, e.g., to start the acquisition 
or to change the frequency spacing of the sweep.

Measuring routine.  The measuring routine for signal acquisition and data transmission is summarized 
as follows: To start the measurement, the respective SCPI command was sent to the device which subsequently 
activated the SEQ module. The SEQ module then set both PLL frequencies f (LO)n  and f (TX)n = f

(LO)
n + fIF for 

n = 1, 2, . . . ,N frequency steps sequentially over SPI. For each frequency step n, once the SEQ module received 
a valid lock detect signal from both synthesizers (signaling a stable frequency output), it strobed the ACQ mod-
ule K times (where K is the number of samples per frequency step) to acquire all K × 3 ADC samples for all 
three channels simultaneously at the 4 MHz sampling rate and stored them in a FIFO on the FPGA. After all N 
frequency steps, the SEQ module triggered an interrupt to signal the finished acquisition. The FIFOs, containing 
K × N × 3 ADC samples, were read out via an AXI Lite interface, converted to baseband according to Eqs. (1)–
(3) and stored in system memory. When finished, a single frame (containing the two transmission spectra S1(f ) 
and S2(f ) ) was sent to the host PC. The real and imaginary parts of each complex frequency component S1,2(fn) 
were transmitted via USB 2.0 FS as a Q1.14 16-bit signed integer and converted to a 32 bit float value on the host 
side.

Because the IF signals xfn(t) were sampled with four times the IF signal frequency (at 4 MHz) the real and 
imaginary parts of each complex frequency component Xfn were calculated for every 4 consecutive signal samples 
x[0], . . . , x[3] at the corresponding RF fn according to

The resulting complex frequency components S1(fn) and S2(fn) of the transmission spectra S1(f ) and S2(f ) at the 
discrete frequencies fn, n ∈ [1, 2, . . . ,N] were then calculated as

To increase SNR, all signals were 4× oversampled ( OS = 4 ) and simply averaged (equivalent to filtering with a 
rectangular window function). As such, for every discrete frequency step, K = 4× OS × 3 samples were acquired 
(a total of 16 samples for each of the 3 channels).

Study design and data acquisition.  The command word corpus consisted of 40 phonetically balanced, 
two-syllable German words and the German digits zero to nine. Its content is summarized in Table 1.

A custom C++ graphical user interface (using the framework wxWidgets 3.1.3) was written to control the 
device, record the data, inspect them in real-time, and manually segment the recorded spectrograms after acqui-
sition. Both the audio and radar data streams were recorded simultaneously with a fixed sample rate of 44100 
Hz and 100 Hz, respectively. Each transmission spectrum was measured at N = 128 discrete frequency points, 
logarithmically spaced between 1 and 6 GHz. The choice of 128 frequency points was a compromise between 
spectral resolution and a stable measurement speed of 100 Hz. The logarithmic spacing was chosen due to the 
increase in attenuation towards higher frequencies (see Fig. 4) and thus to increase the spectral resolution for 
lower frequencies, while still covering the full frequency band up to 6 GHz.

Recordings were taken from two native German male subjects (age 32 and 36) with a total of three sessions 
each, over the course of two days in a quiet office room. Both subjects remained seated and faced the same direc-
tion during the recordings. Informed consent was obtained from both participants after a thorough explanation 
of the experimental procedure. The experiment was approved by the Ethical Board Committee of the Technische 
Universität Dresden (approved 9.11.2021, protocol number SR-EK-486102021), conducted in accordance to the 
principles of the Declaration of Helsinki and following relevant German guidelines and regulations. During each 
session, every word in Table 1 was recorded (vocalized) one after another (column-wise), ten times in a row for 
a total of 500 utterances per session and 10 repetitions of each word. The full command word corpus thus con-
sisted of 3× 500 utterances per subject, for a grand total of 3000 utterances. To be able to test for inter-session 
variability, all three antennas were removed after each session, the adhesive tape replaced and then reattached 
to approximately the same location, checked only by visual inspection.

