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Abstract: Leptin is a principal adipose-derived hormone mostly implicated in the regulation of
energy balance through the activation of anorexigenic neuronal pathways. Comprehensive studies
have established that the maintenance of certain concentrations of circulating leptin is essential to
avoid an imbalance in nutrient intake. Indeed, genetic modifications of the leptin/leptin receptor
axis and the obesogenic environment may induce changes in leptin levels or action in a manner that
accelerates metabolic dysfunctions, resulting in a hyperphagic status and adipose tissue expansion.
As a result, a vicious cycle begins wherein hyperleptinaemia and leptin resistance occur, in turn
leading to increased food intake and fat enlargement, which is followed by leptin overproduction. In
addition, in the context of obesity, a defective thermoregulatory response is associated with impaired
leptin signalling overall within the ventromedial nucleus of the hypothalamus. These recent findings
highlight the role of leptin in the regulation of adaptive thermogenesis, thus suggesting leptin to
be potentially considered as a new thermolipokine. This review provides new insight into the link
between obesity, hyperleptinaemia, leptin resistance and leptin deficiency, focusing on the ability
to restore leptin sensitiveness by way of enhanced thermogenic responses and highlighting novel
anti-obesity therapeutic strategies.

Keywords: leptin; thermogenesis; obesity; leptin-resistance; adiposity; hyperleptinaemia; brown
adipose tissue

1. Introduction

Obesity is considered a chronic medical condition whose pathogenesis has a multifac-
torial origin. Environment factors, feeding habits, nutrient quality, psychosocial variables
and genetic background altogether are known to cooperate in the onset of adiposity and
related metabolic disturbances [1,2]. When an imbalance between energy consumption and
disposal occurs, adipose tissues lose their ability to reservoir fatty acids, thus promoting
lipid spillover into ectopic organs. To avoid these unfavourable metabolic consequences,
a plethora of endocrine hormones are normally released to preserve energy homeostasis.
Among these factors, leptin represents the main adipocytokine able to generate healthy
metabolic processes principally via neuronal circuits. Leptin acts as an energy-level sig-
naller whose secretion is reduced in a fasting state and increased after nutrient intake.
In particular, leptin stimulates several hypothalamic nuclei, thus promoting satiety and
body weight reduction [3]. Therefore, a lack of leptin release or impaired leptin signalling
leads to overnutrition, energy expenditure (EE) reduction and the development of an
obesogenic phenotype and other chronic diseases [4]. Similarly, under energy overload, the
organism accumulates lipid excess in the adipose tissue, resulting in fat enlargement and
hyperleptinaemia. Indeed, circulating levels of leptin are proportional to the adipose tissue
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mass [5] and, thus, the enhanced secretion of leptin might be a consequence of obesity.
Long-term exposure to leptin overload, however, can also result in a still ill-defined state
of ‘leptin resistance’ wherein abnormal leptin receptor (LEPR) activity is observed. In this
scenario, leptin-dependent anorexic effects are lacking in the presence of persistent leptin
stimulation due to the existence of a potent feedback mechanism that relies on the induced
suppression of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase (PTP1B)
expression, resulting in a blocked leptin signalling cascade [6].

Accordingly, a vicious cycle begins, since the failure of leptin signalling induced
by hyperleptinaemia reduces the satiety control, thus favouring overfeeding, which, in
turn, increases leptin secretion. Nevertheless, not all obesity conditions are the result of
LEPR dysfunctions. Current evidence has revealed several genetic determinants, such as
single-nucleotide polymorphisms (SNPs), which affect leptin gene expression and whose
incidence increases the risk of developing overweight and obese conditions.

Beyond regulating feeding behaviours and catabolic responses through its neuroen-
docrine activities, leptin has been recently considered a ‘thermolipokine’ since it appears
to support both thermogenic and browning responses. In particular, leptin may promote
brown adipose tissue (BAT) activity, sustaining a heat balance via central mechanisms [7–10].
Although some in vivo and in vitro studies have established the autocrine effects of leptin
on adipose tissue biology (i.e., adipogenesis, lipogenesis) [11–13], few to date have verified
the direct action of this hormone on BAT functions.

