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Abstract

Parallel imaging is the most clinically used acceleration technique for magnetic resonance imaging 

(MRI) in part due to its easy inclusion into routine acquisitions. In k-space based parallel 

imaging reconstruction, sub-sampled k-space data are interpolated using linear convolutions. 

At high acceleration rates these methods have inherent noise amplification and reduced image 

quality. On the other hand, non-linear deep learning methods provide improved image quality at 

high acceleration, but the availability of training databases for different scans, as well as their 

interpretability hinder their adaptation. In this work, we present an extension of Robust Artificial-

neural-networks for k-space Interpolation (RAKI), called residual-RAKI (rRAKI), which achieves 

scan-specific machine learning reconstruction using a hybrid linear and non-linear methodology. 

In rRAKI, non-linear CNNs are trained jointly with a linear convolution implemented via a skip 

connection. In effect, the linear part provides a baseline reconstruction, while the non-linear 

CNN that runs in parallel provides further reduction of artifacts and noise arising from the linear 

part. The explicit split between the linear and non-linear aspects of the reconstruction also help 

improve interpretability compared to purely non-linear methods. Experiments were conducted on 

the publicly available fastMRI datasets, as well as high-resolution anatomical imaging, comparing 

GRAPPA and its variants, compressed sensing, RAKI, Scan Specific Artifact Reduction in 

K-space (SPARK) and the proposed rRAKI. Additionally, highly-accelerated simultaneous multi-

slice (SMS) functional MRI reconstructions were also performed, where the proposed rRAKI was 

compred to Read-out SENSE-GRAPPA and RAKI. Our results show that the proposed rRAKI 

method substantially improves the image quality compared to conventional parallel imaging, and 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author at: 200 Union Street SE, 5-159 Keller Hall, Minneapolis, MN 55455, USA. akcakaya@umn.edu (M. 
Akçakaya). 

Credit author statement
Chi Zhang: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing - Original Draft, 
Visualization
Steen Moeller: Conceptualization, Methodology, Resources, Data Curation, Writing - Review & Editing
Omer Burak Demirel: Methodology, Software, Writing - Review & Editing, Resources
Kâmil Uğurbil: Methodology, Writing - Review & Editing, Supervision, Project administration, Funding acquisition
Mehmet Akçakaya: Conceptualization, Methodology, Resources, Data Curation, Writing - Review & Editing, Supervision, Project 
administration, Funding acquisition

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.neuroimage.2022.119248.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2022 August 01.

Published in final edited form as:
Neuroimage. 2022 August 01; 256: 119248. doi:10.1016/j.neuroimage.2022.119248.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


offers sharper images compared to SPARK and ℓ1-SPIRiT. Furthermore, rRAKI shows improved 

preservation of time-varying dynamics compared to both parallel imaging and RAKI in highly-

accelerated SMS fMRI.
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1. Introduction

Magnetic resonance imaging (MRI) remains one of the most important modalities for 

neuroimaging (Bandettini, 2012; Leung et al., 2015), but it still faces challenges due to 

lengthy scan times. Parallel imaging (PI) is frequently used in clinical MRI to reduce 

scan times. These methods utilize differences in the profiles of multiple receiver coils to 

reconstruct undersampled data (Griswold et al., 2002; Pruessmann et al., 1999; Sodickson 

and Manning, 1997). However PI methods inherently exhibit trade-offs between acceleration 

rate and noise amplification (Aja-Fernández et al., 2014).

Recently, machine learning techniques have received substantial interest for MRI 

reconstruction. Several of these methods build on the regularized inverse problem from 

compressed sensing (Lustig et al., 2007), and learn a machine learning-based regularizer 

(Aggarwal et al., 2018; Chen et al., 2018; Dar et al., 2020a, 2020b; Eo et al., 2018; 

Hammernik et al., 2018; Han et al., 2018; Hosseini et al., 2020a; Mardani et al., 2018; Qin 

et al., 2018; Quan et al., 2018; Schlemper et al., 2018; Wang et al., 2016; Yaman et al., 

2020a; Yang et al., 2018, 2016). Other data-driven approaches find a direct mapping from 

undersampled data into a de-aliased image (Han et al., 2020; Lee et al., 2018; Zhu et al., 

2018). However, most of these methods rely on large training databases of fully-sampled 

data for training. Training on data independent from reconstruction target may lead to 

potential risks, such as bringing unwarranted information into reconstruction result or losing 

fine details, especially if the training databases do not include sufficiently many examples 

with pathologies of interest (Knoll et al., 2019, 2020a; Muckley et al., 2020).

