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ABSTRACT Objective: Colorectal cancer (CRC) patients respond differently to treatments and are sub-
classified by different approaches. We evaluated a deep learning model, which adopted endoscopic knowl-
edge learnt from Al-doscopist, to characterise CRC patients by histopathological features. Results: Data of
461 patients were collected from TCGA-COAD database. The proposed framework was able to 1) differ-
entiate tumour from normal tissues with an Area Under Receiver Operating Characteristic curve (AUROC)
of 0.97; 2) identify certain gene mutations (MYH9, TP53) with an AUROC > 0.75; 3) classify CMS2 and
CMS4 better than the other subtypes; and 4) demonstrate the generalizability of predicting KRAS mutants in
an external cohort. Conclusions: Artificial intelligent can be used for on-site patient classification. Although
KRAS mutants were commonly associated with therapeutic resistance and poor prognosis, subjects with
predicted KRAS mutants in this study have a higher survival rate in 30 months after diagnoses.

INDEX TERMS Al-doscopist, medical device, deep learning, tumour heterogeneity, precision medicine..

IMPACT STATEMENT In external validation, subjects identified with KRAS mutants by an artificial intelli-
gent system trained by both endoscopy and histopathology features have a higher survival rate in 30 months

after diagnoses.

I. INTRODUCTION

Colorectal cancer (CRC) remains to be one of thecommon-
est cancers worldwide [1]. An Al-doscopist (a.k.a. Artificial
Intelligent Endoscopist) can facilitate endoscopists to im-
prove polyp detection rate during colonoscopy (please re-
fer to Supplementary Materials, Fig. S1) [2]. Nevertheless,
this artificial intelligent (AI) system did not perform well
in characterizing the polyp subtypes at present. As shown
in Fig. 1, suspicious tissues have to be resect for subtype
classification in order to determine an appropriate therapy
and follow up plan [3], [4]. On the other hand, histopathol-
ogy features have been used for tumour stratification. Deep

learning has also been used to classify histopathology im-
ages of breast cancer [5], lung cancer [6], and pan-cancer
[71-19], as well as to classify Consensus Molecular Subtypes
(CMS) and predict prognosis of CRC patients [10], [11]. Nev-
ertheless, to our best knowledge, no study has investigated
a deep learning model that utilizes information from both
endoscopy and histopathology, which is the current clinical
practice.

In this study, we adopted the endoscopic knowledge
of Al-doscopist to further build a deep learning frame-
work that consists of several models with the same back-
bone network. The new framework was designed for
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FIGURE 1. An illustration of the usage of the intra-operative system in future. Biopsy is currently needed for diagnosing colorectal cancer. Nevertheless,
the accuracy of the diagnosis depends on the skills and experience of the clinicians in selecting the site of biopsy, as well as the experience and
knowledge of the pathologists in preparing the tissue and determining the cancer subtype. Although next generation sequencing is a useful tool for
obtaining the gene mutation spectrum, it is relatively expensive and not always available, especially in low-resource clinical settings. To tackle the above
issues, a computer-aided system is designed to assist clinicians to screen the histopathology images, predict gene mutations of CRC and classify the

subtypes of CRC.

1) differentiating CRC tissue from normal tissue; 2) iden-
tifying suspicious regions with commonly known mutated
genes of CRC; and 3) classifying the subtypes of CRC. We
trained these models to learn histopathologic features from
The Cancer Genome Atlas-Colon Adenocarcinoma (TCGA-
COAD) public database and verified their performance on
both public and private databases. Regarding the last sub-task,
CMS, which is a robust CRC classification standard derived
from gene expression data [12], was used as the reference
in this study. In brief, the four CMS and their corresponding
distinct features are as follows: CMS1) Microsatellite Insta-
bility Immune (14%) - hypermutated, microsatellite unsta-
ble and strong immune activation; CMS2) Canonical (37%)
- epithelial, marked WNT and MYC signalling activation;
CMS3) Metabolic (13%) - epithelial and evident metabolic
dysregulation; and CMS4) Mesenchymal (23%) - promi-
nent transforming growth factor—f activation, stromal inva-
sion and angiogenesis. Samples with mixed features (13%)
possibly represent a transition phenotype or intratumoural
heterogeneity.