In accordance with the pleiotropic actions of leptin, emerging studies have evaluated
the efficacy of leptin-based and LEPR antagonist therapy as anti-obesity approaches in
the setting of both leptin sensitivity and resistance states. Herein, we will discuss current
knowledge regarding the emerging thermogenic role of leptin and related mechanisms in
an obesogenic environment, as well as the effects of potentiating leptin signalling as an
anti-adiposity strategy.

2. Genetics of Leptin

The human leptin gene (LEP) is localised on the 7alpha31.3 chromosome and is
structured by three exons and two introns [14]. LEP encodes a peptide hormone consisting
of 167 residues, which is primarily secreted by the adipose tissue into the bloodstream.
Leptin reaches several brainstem areas, including the hypothalamus (i.e., arcuate nucleus),
supporting glucose and energy balance control through the activation of LEPRs [15].

Nevertheless, the expression and secretion of leptin might be impaired under spe-
cific genetic backgrounds, thus promoting the onset of adiposity and related metabolic
disturbances. Approximately 5% of cases of severe early-onset obesity are attributable to
monogenic forms, which particularly affect both LEP and LEPR [16,17], whose diagnosis
and identification are essential to improving care management. Currently, only eight
different mutations in LEP that are thought to cause severe obesity have been reported [18].

In the last few decades, an increasing body of evidence has documented higher preva-
lence rates of common obesity, which may be due to an interplay between environmental
determinants (i.e., dietary habits, sedentary lifestyle, socioeconomic conditions) and indi-
vidual genetic predisposition [19]. In particular, genome-wide association studies have
investigated the influence of specific genetic loci in the pathophysiology of obesity, identi-
fying different LEP and LEPR polymorphisms and measuring their impacts on adiposity
development (Figure 1) [20]. For instance, findings concerning the LEP G2548A gene
variant include several controversial results. LEP G2548A polymorphism is known to
affect the expression of leptin, particularly at the transcriptional level, thus determining
modifications of its adipose secretion [21]. The presence of allele G was found to be asso-
ciated with body mass index (BMI) and serum leptin, regardless of ethnicity [22–24] or
sex [25,26], even though recent advances reported that obesity status and female sex might
exert modifying effects on polymorphism-related leptin concentrations [27]. In accordance,
when the frequency of allele G of LEP was correlated with anthropometric and metabolic
parameters (e.g., BMI, waist and hip circumference, fasting blood glucose, serum leptin), a
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greater risk for obesity in both female children and adolescents was noted [25], suggesting
that this variant might influence one’s susceptibility to metabolic disturbances and obesity
already early on in life. Conversely, 2548-AA or AG carriers have significantly higher
circulating leptin levels as compared with 2548-GG carriers, as observed in both Turkish
and French populations [28,29]. More recent results from a meta-analysis performed on
1372 obese individuals (BMI > 30 kg/m2) and 1616 controls, however, concluded that an
association between obesity and LEP G2548A polymorphism did not exist [30].
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LEP G2548A is not the only variant implicated in the development of obesity and related
metabolic derangements. Indeed, a recent genotyping analysis discovered a novel SNP
within 3’UTR of the LEP gene. Nesrine et al. observed that LEP 11761556 AC polymorphism
was linked to higher leptin levels and a greater risk of developing obesity as compared with
the AA genotype in Tunisian volunteers [31]. Given these studies, there is a paucity of
homogeneity among genotyping data suggesting that both ethnic differences and sample
size may affect the correlation results between LEP variants and obesity-related parameters.