An alternate line of work considers scan-specific training. The first method of this nature, 

Robust Artificial-neural-networks for k-space Interpolation (RAKI) uses convolutional 

neural networks (CNNs) trained from ACS data for scan-specific k-space interpolation 

(Akçakaya et al., 2019). RAKI showed improvements in image quality and noise reduction 

compared to conventional PI methods using linear k-space interpolation. The scan-specific 

design allows RAKI to be employed when massive fully sampled training data are 

not available, such as coronary MRI (Hosseini et al., 2020b) and highly accelerated 

simultaneous multi-slice/multi-band (SMS/MB) MRI (Nencka et al., 2021; Zhang et al., 

2019a, 2018a). It has also been applied to algorithms that rely on completion of locally 

low-rank k-space neighborhoods (Kim et al., 2019), and in approaches that utilize the 

whole sub-sampled k-space for reconstruction (Zhang et al., 2019d). However, while the 

reconstruction improvement is visually easy to identify in these methods, the source of 

improvement from RAKI-type approaches is difficult to interpret. With the increasing 
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importance of interpretability in machine learning (Reyes et al., 2020; Vellido, 2020), it 

is important to develop explainable methods that will aid in clinical translation for the RAKI 

framework.

In this paper, we propose residual RAKI (rRAKI) as a machine learning approach with 

improved interpretability for k-space interpolation, combining the advantages of both linear 

PI and nonlinear machine learning reconstructions. It uses a residual CNN (ResNet) 

architecture (He et al., 2016) with linear convolutions on the skip connection. The linear 

skip connection implements a linear reconstruction similar to GRAPPA, creating a baseline 

reconstruction. The multi-layered CNN compensates for the imperfections arising from 

this linear component, such as noise amplification and residual artifacts. Both components 

are trained on scan-specific ACS data concurrently. The performance of proposed rRAKI, 

is studied in T2 -weighted and FLAIR brain imaging from fastMRI database (Knoll et 

al., 2020b), high-resolution 3T and 7T anatomical imaging, as well as highly accelerated 

SMS/MB fMRI at 3T. Our results show rRAKI has noticeable advantages in terms of both 

noise resilience and artifact removal over linear methods, such as GRAPPA, as well as better 

interpretability and sharper images compared to RAKI.

2. Materials and methods

2.1. Linear k-space interpolation

GRAPPA is one of the most commonly used linear PI reconstruction approaches for multi-

channel MRI reconstruction. A set of linear shift-invariant convolution kernels are calibrated 

from Nyquist-rate sampled auto calibration signal (ACS) data, to interpolate skipped data 

from adjacent sampled lines. Let s (kx, ky, i) denote an acquired data point in k-space 

location (kx, ky) of the ith coil, R be the acceleration rate, nc be the number of coils, and for 

notational convenience, let

N kx, ky = kx − dxΔkx, ky − RdyΔky, i :dx ∈ −Dx, …, Dx , dy
∈ −Dy, …, Dy , i ∈ 1, …, nc

(1)

denote a neighborhood around k-space location (kx, ky) across all coils that includes the 

sampled points for integers Dx and Dy specifying the pre-determined kernel size. Let 

sN kx, ky  be a column vector whose entries are the corresponding k-space values of s(kx, ky, 

i) for every point in N kx, ky . Under this notation, GRAPPA reconstruction can be expressed 

as:

s kx, ky − mΔky, i = gm, isN kx, ky , (2)

where gm,i are the linear convolution weights for estimating the mth skipped line of coil i, 
for 1 ≤ m ≤ R-1. These convolution kernels, gm,i are estimated by solving a least squares 

problem prior to reconstruction from the ACS region in k-space, where the ACS data are 

utilized as both regressor and regresand in Eq. (2)
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2.2. Nonlinear RAKI reconstruction

RAKI achieves scan-specific nonlinear k-space interpolation by replacing the linear 

convolution kernels with several compact CNNs, each consisting of convolutions and 

nonlinear activations. CNNs in RAKI are trained from ACS data in the similar fashion 

of GRAPPA. For processing, the complex k-space is mapped to the real field, expanding 

the data to 2nc input channels in total. In RAKI, each channel has its assigned CNN that 

generates R-1 k-space lines between sampled lines, while other possibilities of input-output 

designs can still be considered for reduced computational load (Zhang et al., 2019b). Let N
be the same neighborhood as the one in Eq. (1), only now defined over 2nc real channels. 

Let

V kx, ky, j = kx, ky − mΔky, j :m ∈ 1, …, R − 1 (3)

be the R-1 missing lines between two sampled positions, adjacent to (kx, ky) in channel j. 
Similarly, we define sV kx, ky, j  to be a column vector with its entries are elements s (α, β, 

γ), where (α, β, γ) ∈ V kx, ky, j . RAKI estimates the missing lines in k-space from acquired 

lines using CNNs by:

sV kx, ky, j = fj sN kx, ky , (4)

where fj (•) represents a CNN estimating the unacquired points in channel j based on the 

acquired data from all channels. fj (•) was designed as a three-layered CNN in (Akçakaya 

et al., 2019). In practice, the CNN architecture can be designed in various forms in an 

application-specific manner (Zhang et al., 2019b). Point-wise nonlinearity, ReLU(x) = 

max(x, 0), is applied to all convolutional layers before the output layer. The last layer only 

conducts convolution to generate the final estimate.