(1)Re{Xfn } = xfn [0] − xfn [2]

(2)Im{Xfn } = xfn [1] − xfn [3].

(3)S1,2(fn) =
X1,2(fn)

XRef (fn)
.
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The recorded radar spectrograms were manually endpointed into the individual utterances (words) on the 
basis of the audio data. Start and end marks were set at approximately 50 ms (equal to 5 radar frames) before 
and after each utterance. Each utterance was saved as three individual files, containing the spectrograms (custom 
binary format), the audio data (as .wav files) and the word label (as plain .txt files).

Table 1.   Set of command words along with their IPA transcription.

Null (/nʊl/) Jury (ʒʏʁiː/) Neubau (/nɔybau /)

Eins (/ains/) Mörser (/mœɐzɐ/) Judo (/juːdo/)

Zwei (/ʦvaɪ/) Wohnhaus (/voːnhaʊs/) Regie (/ʁeʃiː/)

Drei (/dʁaɪ/) Ketchup (/kɛtʃʊp/) Akku (/akʊ/)

Vier (/fiːɐ/) Feuer (/fɔʏɐ/) Böschung (/bœʃʊŋ/)

Fünf (/fʏnf/) Büro (/bʏʁoː/) Hausmüll (/haʊsmʏl/)

Sechs (/zɛks/) Detail (/detaːɪ/) Vision (/viːZ̭joːn/)

Sieben (/ziːbṇ/) Juli (/juːlɪ/) Zeugin (/ʦɔʏgɪn/)

Acht (/axt/) Ehe (/eːə/) Depot (/deːpoː/)

Neun (/nɔyn/) Shampoo (/ʃampu/) Buffet (/bʏfeː/)

Dachstuhl (daxʃtuːl) Höhe (/høːə/) Duell (/duːɛl/)

Nähe (/nɛːə /) Gage (/gaʒɛ/) Nachteil (/naxtaɪl/)

Feier (/fai ɐ/) Züchtung (/ʦʏçtʊŋ/) Mühe (/myːə/)

böig (/bøːɪç/, /bøːɪk) Cello (/ʦɛoː/) Ära (/ɛːʁa/)

Ziehung (/ʦiːʊŋ/) Wiese (/viːzə/) Hirschkuh (/hɪʁʃku/)

Chaos (/kaːɔs/) fähig (/fɛɪç/, /fɛɪk/) Lösung (/løzʊŋ/)

Ego (/eːgɔ/) Locher (/lɔxɐ/)

Figure 4.   LTAS of the transmission spectra (solid lines) for the cheek-to-chin (a, b) and cheek-to-cheek path (c, 
d) for both subjects and all three sessions. Shaded areas display the [5%, 95%] quantiles around each frequency 
point.
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Classifier.  Isolated word recognition presents a sequence-to-label task, in which the input sequence has to 
be mapped to one of the possible word labels in the vocabulary. A number of different mapping approaches 
have been used for this purpose and in the context of silent speech recognition, such as Hidden Markov Mod-
els (HMMs) paired with Gaussian Mixture Models (GMMs)7,19 support vector machines11, linear discriminant 
analysis22, dynamic time warping (DTW) or template matching with k-nearest neighbors (kNN)6,29, classical 
feed-forward neural networks18,24 and more recently, recurrent neural networks (RNNs), specifically long-short 
term memory networks (LSTMs)12. In this study, a bidirectional LSTM (BiLSTM), was selected as the classifier 
of choice. The full network architecture was kept very simple and comprised of the input layer, followed by a 
single BiLSTM layer, a fully connected layer and a softmax layer. The implementation was done with the PyTorch 
framework37. The following parametrization was used: learning rate ∈ [ 5 · 10−3 , 5 · 10−2 ], number of hidden 
units ∈ [20, 100] and batch size of 8. The maximal number of training epochs was set to 200, but was never actu-
ally reached due to early stopping (with patience of 20), based on the validation sets’ accuracy evaluated after 
every epoch.