In this scenario, the aberrant expression of LEPR also has a crucial role in the onset
of both rare and common forms of obesity. The human LEPR gene encodes a single
membrane-spanning receptor of the class I cytokine receptor family that consists of two
splice variants whose long isoform is known to regulate leptin signalling, facilitating energy
and feeding control [32,33]. When the expression of LEPR was truncated, both humans
and mice developed hyperphagia and an obese phenotype [34,35]. Similarly, the presence
of certain SNPs within LEPR, especially in the gene region coding regulatory and receptor-
activation domains (e.g., rs8179183 and rs8179183) (Figure 1) [36], has been associated
with both overweight and severe obesity [20]. Moreover, emerging data from genome-
wide association studies revealed that several genetic variants of LEPR were associated
with obesity development. In particular, Foucan et al. explored the effects of the K109R,
Q223R and K656N variants of LEPR, highlighting a strong association between obesity,
metabolic syndrome and serum leptin concentrations in the Afro-Caribbean population of
Guadeloupe Island [37]. Nevertheless, the phenotypic heterogeneity of obesity caused by
dysregulated LEPR may underestimate the contribution of other variants not completely
known whose allelic frequencies change according to ethnic group [33].
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Despite that genetic investigations have reported the effects of gene allelic variants of
LEP on leptin release, the mechanisms underlying the regulation of its expression are still
poorly investigated. For example, recent in vivo results have demonstrated that defects
in leptin production might also be the result of post-transcriptional alterations (Figure 1).
Particularly, whole-genome sequencing performed in three types of adipocytes (e.g., sub-
cutaneous, visceral, brown) from diet-induced obese (DIO) mice allowed researchers to
identify 68 regulated long-noncoding RNAs (lncRNAs), including Lnc-Leptin, whose
expression increases according to adipogenesis [38] and whose knockdown leads to a
reduction in leptin expression concomitantly with impaired adipocyte commitment as
observed both in vitro and in vivo [38]. Interestingly, this lncRNA did not participate in
the regulation of the basal expression of leptin but instead served as a metabolic sensor to
regulate the expression of LEP upon various energy statuses in adipocytes [38]. Although
several genetic analyses continue to provide evidence regarding the polymorphism that
compromises the LEP/LEPR axis in an obesity setting, there are no comprehensive studies
exploring the effects of SNPs on EE and thermoregulation.

3. Leptin and the Regulation of Thermogenesis

The maintenance of whole-body energy disposal is a tightly regulated process that
involves a plethora of endocrine and neuronal factors, among which leptin represents a
key mediator of the adipose tissue—brain axis [3]. Although the adipose-related metabolic
responses evoked by leptin have been discussed, the understanding of the role of this
adipose-derived hormone in the regulation of the thermogenic activity of BAT to date is
still inadequate. In this regard, few and conflicting results to date have been obtained
through in vivo approaches.

Several studies have ascribed an indirect thermogenic activity of leptin through
the activation of the hypothalamic nuclei, where LEPRs are mainly expressed. When
leptin was administered in vivo into both the dorsomedial [39] and ventromedial hy-
pothalamus [40], increases in the body temperature and BAT activity were observed,
along with the stimulation of LEPR in the same brain areas [41]. These effects, however,
appeared to occur largely together with the release of catecholamines since both the sympa-
thetic denervation of BAT [40] and β3-receptor antagonists [41] inhibited the leptin-related
thermogenic responses.

Leptin-sensing neurons involved in the regulation of energy dissipation were also
identified within the hypothalamic arcuate nuclei (ARCs). Indeed, the ablation of leptin
signalling in ARCs produced blunted thermogenic responses and BAT activation [42].
However, when LEPR was in vivo abrogated in proopiomelanocortin (POMC) neurons of
ARCs, which are well-known to foster fullness and satiety responses, mice developed mild
obesity, hyperleptinaemia and glucose intolerance without changes in food consumption
or EE [43–48].

The regulation of heat production by leptin could also be mediated via paraventricular
nuclei (PVN) [49]. Indeed, an in vivo study observed that mice with genetic abrogation of
LEPR from PVN had decreased core body temperatures and levels of EE when housed at
room temperature and lacked cold-induced adaptive thermogenesis in association with
weakened expression and activity of uncoupling protein 1 (UCP-1) in BAT [10].

In this scenario, leptin may favour a heat balance by regulating the plasticity of the
sympathetic architecture of the adipose tissue. Wang et al. recently reported that, following
exposure to chronic leptin treatment, obese mice with leptin resistance showed a restored
sympathetic innervation in both white adipose tissue (WAT) and BAT via brain-derived
neurotrophic factor neurons of PVN, which are also known to regulate EE [49]. Indeed,
leptin-induced activation of brain-derived neurotrophic factor networks in mice facilitated
an increased density of postganglionic sympathetic neurons, innervating fat tissue and
ultimately helping to restore thermoregulation and lipid turnover in terms of increased
protein and mRNA levels of UCP-1 in BAT and lipolysis in WAT as compared with in-
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control littermates [49]. The results of these studies confirm the important role of central
leptin signalling in the regulation of body temperature homeostasis.