2.3. Proposed rRAKI reconstruction

Fig. 1 depicts the residual network architecture used in rRAKI. Both the linear convolution 

component and the CNN take the sampled lines as input. The outputs from both components 

are combined into the final output, giving an estimation of all the skipped lines for a given 

channel, similar to RAKI. Let Gj denote the linear convolution component and Fj denote 

the nonlinear CNN component of the rRAKI network for channel j. Using this notation, the 

rRAKI reconstruction for a given channel j is summarized as:

sV kx, ky, j = Gj sN kx, ky + Fj sN kx, ky . (5)

Gj and Fj are trained using ACS data, similar to (Akçakaya et al., 2019). 

rRAKI is designed so that Gj captures the linear reconstruction baseline, while Fj 

reduces the residual artifacts and noise amplification non-linearly. Thus, the training, 

which is performed over the ACS region, aims to minimize the error for the 

estimation that combines the Gj and Fj components, while also minimizing the error 

associated with the Gj component. Let yj be the vector containing the elements 
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of V kx, ky, j :kx ∈ −
nxACS

2 + Dx −
nxACS

2 + Dx + 1, …,
nxACS

2 − Dx , ky

∈ −
nyACS

2 + Dy, −
nyACS

2 + Dy + 1, …,
nyACS

2 − Dy

 corresponding to the 

target points in the ACS region of channel j, where nxACS and nyACS specify the dimension 

of ACS along x and y axis, and let ysource be the vector containing the elements 

of N kx, ky :kx ∈ −
nxACS

2 + Dx, −
nxACS

2 + Dx + 1, …
nxACS

2 − Dx , ky

∈ −
nyACS

2 + Dy, −
nyACS

2 + Dy + 1, …,
nyACS

2 − Dy

 corresponding to the 

source points across all channels in the ACS region. Training of the rRAKI network is 

performed using the following loss function:

min
γj, θj

yj − Gj ysource; γj − Fj ysource; θj 2 + λ yj − Gj ysource ; γj 2 (6)

where || • ||2 is the l2 norm, γj and θj are the trainable weights in the Gj and Fj networks 

respectively, and λ is a weighting factor. Further implementation details are provided in 

Section 2.7. The reconstruction is then performed using the learned parameters γj and θj.

2.4. fastMRI brain datasets

Fully-sampled axial T2 (T2 -weighted) and FLAIR datasets from the fastMRI database 

(Knoll et al., 2020b) were employed. 300 slices of fully sampled data were retrospectively 

undersampled along phase-encode direction at rate 4. Reconstructions using GRAPPA, 

Tikhonov-regularized GRAPPA, non-linear GRAPPA (Chang et al., 2012), ℓ1 wavelet 

regularized SPIRiT (Lustig and Pauly, 2010), SPARK (Arefeen et al., 2022), RAKI and 

rRAKI were performed. For displaying and assessment purposes, multi-coil images were 

combined using root-of-sum-of-squares. SSIM, NRMSE, and blur metrics (Crété-Roffet et 

al., 2008) were computed with respect to the reference. Normality of SSIM, NRMSE and 

blur metrics were assessed using the Jarque-Bera test, prior to testing statistical differences 

in SSIM, NRMSE and blur metrics using paired t-tests. P-values < 0.05 were considered 

significant.

2.5. Anatomical imaging

Anatomical brain imaging was performed on a 3T Siemens Magnetom Prirma system and 

a 7T Siemens Magnex Scientific (Siemens Healthcare, Erlangen, Germany) system using 

32-channel receiver head coil-arrays. The imaging protocols were approved by the local 

institutional review board, and written informed consent was obtained from all participants 

before each examination for this HIPAA-compliant study. For 3T imaging, a T1 -weighted 

3D-MPRAGE sequence was acquired in a healthy subject with the following parameters: 

Field-of-view (FOV) = 224 × 224 × 179 mm3, resolution = 0.7 × 0.7 × 0.7 mm3, matrix 

size = 320 × 320, TR/TE = 2400 ms/2.2 ms, flip angle = 8°, bandwidth = 210 Hz/pixel, 

inversion time = 1000 ms, ACS lines = 40, with iPAT = 2 and 5. Furthermore, the R = 2 

acquisition was also retrospectively undersampled to R = 4 and 6 (Akçakaya et al., 2019). 

For 7T imaging, 3D-MPRAGE was acquired in a healthy volunteer with the following 
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parameters: FOV = 230 × 230 × 154 mm3, resolution = 0.6 × 0.6 × 0.6 mm3, TR/TE = 

3100 ms/3.5 ms, flip angle = 6°, bandwidth = 140 Hz/pixel, inversion time = 1500 ms, 

ACS lines = 40, with R = 3, 4, 5, 6. Additionally, two averages were acquired for R = 

5 and 6 data to mitigate the SNR loss from undersampling (Akçakaya et al., 2019). The 

k-space data were inverse Fourier transformed along the slice direction for all datasets, and 

a central slice was processed. Reconstructions were performed using GRAPPA, RAKI and 

rRAKI. All methods were calibrated or trained on the slice-specific ACS region that was 

built-in to the acquisition. For display and evaluation, multi-coil images were combined 

using root-of-sums-of-squares. Reconstruction quality was assessed qualitatively, since a 

fully-sampled reference was not available in these acquisitions.