Il. RESULTS

We evaluated the deep learning models on a Nvidia GTX
1080Ti device. The resolution of the input image tiles was
fixed to 512 x 512. The image tiles were processed at around
26 to 30 frames per second (fps). Considering that at 5.0
magnification ratio, each slide has 94 tiles on average, the
proposed models were capable of classifying tissue types for
one slide within one minute, which is adequate for screening
flash-frozen slide resected and prepared during surgical opera-
tion. Fig. 2 illustrates the typical outputs of the three sub-tasks
from our model.

A. BINARY CLASSIFICATION OF PRIMARY TUMOUR FROM
SOLID TISSUE NORMAL IN EACH TILE AND SLIDE

Fig. 3 presents the Area Under Receiver Operating Charac-
teristic curves (AUROC) of the model for classifying primary
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tumour (PT) from solid tissue normal (STN) in the valida-
tion and testing datasets. When evaluated on the validation
dataset, the performance of each sub-classifier varied from
0.88 t0 0.97. When evaluated tile-by-tile on the testing dataset,
the ensemble model yields an AUROC of 0.97 (95% confi-
dence interval [Clgsg,], 0.93-0.99). Furthermore, the ensem-
ble model can correctly identify 127 out of 131 PT slides (sen-
sitivity = 0.969) and 19 out of 20 STN slides (specificity =
0.950).

B. IDENTIFICATION OF SELECTED GENE MUTATIONS IN
EACH TILE

Fig. 4 shows the AUROC of the identification of gene mu-
tations. The AUROCs of all 13 selected genes were above
0.64. At 5.0 magnification ratio (MR), the top 3 mutated
genes those can be most accurately identified were MYH9
with AUROC of 0.785 (Clyse, 0.776-0.800), NIN with AU-
ROC of 0.739 (Closg, 0.727-0.745) and TP53 with AU-
ROC of 0.735 (Clgsg, 0.726-0.746). On the other hand,
when the MR were increased to 20.0, MTOR with AU-
ROC of 0.791 (Clgsg, 0.785-0.811), MYH9 with AUROC
of 0.786 (Closg, 0.778-0.798) and TP53 with AUROC of
0.741 (Closg, 0.735-0.748) were the top 3 genes whose
mutation can be most accurately identified. Furthermore, as
shown in Fig. 4(b), mutation in the APC and TP53 genes
can be identified with a sensitivity of over 90% when oper-
ated at a specificity of 30%. The findings were further con-
firmed by the results trained and tested on images with a
20.0 MR.

C. CLASSIFICATION OF THE CONSENSUS MOLECULAR
SUBTYPES IN EACH TILE AND SLIDE.

The results of the tile-based and slide-based classification of
the CMS at 5.0 and 20.0 MR was illustrated as the confu-
sion matrices in Fig. S2(a)—(d). CMS2 were classified with a
sensitivity and specificity of (0.591, 0.730) and (0.727, 0.646)
for slides at 5.0 and 20.0 MR, respectively. The sensitivity of
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(a) Original Slides (b) PT/STN Classification (c) Gene Mutation Predictions (d) CMS Classification

Primary Tumor APC, FAT4, KRAS, MTOR CMS3
. Primary Tumor APC MTOR TP53 . CMS1 . CMS3
Normal Tissue FAT4 . KRAS CMS2 CMS4