Feature sets.  Whereas both transmission spectra were recorded for frequencies from 1 to 6 GHz, only the 
frequencies from 1 to 2.5 GHz (equivalent to the first 67 frequency points) were found to actually contain any 
meaningful spectral energy and were thus considered as input features. Overall, six different sets of features were 
evaluated: 

1.	 spectral magnitude of S1(f ) (67 features)
2.	 spectral magnitude of S2(f ) (67 features)
3.	 spectral magnitude of S1(f ) and S2(f ) (134 features)
4.	 spectral magnitude of S2(f ) and �S2(f ) (134 features)
5.	 spectral magnitude of S2(f ) and �S2(f ) & phase of �S2(f ) (201 features)
6.	 spectral magnitude of S1(f ) , S2(f ) , �S1(f ) and �S2(f ) (268 features).

In all cases, linear magnitudes were used (no scaling to decibel). �Sx(f ) are delta features, calculated as the dif-
ference S(t+�t)

x (fn)− S
(t)
x (fn) of two adjacent complex spectra7,29. Finally, all features were normalized to [0,1] 

on a per-subset basis, e.g., for set 3, S1(f ) and S2(f ) were individually normalized.

Evaluation procedure.  For reasons of comparability with word recognition results from other SSI 
approaches, we tested the speaker-dependent multi-session and inter-session recognition accuracy of our 
system2,35.

For the multi-session evaluation and for each of the two subjects individually, all sequences from all three 
sessions were combined and subsequently split into a stratified, randomly sampled training, validation, and 
hold-out test set in a 70%/10%/20% ratio (21, 3 and 6 repetitions per word), respectively. As such, the classifier 
was trained on 1200 sequences and tested on the remaining 300 and instances of all sessions were present in the 
training and test set.

In case of the inter-session evaluation, a total of three classification experiments were evaluated per subject, 
where two of the three sessions were used as the training set, whereas the third session was left out as the hold-
out test set, resulting in three {training set | test set} splits: {session 1, session 2 | session 3}, {session 1, session 
3 | session 2}, {session 3, session 2 | session 1}. Technically, this can also be regarded as a form of multi-session, 
however, there was always one session which was not seen by the classifier during training (in the sEMG litera-
ture, this is also termed session combination35,38).

A stratified, randomly sampled subset containing 20% of the training sets’ sequences (i.e., 4 sequences for 
each class) was used as the validation set, whereas the remaining 80% (with 16 sequences for each class) were 
used for training. For both the multi-session and inter-session classification experiments, hyperparameter opti-
mization was done with respect to the highest accuracy on the validation set without cross-validation and for a 
total of 20 randomly sampled hyperparameter sets. The test set was subsequently evaluated on the network with 
the optimal set of hyperparameters. In several cases, the hyperparameter search did not reveal the optimal set 
of hyperparameters, i.e., a different set of hyperparameters would have lead to a higher test accuracy. In those 
cases, the sub-optimal test accuracy was reported nonetheless. Because of this observation, a follow-up experi-
ment was conducted, where the validation set was not taken from the training set (the first two sessions), but as 
a 20% subset from the test set (the remaining session). This could be considered as a form of “hyperparameter 
finetuning” (or a weak form of session adaptation35).

Results
Figure 4 shows the long-term average transmission spectra (LTAS) for both transmission paths (cheek to cheek 
( S2(f ) ) and cheek to chin ( S1(f ) )) and both subjects 1 & 2, calculated across all sequences of a single session, to 
provide a sense of the spectral dynamics for each frequency and for the overall spectral similarity between subse-
quent sessions. Whereas both transmission spectra were heavily damped from 2-2.5 GHz onwards, S2(f ) showed 
substantially more dynamic for both subjects, especially for subject 1, as well as more consistency across sessions.