2.6. Simultaneous multi-slice fMRI

SMS/MB fMRI data was acquired on a 3T Siemens Magnetom Prisma (Siemens Healthcare, 

Erlangen, Germany) scanner with a 32-channel receiver head coil-array. The Human 

Connectome Project protocol (Van Essen et al., 2012) was used with SMS/MB factor = 8 

and blipped-CAIPI encoding (Setsompop et al., 2012) with a FOV/3 shift between adjacent 

multiband slices, resolution = 2 × 2 × 2 mm3 and TE/TR = 37/1000 ms, FOV = 208 × 180 × 

144 mm3, flip angle = 52°, matrix size = 104 × 90, bandwidth = 2290 Hz/pixel. Calibration 

data containing the individual slices was acquired integrated with and prior to the fMRI 

image series at the same resolution. In order to test the potential of rRAKI at high SMS/MB 

acceleration rates, a SMS/MB = 16 acceleration was retrospectively simulated using this 

acquisition. Specifically, each fMRI acquisition contains nine slice groups of SMS/MB = 

8 slices for a total of 72 slices, resulting in five retrospective SMS/MB = 16 slice groups 

for each subject. The methodology for simulating SMS/MB = 16 data from SMS/MB = 8 

acquisition are further detailed in supplementary materials.

Reconstructions were performed using the proposed rRAKI, as well as linear parallel 

imaging via RO-SENSE-GRAPPA (RSG) (Moeller et al., 2010) and RAKI as comparison. 

Readout concatenation (Moeller et al., 2010) was used for all the reconstructions. In 

this method, for kernel calibration, individual unaccelerated images are concatenated in 

image domain along the readout direction, and then transformed into k-space via Fourier 

transform, where SMS/MB encoding can be viewed as acceleration in this concatenated 

readout direction. The concatenated unaccelerated images are then used for estimating the 

interpolation rule, e.g. linear convolutions in GRAPPA, in this extended space (Demirel et 

al., 2021; Moeller et al., 2010). In order to reduce overfitting issues for the GRAPPA-type 

convolution from a single calibration frame, additional calibration data was generated from 

the baseline SMS/MB = 8 reconstructions from the first 8 time frames. In supplementary 

materials we provide a detailed description of the calibration data generation for SMS/MB 

= 16 experiments in this study. For all tested methods, 8 calibration frames were used for 

generating the interpolation kernels or CNNs. Additionally, this amount of calibration data 

enables Gj in rRAKI to be implemented as a multi-layered linear convolutional network 

(Bell-Kligler et al., 2019), which keeps the linearity while enabling multiple optimal 

solutions and avoiding issues with local minima. Following the calibration stage, each 

individual time frame of the fMRI series were reconstructed using the same convolutional 

kernel and/or CNN. For display and evaluation, multi-coil images were combined using 
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root-of-sums-of-squares. Due to the lack of fully-sampled data, reconstruction quality was 

assessed visually for individual frames. Further quantitative evaluation was performed using 

temporal SNR (TSNR), which measures the variation of image signal along time in a 

point-wise fashion. TSNR maps were calculated as the mean of the image series over time 

divided by its standard deviation (Tabelow et al., 2009).

2.7. Implementation details

GRAPPA and RSG were implemented using MATLAB 2016a (Math-Works, USA). RAKI 

and rRAKI was implemented using Tensorflow 1.7.0 and Python 3.6.2, supported by CUDA 

8.0 and CuDNN 7.0.5, on Linux kernel 3.10.0. The Python environment was created under 

Anaconda 5.1.0. Adam (Kingma and Ba, 2015) was employed as the optimizer for network 

training. All programs were run on a server with two Intel E5–2643 CPUs (6 cores each, 

3.7 GHz), 256 GB memory and two NVIDIA Tesla V100 GPU (32 GB memory each) with 

single precision.

For fastMRI dataset and anatomical imaging, the parameters of all non-machine learning 

reconstruction methods were empirically tuned for best performance. In addition to 

visual assessment, numerical metrics including SSIM and NRMSE were also considered 

in parameter tuning, when a reference image was available. GRAPPA and Tikhonov 

regularized GRAPPA was implemented using a 5 × 4 kernel (Griswold et al., 2002). 