FIGURE 2. Two typical examples of the proposed model in performing the three sub-tasks in this study. Histopathology tiles at 5.0 magnification ratio
were used as inputs to the model and the output from each sub-task were overlaid on the (a) Original slide. (b) Each tile was independently marked as
either primary tumor or normal tissue. A majority voting of all tiles was used to determine the decision for each slide. (c) The mutation of each selected
gene was determined for each tile. Respect to the groundtruth, only specific mutated genes’ heatmaps were displayed for each slide. (d) A CMS was
determined for each tile and the majority voting of all tiles was used to determine the decision for each slide. In some slides, the intratumoural
heterogeneity can be clearly observed.
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FIGURE 3. The tile-based performance of the binary classification of primary tumor from solid tissue normal by ensemble learning. (a) The mean and
standard deviation of the area under receiver operating characteristic (AUROC) curves of each sub-classifier evaluated on the validation dataset for
different epochs. (b) The ROC curve of the ensemble model evaluated on the testing dataset.

classifying CMS1 and CMS4 were less than 0.5 using slides D. INDEPENDENT VALIDATION ON KRAS MUTANTS FOR

at 5.0 and 20.0 MR. CMS3 was the most difficult class to AN EXTERNAL COHORT IN EACH TILE AND SLIDE

identify. Fig. S2(e) shows the Sankey diagram, which indi- The models were further evaluated on independent CRC co-
cates the portion of slides that the Al-classifier mapped to the  horts comprising formalin-fixed paraffin embedding (FFPE)
RF-classifier on 5.0 magnified slides. slides (n = 40) from Prince of Wales Hospital. Those slides
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FIGURE 4. The AUROC curves for the identification of the mutations in 13 selected genes from the tiles of the histopathology images with (a)-(b) 5.0 and
(c)-(d) 20.0 magnification ratios. MYH9 and TP53 were the two genes that can be consistently identified in images of both 5.0 and 20.0 MR. The ROC
curves further demonstrated that the identification can be operated at a relatively high sensitivity (>90%) for a specificity of 30%.
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FIGURE 5. Survival curves for KRAS-wild type and KRAS-mutant patients divided into two groups using (a) sequencing data as reference, and (b) the

prediction of KRAS gene mutations of the proposed model.

were confirmed as tumour samples and sequenced for KRAS
mutations. One slide was excluded for KRAS mutation identi-
fication because of insufficient tissue for obtaining the ground
truth label for sequencing. Predictions were made indepen-
dently on a total of 1,493 tiles at the 5.0 MR. A final deci-
sion was made for each slide and compared with the result
obtained from the sequencing method. The ensemble model
classified 39 out of 40 tumour slides (sensitivity = 0.975) at
5.0 MR. KRAS mutations were identified with AUROC of
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0.594 (Clgs9,, 0.568-0.619) and 0.606 (Closq,, 0.582-0.631) at
5.0 and 20.0 MR, respectively. On slide level, 13 out of 17
slides (sensitivity = 0.765) with KRAS mutants were identi-
fied and 13 out of 22 slides (specificity = 0.591) with KRAS
wild types were detected. Representative tiles were selected as
shown in Supplementary Materials, Fig. S3 to indicate the dif-
ference between KRAS mutants and wild types. Furthermore,
Since the subjects were approximately diagnosed on the same
date, the Kaplan-Meier curves shown in Fig. 5 were plotted
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to indicate the fraction of patients who survive after 1% Jan.
2019 in each subgroup of subjects.

I1l. DISCUSSION

Al has gained substantial interests in the healthcare domain,
including using deep learning to associate the histopathol-
ogy features with genomic, transcriptomic and biomarkers for
multiple cancer types. Our study contributed uniquely in the
following aspects: 1) we proposed a unique, unified frame-
work to perform three sub-tasks related to gene mutation iden-
tification and subtyping of CRC, using pre-trained weights
from Al-doscopist, i.e., deep features that learnt to localize
colorectal polyps in endoscopy videos [2]. 2) The proposed
deep learning model was able to differentiate tumour versus
normal tissue with high accuracy (0.97 AUC) in real-time,
which is potentially beneficial to screening histopathology
slides during surgical operation. 3) The correlation between
phenotype and genotype of CRC were confirmed and spa-
tially visualized by activation map generated by our model,
and histopathology features are associated with certain gene
alterations, i.e., APC, MTOR, MYH9, NIN, and TP53 (please
refer to examples in the Supplementary Table S-I). 4) The
external validation of our model on an independent cohort
demonstrated the feasibility and generalizability of our model
applied in real clinical practice. Ultimately, the model can be
integrated with a microscopic system for cancer subtyping and
identification of gene mutations in real-time. For example, by
providing instance therapeutic advice to clinicians regarding
the site of biopsy, whether a resection margin is clear, and/or
whether certain type of targeted therapy should be avoided.