Nevertheless, while several data obtained on thermogenesis induction in response
to direct injections of leptin into the intracerebroventricular clearly indicate that leptin is
able to induce EE and also sympathetic outflow to BAT [39–41,49], other studies seem to
deny the effect of leptin in the regulation of body temperature. Fischer et al. suggest that
this discrepancy could derive from misleading and erroneous normalisations of EE [50].
They claim that the potential thermoregulatory control ascribed to leptin by in vivo models
(i.e., cold tolerance, BAT activity, neuronal pathways) could result from an inappropriate
interpretation of findings. Specifically, these authors interpreted the results indicating
hypometabolism in the leptin-deficient ob/ob mice were due to a misleading calculation
artefact resulting from expression of EE per gram of body weight and not per intact
organism [50,51]. In this setting, when leptin was administered, mice increased body
temperature probably by a reduction of heat loss through tail vasoconstriction without
showing a thermogenic response in BAT. The authors concluded that the increase of body
temperature observed after prolonged leptin infusion is not a thermogenic response, but
rather a pyrexic increase in body temperature rather without the recruitment of BAT [51].

The browning process of WAT is another way by which the body controls temperature
excursions. This phenomenon consists of the progression of white adipocytes toward a
brown phenotype whose extent is strongly regulated by different neuronal peptides (e.g.,
catecholamine, norepinephrine) [8]. Leptin participates in this scenario by stimulating
sympathetic arborisation and tone [9]. Indeed, leptin stimulates WAT browning via the
activation of PI3K signalling within POMC neurons of ARCs, in turn increasing EE and
leanness [52,53]. In this setting, leptin does not appear to act alone but instead synergis-
tically with insulin. Dodd et al. demonstrated that when leptin and insulin were in vivo
co-infused, an optimal process of central-induced WAT browning was observed [52].

Nevertheless, a negative role of leptin in the regulation of white-to-brown transdif-
ferentiation has recently emerged. This result might be secondary to hypoglycaemia and
hypoinsulinaemia related to a leptin-induced fasting period. In particular, under negative
energy balance, the sympathetic outflow close to adipose tissue changes enough to warrant
energy conservation [54]. Hence, leptin might indirectly participate, determining the degree
of inhibition of both thermogenic and browning processes. The gap in the data regarding
the direct actions of leptin in BAT biology has been filled by recent experimental advances.
Wang et al. observed that in obese mice, leptin promoted a reduction in adipose tissue
weight and directly reduced the lipid droplet size of isolated white adipocytes through
inhibition of the Hedgehog (Hh) pathway, whose activity is known to have anti-browning
effects [55]. In particular, leptin upregulated the expression of browning genes (e.g., PGC-
1α, PDRM16, UCP-1) and increased the mitochondrial DNA content in association with a
reduction in glioma-related gene (Gli) expression, a key effector of the Hh pathway [55].

Taken together, these results provide evidence that the thermogenic capability of leptin
remains elusive, since some studies show that this lipokine could induce the thermogenic
and browning phenomena by rebuilding sympathetic architecture and tone close to the
adipose tissue, while other observation suggest that the thermoregulation by leptin could
be accounted for by indirect effects, such as a pyrexic response.

4. Obesity-Associated Hyperleptinaemia and Leptin Resistance

As described above, obesity is a chronic condition that results from an imbalance
between energy intake and EE and leads to many disabilities and comorbidities, including
hypertension, dyslipidaemia, insulin resistance and inflammation [56,57], which in turn
constitute important risk factors for the development of type 2 diabetes, cardiovascular
diseases and different types of cancer [56,58].

A growing body of evidence has demonstrated that increased adipose tissue mass
contributes directly to an increase in circulating levels of leptin; thus, most common
forms of obesity are characterised by hyperleptinaemia and by leptin resistance, since
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pharmacological doses of leptin are unable to suppress food intake and body weight [59].
However, some authors introduced the concept of ‘selective leptin resistance’ in 2002 to
explain how leptin might increase the blood pressure in obese individuals [60], although the
net effects of hyperleptinaemia on cardiovascular diseases are still not clearly understood.