An regularization factor of 0.05 was employed in Tikhonov regularized GRAPPA. ℓ1 

-SPIRiT used a 5 × 5 kernel, and ℓ1 Daubechies-4 wavelet regularization. Regularized 

SPIRiT reconstruction was solved iteratively using ADMM. For the CNNs in RAKI and 

nonlinear part of rRAKI, we express the shape of convolution kernel used in layer 1 as 

wl = bl
x, bl

y, nl , representing a bl
x × bl

y × nl − 1 × nl convolution, where bl
x and bl

y denote the 

sizes of convolution window along kx and ky directions respectively, nl and nl+1 denote the 

input and output channel number, respectively. Under this notation, n0 = 2nc since the CNN 

takes k-space data of 2nc channels. The output layer always outputs R – 1 channels for 

k-space estimation. In anatomical imaging, we employed the following hyper-parameters: 

w1 = [5, 2, 32], w2 = [1, 1, 8], w3 = [3, 2, R-1] for RAKI (Zhang et al., 2018a). rRAKI 

was implemented with a 5 × 2 linear convolution kernel, and its nonlinear part shared the 

same parameters as RAKI for all tested scenarios for comparison purposes. λ has been set to 

1 for an equally weighting between linear and non-linear components. Parameters of Adam 

optimizer were set as α = 0.0003, β1 = 0.9, β2 = 0.999, ε = 10−8. SPARK was implemented 

as is suggested in (Arefeen et al., 2022).

For SMS/MB imaging, larger kernels were employed for RSG, RAKI and the proposed 

rRAKI due to the readout-concatenated nature of k-space. Specifically, RSG applied an 11 × 

10 kernel. RAKI employed 5-layered CNNs with hyper-parameters: w1 = [11, 10, 32], w2 = 

[1, 1, 64], w3 = [3, 2, 32], w4 = [1, 1, 64], w5 = [5, 4, R-1]. rRAKI employed a multi-layered 

linear convolution network that has similar structure as Fj but without nonlinear activations. 

Both Gj and Fj shared the same hyper-parameters as those were used for RAKI, with λ = 1. 

Parameters of Adam optimizer were set as α = 0.0003, β1 = 0.9, β2 = 0.999, ε = 10−8.
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3. Results

3.1. fastMRI dataset

Fig. 2 and Fig. 3 depict representative reconstruction results of T2 -weighted and FLAIR 

data from fastMRI database, respectively. ℓ1 -SPIRiT, RAKI, SPARK and rRAKI show 

visible advantages over GRAPPA, Tikhonov regularized GRAPPA and non-linear GRAPPA 

in terms of noise resilience. RAKI and rRAKI exhibit similar image quality, while providing 

visibly sharper images with fine details compared to ℓ1 -SPIRiT and SPARK. Note that 

ℓ1 -SPIRiT and SPARK exhibit more noise suppression albeit at the cost of smoother 

looking images. Table 1 lists the mean and standard deviation of SSIM, NRMSE and 

blur metrics for both T2-weighted and FLAIR datasets. For both T2-weighted and FLAIR 

datasets, all quantitative metrics showed normality, allowing subsequent paired t-tests to 

be conducted. The results of the paired t-tests are listed in supporting materials Table 

S1–S6 and summarized here. For both T2-weighted and FLAIR imaging, RAKI, rRAKI 

and SPARK show no statistical difference in terms of SSIM and NRMSE, while they are 

statistical different in terms of blur metrics, where SPARK had higher (worse) blur metrics 

than RAKI and rRAKI, indicating image blurring that matches the visual assessments. 

RAKI, rRAKI and SPARK outperform GRAPPA, Tikhonov-regularized GRAPPA, nonlinear 

GRAPPA and ℓ1-SPIRiT in terms of SSIM and NRMSE, with statistical significance. 

GRAPPA and Tikhonov-regularized GRAPPA show no statistical difference in all metrics 

in T2-weighted imaging, while for FLAIR imaging Tikhonov-regularized GRAPPA has 

statistically higher blur metrics value than GRAPPA. Similarly, nonlinear GRAPPA has 

statistically higher blur metrics than GRAPPA in T2-weighted imaging, while it has 

statistically better SSIM and NRMSE in FLAIR imaging. Nonlinear GRAPPA statistically 

outperforms Tikhonov-regularized GRAPPA in terms of NRMSE in T2-weighted imaging, 

While Tikhonov-regularized GRAPPA outperforms nonlinear GRAPPA in terms of SSIM 

and NRMSE in FLAIR imaging. ℓ1-SPIRiT outperforms GRAPPA, Tikhonov-regularized 

GRAPPA and nonlinear GRAPPA in terms of SSIM and NRMSE for both T2-weighted 

and FLAIR imaging, but ℓ1-SPIRiT also exhibits high blur metrics values indicating visual 

blurring.

Computation times of GRAPPA, RAKI, SPARK and the proposed rRAKI are reportedin 

Supplementary Material Figure S3. The pure linear nature of GRAPPA allows a fast 

reconstruction speed, taking approximately a second to reconstruct the fastMRI brain image 

at rate 4. RAKI and rRAKI takes less than 20 s for the reconstruction. Owing to the use 

of a linear reconstruction baseline, rRAKI converges in fewer epochs than RAKI. Note as 

detailed in Section 2.7, GRAPPA was implemented in MATLAB, while the other methods 

were implemented using TensorFlow.