Our results indicate that using the proposed framework, PT
can be differentiated from STN with both the sensitivity and
specificity of >95%, either at the tile or slide levels on TCGA-
COAD database. Similarly, our model achieved a sensitivity
of 0.974 in identifying tumour slides on external cohorts in
the same settings as those on public database. Certain gene
mutations (MYH9 and TP53) can be identified consistently
in the tiles with AUROC close to 0.8, either on tiles with 5.0
or 20.0 MR. KRAS mutations can be identified with AUROC
around 0.66 on public database and around 0.6 on collected
database. Nevertheless, around 50% of the CMS outputted by
the Al-classifier were different from that of the RF-classifier.
CMS2 was the subtype that agreed most between the Al-
classifier and the RF-classifier, with a sensitivity and speci-
ficity of 0.727 and 0.646, respectively.

Our study showed that even trained with a weak label, i.e.,
all tiles in a slide were labelled with the same set of gene muta-
tions, mutations for a selected panel of genes can still be iden-
tified with promising accuracy. Seven genes (CHD4, MTOR,
MYHO9, NIN, PIK3CA, TP53, ROS1) can be identified from
histopathology images at both 5.0 and 20.0 MR for an AU-
ROC of over 0.7. Our results indicated that increasing the
inspection of histopathology slides from 5.0 to 20.0 MR did
not significantly improve the identification accuracy of gene
mutations on average. Rather, there were only specific genes
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(APC, MTOR) benefited from circumstantial histopathology
features. In the independent cohort, our model demonstrated
good performance on tissue differentiation and a moderate
drop (0.06) on KRAS mutations identification, which possibly
owed to several factors: 1) slides are acquired in a hetero-
geneous way, including scanner modalities, slide preparation
processes etc; 2) we trained our model on flash-frozen slides
yet validated on FFPE slides; 3) the representation complexity
of phenotype among different cohorts may varies extensively.
Overall, the study showed promising results to be adopted in
real clinical settings. Amongst the different gene mutations
being studied, patients with KRAS mutants are resistant to
anti-EGFR therapy. TP53 is a gene that is related to the acti-
vation of cellular stress and exerts multiple, anti-proliferative
functions. TP53 controls genes that involve in cell-cycle in-
hibition, apoptosis, maintaining genetic stability, and inhibit
blood-vessel formation [13]. Mutation in TP53 is also found
in other types of cancer, such as breast cancer, bone and
soft tissue sarcomas, brain tumours adrenocortical carcinomas
(ADC), pancreatic adenocarcinoma, and prostate cancer [14]—
[17]. Patients with a TP53-mutated breast cancer were found
to have a poor prognosis in certain type of treatment [18].
On the other hand, MYH9 encodes the 224-kD nonmuscle
myosin heavy chain IIA (MYHIIA) polypeptide, which is
present in platelets, monocytes and granulocytes for functions
such as cytokinesis, cell motility and maintenance of cell
shape [19]. MYH9 is more commonly studied in nondiabetic
end-stage renal disease [20] and also found in some types of
breast cancer [21]. The Supplementary Table S-1I summarizes
the major current understanding of the 13 selected genes in
other types of cancers and diseases. The identification ac-
curacy of gene mutations from histopathology images were
comparable to those for non-small cell lung cancer [6] and
better than other study for CRC [9], which shared some com-
mon gene mutations such as KRAS and TP53. The proposed
deep learning model can generate the activation map (also
known as heatmap) for the visualization of certain gene alter-
ations, which links the genomic and molecular traits to spe-
cific histopathological features. On the other hand, as shown
in Fig. 4(b) and (d), Point A illustrates an operating point
when the model can be used to accurately identify regions
with gene mutations of MYH9 and TP53, while Point B is
an operating point that can confirm regions without mutation
of genes such as MTOR, MYH9, and NIN. This can be ben-
eficial to tailored treatment plans for the patients instead of
performing molecular profiling by transcriptomic sequencing.