Figure 5 shows the magnitude and phase delta radar spectrograms for the examplary word “wohnhaus” (/
voːnhaʊs/) for two different repetitions, along with the frame-aligned audio spectrogram of the first repetition. 
This example is representative for most of the radar spectrograms and shows their similarity between repetitions. 
The classification results for the multi-session and inter-session evaluation for all six different sets of input fea-
tures are displayed in Fig. 6. The confusion matrices for the classification results on the best-performing feature 
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sets (i.e., set 5 and 6 for subject 1 and 2, respectively) for both subjects are displayed in Fig. 7, along with the 
hyperparameters of the respective BiLSTM in Table 2. With respect to the inter-session classification results, using 
S2(f ) as input features yielded significantly higher recognition accuracies compared to S1(f ) . Indeed, including 
S1(f ) into any feature set for subject 1 actually had an adversarial effect, worsening the results drastically, whereas 
for subject 2, it showed only very minor improvements at best.

In contrast, including both magnitude and phase delta features for S2(f ) improved the mean inter-session test 
accuracy for subject 1 by roughly absolute 10% over the next best performing feature set and also led to a small 
improvements for subject 2. Most of these findings also apply to the multi-session test accuracy results, which 
reached almost perfect classification with ≥ 98% for both subjects.

Discussion
Whereas SFCW radar can be slower, compared to, e.g., impulse radar, it also has the advantage of precise fre-
quency selection. This is advantageous for regulatory reasons and for selecting the frequency band(s) which yield 
the best results for the required task. Although we did investigations on the optimal set of frequency components 
for the transmission spectra34, this is still rather unexplored and additionally dependent on the type of antenna 
or classifier architecture used. As such, being able to alter the frequency content of the transmission spectra 
almost freely is very beneficial. A general observation was that the transmission spectra were substantially less 
attenuated towards lower frequencies in the 1-2 GHz range (see Fig. 4). Whereas this trend might extend to even 
lower frequencies, there are also practical and physical antenna size constraints. Sizes above a few centimeters 

Figure 5.   Frame-aligned audio spectrogram (top row, 2048 point FFT, hann-windowed, 1536 samples overlap) 
and radar spectrogram (middle and bottom row) of the exemplary word “wohnhaus” (/voːnhaʊs/) for the 
selected frequency range from 1 to 2.5 GHz. (a): Linear magnitude radar spectrogram |S2(f )| (84 frames). (b, 
c): corresponding magnitude and phase delta features, respectively. (d–f): |S2(f )| and delta features for another 
repetition from a different session of the same word (88 frames).
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were found impractical, because the antennas were no longer in good contact with the skin (unless fabricated 
on a flexible substrate, which has its own caveats).

We initially experimented with the inclusion of reflection spectra in addition to the transmission spectra, but 
found that they were substantially more susceptible to antenna placement & movement and ultimately decided 
against using them. Head size also had an influence on the spectral dynamics as it influenced the distance between 
the three antennas. A larger head resulted in less spectral dynamics, which can be seen in Fig. 4 on subject 2. 
This also led to less distinct delta features, which is most likely the reason why they had less impact on the test 
classification results for subject 2.

As for the input feature selection presented in this work, we deliberately used straightforward transformations 
(magnitude, phase and delta features) to establish a baseline for the recognition accuracy in both the multi-
session and inter-session case for our proposed measuring technique. This leaves a lot of room for improvement 
on the already very promising results, especially for the inter-session dependency.