3.2. Anatomical imaging

Fig. 4 depicts the results from the reconstruction of the 3T MPRAGE data using GRAPPA, 

RAKI, rRAKI, for different acceleration rates, as well as the linear part G and the 

nonlinear part F (scaled by 3 for improved visualization) of rRAKI. RAKI and rRAKI 

show minor advantages over GRAPPA in noise resilience below rate 4. The advantage 

becomes more noticeable for acceleration rates of 5 and 6, where RAKI and rRAKI have 
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visually lower noise than GRAPPA. For rRAKI, the G part shows similar appearance to 

the GRAPPA results, in accordance with the interpretable nature of the reconstruction. 

The noise amplification in the linear G part is reduced using the nonlinear F part. The 

combination of these two components matches RAKI in terms of noise resilience.

Similar observations apply to 7T MPRAGE data, the results of which are depicted in 

Fig. 5. For this dataset, all tested approaches successfully remove aliasing artifacts for the 

rates shown. The linear part of rRAKI and GRAPPA results present similar visual quality, 

followed by visible noise removal given by the nonlinear F part of rRAKI. rRAKI matches 

RAKI in terms of noise resilience, and both of them show visible advantage over GRAPPA, 

especially at rates 5 and 6, while rRAKI has improved interpretability.

Additional reconstruction results of 3T and 7T anatomical imaging are shown in 

supplementary Fig. S4 and Fig. S5, including GRAPPA, Tikhonov-regularized GRAPPA, 

ℓ1-SPIRiT, RAKI, SPARK and rRAKI reconstructions at acceleration R = 6. Non-linear 

GRAPPA, ℓ1-SPIRiT, RAKI, SPARK and rRAKI show improved noise resilience compared 

to GRAPPA and Tikhonov-regularized GRAPPA. However, residual aliasing is visible in 

ℓ1-SPIRiT and SPARK. Non-linear GRAPPA, RAKI and rRAKI exhibit closer visual quality.

3.3. Simultaneous multi-slice fMRI

Representative results for high rate SMS/MB reconstruction are presented in Fig. 6. Six 

representative slices are displayed to demonstrate improved visualization. A display of all 

unaliased SMS/MB = 16 images are provided in Supplementary Fig. S6 and S7. Although 

no fully sampled reference exists in this setting, high-quality SMS/MB = 8 reconstruction 

results with RSG are provided for baseline comparison. At SMS/MB = 16, RSG displays 

visible artifacts and reconstruction noise, which is reduced in RAKI and rRAKI. rRAKI 

provides sharper results than RAKI, while reducing artifacts and noise amplification.

Representative TSNR maps are displayed in Fig. 7. For SMS/MB = 16, both RAKI and 

rRAKI demonstrate increased TSNR compared to RSG. However, RAKI provides a visibly 

homogeneous TSNR compared to the MB8 reference, which suggests a loss of sensitivity 

to temporal dynamics due to suboptimal generalizability. On the other hand, rRAKI shows 

slightly lower TSNR values compared to SMS/MB = 8 baseline, but the TSNR map from 

rRAKI preserves structural information.

4. Discussion

In this study, we proposed rRAKI, which combines a conventional linear reconstruction 

with a neural network based nonlinear k-space reconstruction for improved image quality 

and interpretability. Undersampled k-space is interpolated using linear convolutions as a 

baseline, while the nonlinear CNNs further suppress the residual errors arising from this 

linear part. Such residual errors include g-factor noise amplification (Robson et al., 2008), 

and calibration errors due to noise in the regressor and regressand (Akçakaya et al., 2019; 

Chang et al., 2012). The proposed rRAKI has demonstrated noticeable improvement in 

image quality in high rate anatomical and SMS/ MB imaging.
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An important contribution of rRAKI is the ability to interrogate the components in the 

reconstruction, where the linear component ensures that the unaliasing of signal is accurate, 

and the non-linear component captures inhomogeneous noise amplification and other 

artifacts. The explicit separation of these artifacts, as well as the inference of system 

conditioning are two features of the rRAKI algorithm that are useful in determining 

performance for high acceleration. The proposed rRAKI strategy exhibited improved image 

quality compared to conventional linear PI reconstruction in anatomical imaging at higher 

undersampling factors, as well as in highly accelerated SMS/MB imaging.

One of the advantages of RAKI-type methods have been its scan-specific nature, allowing 

them to be used in the absence of large training databases (Arefeen et al., 2022; Hosseini 

et al., 2020b; Kim et al., 2019; Nencka et al., 2021; Zhang et al., 2019a, 2018a). Recently, 

several other studies have aimed to develop alternative scan-specific deep learning methods. 