Two potential overlapping mechanisms of ‘selective leptin resistance’ have been
proposed as follows: (1) differential leptin molecular signalling pathways exist that mediate
selective as opposed to universal leptin action and (2) brain-site-specific leptin action and
resistance occur [61]. Further considerations should be given to the possibility that other
physiologically and clinically significant actions of leptin are also preserved. For example,
in humans, the response of obese subjects to weight loss is fundamentally intact [62],
suggesting that the ‘extra’ leptin in the context of obesity is able to exert relevant biological
effects on other mechanisms besides those involved in the control of feeding.

To date, most data concerning the cellular and molecular mechanisms of obesity-
associated leptin resistance have been obtained in experimental rodent models, including
DIO, genetic models, obesity-prone models, early overfeeding and age-related obesity
animals with hypothalamic lesions. In this context, we will focus briefly on the DIO model,
the most frequent experimental model used to study leptin resistance, since it shares many
characteristics with human obesity, including an attenuated response to the anorexigenic
effect of leptin [59,63]. DIO models are obtained by feeding animals with hypercaloric
diets, but dietary fats alone are insufficient to block the response to leptin, suggesting that
hyperleptinaemia is required for the development of leptin resistance [64], which can be
obtained within 8 days of high-dose leptin treatment [65]. Furthermore, rats chronically
overexpressing central leptin initially responded to leptin gene delivery, then became
leptin-resistant, and, on a high-fat diet, they consumed more energy, gained more weight
and accumulated greater visceral fat mass than controls, suggesting that leptin resistance is
both a consequence and a cause of obesity [66].

Several cellular and molecular mechanisms of leptin resistance have been identified,
and we will describe some of them henceforth (Figure 2). Leptin is transported intact from
the blood to the brain through the blood–brain barrier (BBB) by a specific and saturable
system [67]. Several studies have shown that the consumption of dietary fats induces
the apoptosis of neurons and a reduction of synaptic inputs in the arcuate nucleus and
lateral hypothalamus [68]. In addition, DIO models and New Zealand obese mice exhibit
resistance to peripherally administered leptin, yet were responsive to chronic infusions of
leptin intracerebroventricularly [63,69]. Meanwhile, leptin concentrations in cerebrospinal
fluid were strongly correlated with plasma levels in a nonlinear manner and with BMI,
suggesting that plasma leptin enters human cerebrospinal fluid in proportion to body
adiposity [70]. However, the efficiency of this uptake (measured as the cerebrospinal
fluid: plasma leptin ratio) in lean individuals was 4.3-fold greater than that in obese
individuals [71]. Thus, all the data described above suggest that impaired leptin access to
the brain is responsible for leptin resistance in obesity and further weight gain (Figure 1).

Other molecular mechanisms involved in the onset of leptin resistance involve hy-
pothalamic LEPRs (LepRbs). Specifically, LepRb mRNA and protein downregulation [72],
along with impaired trafficking of LepRb to the plasma membrane in neuronal subpopula-
tions of the hypothalamic nuclei that control energy homeostasis [73,74], have emerged as
novel mechanisms of leptin resistance.

Multiple molecules and proteins are involved in the impairment of LepR signalling
pathways, thus contributing to obesity-associated leptin resistance and hyperleptinaemia.
It is known that SOCS3 is able to block LepRb signalling and, since hyperleptinaemia is
characterised by high hypothalamic SOCS3 levels, it was hypothesised that the upregu-
lation of SOCS3 in leptin-responsive cells is, therefore, a potential mechanism for leptin
resistance, a characteristic feature of human obesity [75]. Studies in mice lacking SOCS3
proteins, specifically in LEPR-expressing cells (LepR SOCS3 knockout (KO)) [76] and in
transgenic mice overexpressing SOCS3 in either POMC or LEPR-expressing neurons at
levels similar to what is observed in DIO models [77], confirmed the key role of SOCS3 in