Molecular stratification of cancer based on histopathologi-
cal features has not been fully explored. A recent study [10] at-
tempted to classify CMS of CRC from hematoxylin and eosin-
stained slides by deep learning. By training on the FOCUS
dataset, a system named imCMS was built to classify CMS
with an average AUROC of 0.84 on the TCGA database [10].
The CMS labels were derived from a random forest (RF)-
classifier that learnt from a genetic spectrum of 20 thousand
mutated genes [22]. Our Al-classifier was designed to learn
13 selected gene mutations and classify the CMS based on the
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FIGURE 6. An overview of the study design, where three sub-tasks were conducted by a deep learning model that accepts histopathology imaging tiles
as input. (a) A set of whole slide images for colorectal cancer were downloaded from the TCGA-COAD database and collected from PWH database. The
slides were split into the training, validation and testing datasets. Each slide was split into tiles of two magnification ratios, i.e., 5.0 and 20.0. (b) The first
sub-task aims to differentiate primary tumour from solid tissue normal of each tile by ensemble learning. The decision on a slide was made by the
majority voting of all tiles from that slide. (c) The second sub-task aims to detect whether a subset of genes was mutated in each tile of a slide. (d) The
third sub-task aims to classify a slide into one of the four CMSs. (e) The tiles are extracted by using a series of image processing algorithms to keep the

informative ones.

selected gene mutations. Although analysis across the com-
plete transcriptome and the functional spectrum of the genes
can reduce the disagreement between different classifiers [22],
transcriptomic analysis is considerably expensive and may
not be affordable for most patients. CMS1 was mainly driven
by mutations in genes which were not in our selected gene
list [3]. CMS2, CMS3 and CMS4 were mainly driven by
mutations in APC, KRAS, TP53, SMAD4, and PIK3CA, but
CMS3 and CMS4 involved also other genomic alterations
and cellular process dysregulation. This partly explains why
CMS2 and CMS4 can be identified more readily than the other
two subtypes from the histopathologic features of the TCGA
database.

IV. CONCLUSION

The findings of this study support the application of an ar-
tificial intelligent system for real-time classification of tis-
sue types, as well as the identification of certain gene alter-
ations and CMS from histopathological features. Moreover,
the study elucidates the association between genotype and
phenotype and explores intra-tumour heterogeneity by a spa-
tial visible approach. Although KRAS mutants is commonly
associated with therapeutic resistance and poor prognosis, this
study showed that subjects with predicted KRAS mutants
have a higher survival rate in two and a half years after di-
agnosis.

V. MATERIALS AND METHODS

A. STUDY PROTOCOL

The complete workflow of this study is summarized in Fig. 6.
Whole slide images were downloaded and randomly allocated
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into three datasets for training, validating, and testing the deep
learning model, respectively. Each slide was further split into
tiles at two MRs, i.e., 5.0 and 20.0. Deep learning models were
designed to complete three different tasks: 1) to differentiate
PT from STN of CRC; 2) to predict the mutations of a selected
subset of genes of CRC in whole-slide imaging tiles; and 3) to
perform molecular stratification of CRC, i.e., CMS subtyping.

Based on the current clinical practice in CRC diagnosis,
the proposed framework was designed by transferring the
endoscopic knowledge learnt previously by Al-doscopist to
the histopathological domain for further modelling. In a pilot
study, we implemented several training strategies to verify
the benefits of using endoscopy knowledge as the pre-trained
weights. Compared to using the pre-trained weights from the
ImageNet Challenge, the use of endoscopy knowledge in the
initialisation process can bring about 5% improvement in both
sensitivity and specificity. When combined with other training
strategies, the increment can be further raised to 10%. More-
over, the training process of the redesigned framework was
accelerated by around 30%.