In (Yaman et al., 2021a), physics-guided DL reconstruction with algorithm unrolling was 

performed in a zero-shot manner building on self-supervised learning methods (Yaman et 

al., 2020b, 2021b). Another line of work that uses adversarial models relying on deep image 

prior (Ulyanov et al., 2018) has also been proposed (Korkmaz et al., 2021), showing interest 

in this growing area.

Several other works have also demonstrated noticeable gains by connecting linear and 

nonlinear methods (Arefeen et al., 2022; Dar et al., 2021). In the context of database 

training, (Dar et al., 2021) takes advantages of a hybrid linear and non-linear structure, 

leading to significant advantages over conventional physics-guided model in terms of 

artifacts and noise reduction. In the context of scan-specific approaches, SPARK trains 

a non-linear CNN minimizing the reconstruction error arising from a fixed baseline 

reconstruction (Arefeen et al., 2022). In one of our preliminary studies for this work (Zhang 

et al., 2019a), a fixed linear baseline was shown to lead to difficulty with convergence when 

fitting acquired k-space data to the reconstruction residual, due to varying signal intensity 

in k-space. Thus, in this work, we adapted a joint optimization of the linear and non-linear 

components for improved training. In (Arefeen et al., 2022), the training issue with a fixed 

baseline was resolved using a fine-tuned CNN and promising results. In this work, without 

imposing any condition on the CNN, we performed several comparisons between rRAKI 

and SPARK, and demonstrated the advantages of rRAKI in terms of both visual quality and 

numerical metrics, especially related to image sharpness and recovery of fine details.

The explicit separation of the linear and non-linear components in rRAKI, along with the 

joint training of these components, enables the training and testing to be performed on 

more similar signal energy levels compared to RAKI. The linear component fits most of 

the signal energy in the ACS data, while the non-linear CNN characterizes the residual. 

Using the shift-invariance of the linear component, this strategy extends to the outer k-space, 

while the non-linear nature of CNN is empirically important to adaptively fit such data. 

The non-linear component used in this study, consisting of ReLU after convolution without 

biases, can be expressed as a multiplication of matrices, where the ReLU activations lead 

to signal-dependent binary diagonal matrices (Ye et al., 2018). The signal dependency 

of this component empirically enables an adaptive trade-off in regularization without the 

need for an explicit weighting parameter as in earlier works for regularizing GRAPPA-type 
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reconstructions (Weller et al., 2012), which is consistent with how CNNs are able to work 

across different noise levels in denoising problems (Gnanasambandam and Chan, 2020; 

Zhang et al., 2018b). Although the hybrid linear and non-linear design of rRAKI can lead to 

a low calibration error during training, over-fitting may occur when rRAKI is trained with 

limited ACS data.

For SMS/MB = 16, a single calibration frame only has 129,000 k-space points that can 

be used for training, whereas the network we employed has 730,120 parameters for 

each channel to be reconstructed. Thus, the additional calibration data improved both the 

linear and combined reconstruction of rRAKI, by enabling improved estimation of linear 

convolutions, as well as the use of a deep network.

For neuroimaging, mapping of resting-state networks into frequency-bands above 0.2 Hz 

with high spatial resolution is one of the needs for bridging the functional connectomics 

from fMRI and magnetic resonance encephalography (MREG), (Hennig et al., 2007). 

Efforts on interrogating these connections have been pursued with compressed sensing 

reconstructions for MB-EVI acquisition (Vakamudi et al., 2018) and fast sequences such 

as line-scanning for laminar fMRI (Yu et al., 2014), since conventional acquisition and 

undersampling strategies have been insufficient. rRAKI for fMRI demonstrate one potential 

approach to maintain conventional acquisition methods, while improving both the quality 

of the reconstruction and the temporal stability necessary for probing of such biological 

systems.

Our study has limitations. Regularization strength in Tikhonov regularized GRAPPA and the 

regularization parameters in ℓ1-SPIRiT were empirically tuned in this study. This included 

both visual assessment, and quantitative metrics such as SSIM and NRMSE when a 

reference image was available. For Tikhonov regularized GRAPPA, a high regularization 

strength suppressed noise amplification but potentially led to visible aliasing leftovers. Thus, 

in this case, we also included the reduction of aliasing artifacts in our visual evaluation 

instead of noise suppression alone. Unlike the fastMRI experiments, quantitative evaluation 

with respect to a reference were not provided for 3T and 7T anatomical imaging, as well 

as SMS fMRI, due to the lack of fully-sampled reference data. In this study, we focused 

on a scan-specific approach, thus the database learning methods were excluded from the 

comparison, For our implementations, hyperparameters of the CNNs were empirically 

adjusted, similar to previous studies on RAKI-type methods (Arefeen et al., 2022; Zhang 

et al., 2018a). Although we only focus on 1D Cartesian undersampling in this study, one 

may perform rRAKI on other uniform sampling patterns, such as 2D PE acceleration in 3D 

Cartesian sampling, by replacing Eq. (1) with a corresponding neighborhood selector.