Int. J. Mol. Sci. 2021, 22, 6445 7 of 20

leptin sensitivity. Leptin action may also be regulated by protein phosphatases, and, to date,
five main phosphatases involved in leptin signalling have been identified: SHP2, PTEN,
PTP1B and the recently implicated TCPTP and RPTP epsilon [78]. With the exception
of SHP2, which promotes leptin signalling by coupling to ERK kinase, all of the other
four phosphatases work by inhibiting leptin signalling, leading to leptin resistance [78].
Furthermore, increased expression of these phosphatases has also been shown to promote
leptin resistance [79]. Recently, another molecular mechanism was suggested for leptin
resistance through the activation of matrix metalloproteinase-2 (Mmp-2) in the hypothala-
mus and subsequent cleavage of the extracellular domain of the LEPR [80]. The deletion
of Mmp-2 allows for the restoration of LEPR expression and the reduction of circulating
leptin concentrations in obese mice [80].

In addition, hypothalamic impairments in terms of inflammation, oxidative stress and
endoplasmic reticulum (ER) stress might contribute to the development of leptin resistance.
It has been demonstrated that the high consumption of sugar and saturated fat induces an
inflammatory response in the hypothalamus, in turn promoting the development of central
leptin resistance and obesity. Specifically, this inflammatory signalling involves changes
in the expression and activity of several proteins, such as Toll-like receptor 4, IκB kinase-
β/nuclear factor-κB, c-Jun N-terminal kinase and SOCS3 and proinflammatory cytokines,
as well as the induction of ER stress and autophagy defects [81]. Furthermore, chronic low-
grade inflammation within the hypothalamus might also represent a possible mechanism
for central leptin resistance not only in obesity but also in polycystic ovarian syndrome,
as seen in murine models [82]. Additionally, the hypothalamus of obese subjects was also
found to be characterised by the presence of oxidative stress, which leads to the depletion
of POMC neurons, and, consequently, to the induction of systemic leptin resistance and
obesity [83]. In addition, ER stress, caused by an excessive accumulation of unfolded
proteins, and able to activate the unfolded proteins response (UPR), may contribute to an
impairment in leptin signalling [84]. Indeed, ER, stress-induced pharmacologically by using
tunicamycin, thapsigargin or brefeldin A was able to block leptin-induced hypothalamic
STAT3 phosphorylation and to augment appetite and body weight gain in mice, whereas
chemical chaperones, 4-phenyl butyric acid and tauroursodeoxycholic acid, which have
the ability to reduce ER stress, acted as leptin-sensitising agents, thus providing the basis
for potential novel treatments of obesity [85–87].

5. Obesity-Associated Leptin Deficiency

Although most forms of human obesity are polygenic and multifactorial, there are
also several rare cases of obesity caused by leptin deficiency [88]. These disturbances can
be completely reversed by leptin administration [89], as described below. It is possible
to distinguish both complete congenital leptin deficiency, defined as a recessive genetic
disorder associated, from severe early-onset obesity heterozygous leptin deficiency, whose
estimated prevalence is only up to 5–6% of total obese individuals. Moreover, mutations
may be related to the LEPR gene or to the LEP gene [88], and the latter is more common
than the former [18] (Figure 2).

In regard to the LEPR gene, Clément et al. described a homozygous mutation in the
human LEPR gene that resulted in a truncated LEPR lacking both the transmembrane and
intracellular domains and, in addition to their early-onset morbid obesity, patients homozy-
gous for this mutation had no pubertal development, with reduced growth hormone and
thyrotropin levels, suggesting that leptin is an important physiological regulator of several
endocrine functions in humans [90]. Additional homozygous frameshift, nonsense and
missense LEPR mutations have been identified in severely obese patients from consan-
guineous families [91,92]. Additionally, other novel LEPR mutations were detected both in
two unrelated girls with severe obesity [93] and in obese children from inbred Pakistani
families, which constitute 3% of the whole cohort of severely obese children [94].