BiLSTMs as a classifier were chosen because the radar spectrograms followed a temporal order which also 
varied in length (42 to 113 frames across all 3000 sequences). This presented a standard case for RNNs, espe-
cially LSTMs, which eliminate several shortcomings of classical RNNs for longer sequences39. The bidirectional 
type was chosen, because feeding the network with the sequence from both directions adds temporal context 
not present in the unidirectional case and can increase training speed40, as was observed in our experiments. 
There also exist other types of RNNs (including their bidirectional variants), such as RNNs with gated recur-
rent units (similar to LSTMs), recursive neural networks or echo state networks39. Additionally, other network 
architectures such as convolutional neural networks (CNNs and temporal CNNs)39, Transformer41 or Conformer 
networks42 can be used for sequence-to-label tasks and the attention mechanism also applied to RNNs43. How-
ever, because BiLSTMs already worked very well and are a somewhat standard classifier for sequence-to-label 
tasks, we refrained from testing other classifier for this particular study for reasons of conciseness.

Initial experiments with a 5-fold cross-validation during training showed that the partition noise of the 
validation accuracy within the training set was in the range of only a few percent for both subjects and that 
the validation accuracies reached above 98% regularly. As a result, there was little “room” to differentiate the 
optimal hyperparameter set from suboptimal ones and the highest validation accuracy often did not reveal the 
optimal hyperparameter set (i.e., the one associated with the highest test accuracy). This discrepancy was on the 
order of 1–7% for well performing and as high as 30% for the worst performing feature sets (the ones including 
S1(f ) for subject 1). Using a small fraction of the test set as a set-aside validation set substantially improved the 
hyperparameter search and revealed the optimal ones in almost all cases, leading to higher test accuracies and 
less variability between session splits (Fig. 6). In a model deployment scenario, this would necessitate retraining, 
once a small set of utterances becomes available for the current session, which is rather undesirable. This problem 
might be alleviated with the availability of more recorded data and will be investigated in further experiments.

Table 3 lists a comparison with reported isolated command word recognition results across different SSI 
technologies for session-dependent/multi-session and inter-session evaluations (if available). Note that “ses-
sion-dependency” strictly speaking refers to training and testing on a single session only35, but was merged in 
Table 3 with multi-session results, because they can be interpreted very similarly. Entries marked with a dagger 
superscript† also reported phoneme recognition rates, which were omitted in this comparison. This also applies 
to Kim et al.12, who actually reported speaker-independent (i.e., cross-speaker) phoneme error rates on healthy 
and laryngectomy patients using EMA. Similarly, Stone et al.16 were the first to report intra-speaker and cross-
speaker recognition rates on a small corpus of 10/30 isolated words (digits and German command words) with 

Figure 6.   Multi-session and inter-session results for both subjects, sorted by feature sets. The inter-session 
results are reported with their mean, minimal and maximal value of the three individual splits combined. Values 
are displayed for the respective mean value. A white star ( ⋆ ) indicates the best-performing feature set in each 
category.
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recognition accuracies of 99.5%/97% and 61.75%/56.17%, respectively, using EOS. Whereas our study explored 
the performance of the proposed radar system for the recognition of isolated words within and across sessions of 
the same speaker (including the associated variability of word pronunciation and antenna placement) the assess-
ment of cross-speaker performance (with its variability due to anatomical differences) is a step up in difficulty 
and remains to be investigated in future studies. Additionally, although we did not conduct a systematic noise 
analysis, these sources of “physiological” noise are expected to be substantially higher for the selected frequency 

Figure 7.   Confusion matrices for all recognition experiments. (a) multi-session, subject 1. (b) multi-session, 
subject 2. Rows with perfect classification results are omitted here for clarity and brevity. (c) inter-session, 
subject 1 and 2 combined (upper and lower triangles, respectively) across all three splits with the respective 
feature set that achieved the highest mean inter-session test accuracy, i.e., feature set 5 for subject 1 and feature 
set 6 for subject 2. Reported are the results where the validation set is a subset of the training set, as discussed in 
the text. Non-empty cells are shaded from white (zero occurrences) to black (maximal number of occurrences).
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band (with antenna placement being the most relevant, followed by pronunciation style) compared to internal 
system noise or noise caused by interfering signals in an everyday environment.