5. Conclusion

In this study, we proposed a machine learning based k-space reconstruction approach, 

rRAKI, for enhanced image quality and improved interpretability. The efficacy of rRAKI in 

reducing noise and residual artifacts compared to conventional parallel imaging and RAKI 

was shown in both anatomical and functional imaging.
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Fig. 1. 
Schematic of the rRAKI network. The network takes undersampled k-space data from all 

coils as input, and interpolates the k-space of a certain coil. It consists of two branches: 

the linear part G, which provides a linear reconstruction baseline, and the nonlinear 

part F, which achieves nonlinear noise and artifacts removal from G. G can be either a 

single convolution or a linear convolutional network. F is a nonlinear CNN that consists 

of linear convolutions and nonlinear activations. rRAKI network outputs G + F as the 

final reconstruction of the given channel. The outputs from G and F have R -1 channels 

corresponding to R -1 skipped lines between two sampled phase-encoding positions.
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Fig. 2. 
Representative reconstruction results of T2-weighted images from the fastMRI database 

at R = 4, using GRAPPA, Tikhonov-regularized GRAPPA, non-linear GRAPPA, RAKI, 

SPARK and rRAKI. ℓ1-SPIRiT, RAKI, SPARK and rRAKI have reduced noise amplification 

compared to GRAPPA, Tikhonov-regularized GRAPPA and non-linear GRAPPA. ℓ1-SPIRiT 

and SPARK exhibit visual blurring and loss of fine details. RAKI and rRAKI exhibit visibly 

similar image quality, and provide sharper images and improved recovery of fine details 

compared to ℓ1-SPIRiT and SPARK.
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Fig. 3. 
Example results of FLAIR images from fastMRI database at R = 4, reconstructed 

using GRAPPA, Tikhonov-regularized GRAPPA, non-linear GRAPPA, RAKI, SPARK and 

rRAKI. ℓ1-SPIRiT, RAKI, SPARK and rRAKI outperform GRAPPA, Tikhonov-regularized 

GRAPPA and non-linear GRAPPA in terms of noise reduction. Blurring and loss of 

fine details are visible in ℓ1-SPIRiT and SPARK. RAKI and rRAKI demonstrate visibly 

similar image quality, while providing sharper images and improved recovery of fine details 

compared to ℓ1-SPIRiT and SPARK.
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Fig. 4. 
Reconstruction results for a 3T MPRAGE acquisition using GRAPPA, RAKI, and rRAKI, 

for acceleration rates 4 to 6. For display purposes, the G component of rRAKI is filled with 

the acquired lines at the acquired positions, while the F component, which is the residual 

from G, has zeros in the acquired positions. At rate 4, RAKI and rRAKI perform similarly 

to GRAPPA in terms of noise resilience. This difference becomes more pronounced at 

higher rates 5 and 6. As expected, the linear portion (G) of rRAKI matches the image 

quality of GRAPPA. Amplified noise can be observed in G under all tested rates, which 

is subsequently reduced by F. Combined output from rRAKI matches the image quality of 

RAKI.
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Fig. 5. 
Reconstruction results for a 7T MPRAGE acquisition using GRAPPA, RAKI and rRAKI 

for acceleration rates 4 to 6. G and F components of rRAKI are displayed as described in 

Fig. 4. At rate 4, there are no noticeable differences between the three methods. Visible 

noise amplifications are observed in GRAPPA at rates 5 and 6. At these rates, RAKI and 

rRAKI show improved noise resilience compared to GRAPPA. Although the linear part 

(G) of rRAKI suffers from similar noise amplification to GRAPPA, the non-linear part (F) 

successfully reduces the noise level, leading to an enhanced image quality that matches 

RAKI.
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Fig. 6. 
Reconstruction results from simulated SMS/MB = 16 data using RSG, RAKI and rRAKI are 

displayed for 4 representative slices out of 16. Due to the lack of fully sampled ground-truth 

data, the conventional high-quality SMS/MB = 8 reconstructions from RSG are employed 

as a baseline reference. G and F components of rRAKI are displayed as described in Fig. 

4. At SMS/MB = 16, both RAKI and rRAKI show noticeable improvements compared to 

RSG, including lower noise and fewer reconstruction artifacts. However, RAKI suffers from 

visible blurring, which is ameliorated using rRAKI.
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Fig. 7. 
TSNR maps corresponding to the slices in Fig. 5. RSG results at SMS/MB = 8 are used 

as baseline reference. At SMS/MB = 16, RAKI and rRAKI show higher TSNR values 

compared to RSG. However, RAKI leads to a homogeneous TSNR map, with values greater 

than the SMS/MB = 8 reference, indicating a risk of losing temporal dynamics. rRAKI 

outperforms RAKI by preserving more structural information in its TSNR map, while 

showing anatomically similar albeit lower TSNR values to the SMS/MB = 8 reference.
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