Based on this redesigned framework, in the first sub-task,
ensemble learning was used to tackle the extremely imbalance
number of tumour and normal samples. Seven sub-classifiers,
each having the same architecture adopted from Al-doscopist
[2], were used to classify the tiles on its independent sub-
dataset. The outputs of all sub-classifiers were aggregated, and
a final prediction was major-voted for each tile. The decision
to a slide was made by the majority voting of all informative
tiles within that slide.

Sub-task 2 was designed to predict the gene mutations from
the whole-slide images by multi-instance learning (MTL).
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We excluded those which belong to most frequently mutated
genes in all cancers, such like TTN, MUCI16, and SYNEI
[23], and selected 13 mutated genes as target for identification.
The proposed model was trained and validated on 515 slides
and tested on 171 slides.

Sub-task 3 was designed to perform molecular stratification
of CRC (i.e., CMS subtyping) from histopathological slides.
Since gene mutations were believed to be associated with
CMS subtyping, the weights learnt from sub-task 2 was trans-
ferred as pre-trained weights, i.e., to link up the molecular
traits with the histopathology patterns.

B. ALGORITHM DESCRIPTION

The backbone network and the pre-trained weights used in this
study were adopted from Al-doscopist [2]. In brief, the feature
extractor was modified from ResNet50 [24], which consisted
of 16 residual blocks that were built from three convolu-
tional layers with increasing channel widths. The network was
proven to have good trade-off between speed and accuracy
in colorectal polyp localization and classification tasks [25].
The deep features of Al-doscopist was directly transferred to
train and test the model on histopathology slides. Different
output layers were modified to match the respective desired
outputs of each sub-tasks. For sub-task 1, three convolution
layers and one fully connected layer were added as the head
of model for binary classification. For sub-task 2, the final
output layer was extended to 13 nodes, corresponding to each
selected gene. For sub-task 3, a multi-layer perceptron with
seven fully connected layers and four dropout layers was used
as the classification network.

The model was initialized with the pre-trained weights from
Al-doscopist and fine-tuned by histopathology image tiles for
100 epochs, using the Adam optimization function with a
learning rate of 0.001 and weight decay of 0.0006. Seven sub-
classifiers, each with the same CNN architecture, was trained
on different sub-datasets and their outputs were aggregated.
For sub-task 3, the pre-trained weights from sub-task 2 was
adopted. Histopathology images were only used to train the
final MLP for 100 epochs, using the same conditions afore-
mentioned. The learning process was guided by the validation
process to avoid overfitting.

C. DATASET PREPARATION

Histopathology images and the corresponding clinical infor-
mation and gene mutations were downloaded from TCGA-
COAD online database. Since the system is designed to be
ultimately used by surgeons to characterize specimens during
operations, only the 879 flash-frozen slides from 461 patients
(774 PT and 105 STN slides) were downloaded and used in
the analysis. The slides were split into training, validation, and
testing datasets in ratio of 70:15:15.

Each whole-slide image was split into non-overlapping tiles
of 512 x 512 pixels. To study the effects of the field of view,
two magnification ratios, i.e., 5.0 and 20.0, were selected
for tile extraction. An adaptive thresholding algorithm was
used to binarise the tiles. Tiles with white background area
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TABLE 1. The Number of Slides and Their Corresponding Class Labels and
Subtypes Collected From TCGA-COAD Database

Class®  Subtype Training  Validation Testing Total
CMS1 88 23 24 135

CMS2 177 39 44 260

PT CMS3 57 16 16 89
CMs4 120 30 25 175

NOLBL 73 20 22 115

STN 73 12 20 105
Total 588 140 151 879

4PT = primary tumour; STN = solid tissue normal; CMS = consensus molecular
subtypes; NOLBL = no labels.

over 70% were excluded. Then, the variance of the tiles was
estimated to exclude the outliers. The tiles were used to train
each sub-classifier for sub-task 1. PT tiles were used to train
the model in sub-task 2 and the CMS labels were used to train
the model in sub-task 3.