Mutations in the LEP gene might foster nonsense-mediated mRNA decay, defective
leptin secretion, synthesis of inactive leptin or absence of circulating leptin [95–97]. The first
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evidence of congenital leptin deficiency in humans was provided by two severely obese
children who are cousins within a highly consanguineous family of Pakistani origin and
whose serum leptin levels were very low despite their markedly elevated fat mass [95]. In
addition, both subjects showed a homozygous frameshift mutation involving the deletion of
a single guanine nucleotide in codon 133 of the gene for leptin, which resulted in a truncated
protein that was not secreted [95]. Strobel et al. identified a homozygous missense mutation
in the LEP gene in three adults belonging to a family of Turkish origin [98]. To date, many
other mutations have been reported in the LEP gene in consanguineous families [99–102].
For example, Yupanqui-Lozno et al. recently reported a novel homozygous missense
mutation in LEP associated with very low serum leptin concentrations, hyperphagia and
early-onset obesity in two severely obese sisters from Colombia born from consanguineous
parents [103]. The analysis of serum leptin level is a useful test in patients with severe
early-onset obesity, but it is also plausible that mutations in the LEP gene could result in a
bioinactive form of the hormone in the presence of apparently appropriate leptin levels.
Further investigation is therefore needed for this type of analysis.
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As described in detail above, leptin may act to control both energy homeostasis and
thermoregulation and could be one of the mediators that can activate BAT and thermogene-
sis. Therefore, an important question concerns the role of BAT metabolism under conditions
of leptin deficiency. Martins et al. focused on BAT from ob/ob mice demonstrating im-
paired thermogenic signalling (β3-AR, PGC-1α and UCP-1) in association with reduced
expression of fatty acid synthesis–related genes (SREBP1c and FAS), reduced fatty acid
mobilisation–related genes (CD36, FABP4 and perilipin) and reduced fatty acid oxidation
genes (CPT1) [104,105]. In addition, BAT in ob/ob mice was also characterised by altered
insulin signalling (pAKT, TC10 and GLUT4) and gene markers of local inflammation (IL-1β,
IL-6, TNF-α and MCP1) [104,105], suggesting that the lack of substrate for thermogenesis
and local inflammation both negatively regulated thermogenic signalling in ob/ob mice.
In addition, ob/ob mice regained the lost weight, by transient caloric restriction, to the
level of ad libitum controls [106]. They did so by reducing EE, but, unlike wild-type mice,
there was no compensatory relative hyperphagia, suggesting that non leptin-dependent
mechanisms were involved in regulating the body weight of leptin-deficient mice [106].



Int. J. Mol. Sci. 2021, 22, 6445 9 of 20

The clinical phenotypes associated with leptin and LEPR deficiencies are very simi-
lar [91,95,107]. Patients show normal birth weight, then exhibit rapid weight gain in the
first few months of life, up to severe obesity. In addition, body composition measurements
highlighted that these disorders are characterised by the preferential deposition of fat
mass, with excessive amounts of subcutaneous fat present over the trunk and limbs [108].
Children with leptin deficiency also show high rates of infection due to abnormalities in
the number and function of T lymphocytes [101]. In those who survive, obesity continues
into adult life, with hepatic steatosis, hyperinsulinaemia and the development of type 2
diabetes occurring in the third or fourth decade [98,109].

LepRb: leptin receptor; Mmp-2: matrix metalloproteinase-2; PTEN: Phosphatase and
tensin homolog; PTP1B: protein–tyrosine phosphatase 1B; RPTP epsilon: receptor-type
form of protein tyrosine phosphatase epsilon; SHP2: Src homology region 2 domain-
containing phosphatase-2; SOCS3: suppressor of cytokine signalling 3.

6. Pharmacotherapy of Leptin Signalling

As previously discussed, leptin has been recently come to be considered a ‘ther-
molipokine’ because it may support both thermogenic and browning responses. In addi-
tion, activation of BAT in humans is associated with marked improvements in metabolic
parameters since it is an important organ for thermogenesis with the capacity to induce
energy-consuming futile cycles [110]. For these reasons, BAT is emerging as an interesting
and promising target for therapeutic intervention in obesity and metabolic disease, and
leptin-induced thermogenesis could be designed as a new promising strategy to counteract
obesity and related metabolic derangements.