Table 3 also distinguishes, whether the speech data was collected vocalized or subvocally (also termed 
mouthed speech), as there exist discrepancies between both modalities44, which have an impact on the recogni-
tion (or synthesis) task. This will be another subject of investigation in the future as our results currently apply 
to vocalized recordings.

According to Table 3, data on inter-session dependency for SSIs is very sparse and most work so far has 
focused on speaker-dependent, single or multi-session experiments. To the best of our knowledge, only sEMG, 
as a fully non-invasive SSI modality, has been evaluated for inter-session dependencies. sEMG currently also 
leads the field, especially for large vocabulary5,35. However, given our presented results, there are a number of 
compelling reasons for RBS as an alternative: RBS is also fully non-invasive and, when compared with other 
small-vocabulary word recognition results, yields state of the art results on both multi-session and inter-session 
recognition tasks. Whereas there are physical constraints on the antenna size, the remaining hardware can 
potentially be miniaturized and, e.g., integrated into some form of headset, similar to conventional headphones. 
Additionally, a pair of RX/TX antennas has a much richer “sensing profile”, compared to two sEMG electrodes, 
since the resulting transmission spectra apparently capture (part of) the physical state of the vocal tract.

For example, the two label–prediction pairs (taken from Fig. 7) that were confused by far the most often 
were “Mühe” (/myːə/) – “Höhe” (/høːə/) and “Zeugin” (/ʦɔʏgɪn/) – “Neun” (/nɔʏn/), both of which are pho-
netically similar. Whereas this does not apply to all confusions (e.g., the third highest mismatch was “Akku” (/
akʊ/) – “Locher” (/lɔxɐ/)), it is yet another confirmation that similar phonemes tend to have similar transmission 
spectra (as was already demonstrated in31). As such, a fully phoneme-based speech recognizer will be one of the 
next steps in our future development.

Data availability
The data corpus is provided unter https://​www.​vocal​tract​lab.​de/​index.​php?​page=​birkh​olz-​suppl​ements.

Table 2.   BiLSTM hyperparameters for each of the networks that produced the confusion matrices in Fig. 7. 
Only a single BiLSTM layer was used.

Feature set nr. # Input features # Hidden units Batch size Learning rate # Epochs

Multi-session

Subject 1 5 201 38 8 0.00164 47

Subject 2 6 268 73 8 0.00078 112

Inter-session

Subject 1

   Split 1 5 201 76 8 0.00160 47

   Split 2 5 201 77 8 0.00136 41

   Split 3 5 201 44 8 0.00202 61

Subject 2

   Split 1 6 268 97 8 0.00076 45

   Split 2 6 268 83 8 0.00105 72

   Split 3 6 268 88 8 0.00132 70

Table 3.   Comparison between isolated word recognition results across different SSI technologies.

Modality Dictionary

Session-dependent or 
multi-session accuracy 
(%)

Inter-session accuracy 
(%) Classifier Vocalization

PMA4 9 words† 94 – DTW-(kNN) Vocalized

PMA7 57 words 98.8 – GMM-HMM Vocalized

EPG13 21 words 84.36 – DTW-GAK Vocalized

EMA11 25 words† 96.88 – SVM Vocalized

sEMG21 65 words 90.4 – GMM-HMM Subvocal

sEMG35 108/2102 words 89.55/67 78.06/49.52 GMM-HMM Training vocalized, test 
subvocal

sEMG5 2500 words 89.7 – GMM-HMM Subvocal

sEMG22 110 words 92.1 – LDA Subvocal

RBS29 10 words 92.8 – Template matching Vocalized

RBS (Our work) 50 words 99.17 88.87 BiLSTM Vocalized

https://www.vocaltractlab.de/index.php?page=birkholz-supplements
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Code availability
The code for the BiLSTM evaluation is accessible under https://​github.​com/​TUD-​STKS/​radar_​based_​comma​
nd_​word_​recog​nition.
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