For the first sub-task, each slide was labelled as one single
class, i.e., PT or STN. Each tile was assigned the same label
as the slide, i.e., a weakly supervised learning approach was
adopted. Similarly, for the second sub-task, all PT slides of
the same subject were labelled with the same set of gene mu-
tations. Different from the sequencing method, where usually
only a part of the tissue was being sampled, the proposed
model made predictions on gene mutations independently for
each tile of each slide. Therefore, the heatmaps generated by
the model did not only take into account possible gene muta-
tions in the cancerous tissues, but could also show the condi-
tions for the tissues around the tumour cells. Although there
were over 10,000 gene mutation information for each subject
in the TCGA-COAD database, only 53 gene mutations that
were found in more than 10% of all TCGA-COAD cases and
have the representative association between phenotype and
genotype were selected for preliminary evaluation. Amongst
the 53 mutated genes, 13 genes which can be predicted with
higher accuracy (i.e., AUROC > 0.6) using a preliminary
model were further chosen for learning and testing. For the
third sub-task, CMS labels which were obtained by a random-
forest (RF) machine learning algorithm based on genomic
spectrum were used [12], [22]. Tables 1 and 2 provide the
details of the slides and tiles used in this study.

To assess the generalizability of proposed models, 40 FFPE
tumour slides from an independent CRC patient cohort were
collected from our Hospital, Prince of Wales Hospital (PWH),
Hong Kong SAR. Consents were waived for deceased pa-
tients and the study protocol has been approved by the Joint
CUHK-NTEC Clinical Research Ethics Committee (CREC
No. 2019.511). For each slide, tiles were extracted into 512 x
512 resolution at both 5.0 and 20.0 MR as aforementioned.
External validation was conducted for tissue classification and
KRAS identification. KRAS was selected as external valida-
tion biomarkers because patients with KRAS mutants impair
response to anti-epidermal growth factor receptor (EGFR)
antibody therapy[26].
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TABLE 2. The Number of Tiles for Different Datasets Used in Subtask 1

Ensemble Magnification Training Validation Testing
Net0 5.0 11,130 2,493 2,904
20.0 155,703 33,321 41,797

Netl 5.0 9,982 2,884 2,476
20.0 142,363 40,520 35,002

Net2 5.0 10,838 1,603 2,141
20.0 154,815 22,731 30,198

Net3 5.0 8,854 1,889 3,062
20.0 123,933 26,456 44,440

Netd 5.0 9,764 1,472 2,268
20.0 140,916 21,301 33,036

Nets 5.0 8,170 812 3,204
20.0 115,270 11,848 45,999

5.0 12,460 933 4,176

Net6 20.0 174,814 11,988 56,643

D. EVALUATION METRICS

For sub-tasks 1 and 2, the prediction generated by the model
represented the probability belonging to one class. For sub-
task 3, the output from the model was the class number
directly owing to the last softmax function. The evaluation
metrics were derived from true positive (TP), false positive
(FP), true negative (TN) and false negative (FN). Three clas-
sification metrics, such as sensitivity, specificity and precision
were calculated as follows:

e Sensitivity represents the positive prediction out of all
TPs, which is also called as True Positive Rate (TPR).
Sensitivity = TP / (TP 4 FN).

e Specificity represents the negative prediction out of all
TNs, which equals to 1 — False Positive Rate (FPR).
Specificity = TN / (FP + TN).

e Precision stands for the proportion of TP out of all posi-
tive predictions. Precision = TP / (TP + FP).

The ROC curve was plotted and the AUROC was calculated
to assess the qualitative and quantitative performance of the
models. For sub-task 3, the confusion matrix was presented
for multi-class classification.
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