Leptin is known to exert control of body weight and energy homeostasis via central
mechanisms. However, leptin signalling undergoes an impairment under chronic lep-
tin overproduction, as previously described [64]. This condition induces body weight
gain [111] and impaired thermogenesis [112]. Similarly, metabolic failures and obesity fea-
tures have also been observed when leptin deficiency develops in adulthood, highlighting
that the lack of leptin can promote obesity even though its deficiency is not congenital [111].
Therefore, both higher and lower leptin levels represent a metabolically unfavourable
condition, and this adipose-derived hormone could thus exert beneficial effects only when
it acts in a tight physiological range of concentrations.

As previously mentioned, the first consequence of hyperleptinaemia is leptin resis-
tance. In this regard, the prevention and reversion of leptin resistance may represent an
important challenge in the field of obesity treatment; yet, the main results to date are
derived from animal models. Focusing on improvements in metabolism and body weight
and the recovery of leptin sensitivity obtained from in vivo blunted deletion of leptin [111],
Zhao et al. investigated a novel anti-obesity strategy consisting of treatment with human
anti-leptin antibodies (hLep2, hLep3, hLep5). Among these, hLep3 displayed a powerful
weight-lowering efficacy, enhanced glucose tolerance and improved insulin sensitivity
in obese mice (Table 1) [111]. Moreover, following the infusion of hLep3, leptin-resistant
obese mice showed an increase in EE, a reactivation of thermogenic programming in brown
fat (i.e., ↑UCP-1 and PGC-1α) and a reduction in hypothalamic expression of key markers
of inflammation and central leptin resistance (i.e., SOCS3, TNF-α, IL-1β) [111]. Hence,
these results indicate that the re-sensitisation of leptin signalling mediated by neutralising
antibodies has a promising weight-lowering and thermogenic efficacy, thus making it a
potential therapy against leptin-resistant obesity.

Some evidence supports the idea that central leptin resistance develops when leptin
transport efficiency across the BBB is compromised rather than when hypothalamic lep-
tin insensitivity begins (Figure 1) [58,113]. One of the therapeutic approaches favouring
the recovery of BBB functions, whose permeability is compromised under obesity con-
ditions [113], is represented by angiotensin II receptor blockers, whose administration
ameliorates body weight and the metabolic profile [114–116]. Among these, telmisartan
(TEL) was shown to exert favourable metabolic benefits by preventing hypothalamic in-
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flammation [117] and by enhancing leptin transport through the BBB [118], thus restoring
leptin sensitivity [115] and counteracting the development of obesity under excess nutrient
intake [118]. Additionally, TEL is known to evoke several metabolic responses in obese
mice with the improvement of insulin resistance and increased insulin-induced glucose
uptake by adipose tissue (WAT and BAT), as it retains PPAR-δ agonism effects [119] and
sustained nonshivering thermogenesis via sympathetic control (Table 1) [120]. Furthermore,
chronic in vivo exposure to TEL decreased adipogenesis and upregulated the expression of
a key thermogenic mediator (UCP-1) in adipose tissue [119]. The mechanisms by which
TEL induces a thermogenic response are still unclear. We can hypothesise, however, that the
restoration of BBB permeability and leptin uptake from the brain after TEL administration
might favour the recovery of central leptin signalling, resulting in downstream adaptive
thermogenesis. Whether this drug may exert similar metabolic effects in humans has yet
to be demonstrated. Recent clinical research has proved the well-known cardiometabolic
amelioration of TEL-based therapy in obese patients, even though no changes in body
weight occurred [121]. However, after TEL treatment, the adipose tissue responded by
increasing the adiponectin secretion and by reducing leptin release [122]. Therefore, the
use of angiotensin receptor blockers on obesity in a clinical setting could restore central
leptin sensitivity, whose downstream results could enhance BAT activity.

Another hallmark of leptin resistance is low-grade inflammation within the hypotha-
lamus [81]; hence, pharmacological mitigation of these processes could be a new way to
restore leptin sensitiveness. Corroborating results showed that hypothalamus inflamma-
tion is associated with impaired leptin signalling and plasminogen activator inhibitor-1
(PAI-1) expression [123,124], whose activity was recently extended in metabolism reg-
ulation [125,126]. Elevated circulating levels of PAI-1 were found under obesity condi-
tions [127] and also appeared to have a predictive role for metabolic syndrome [127].
Particularly, this factor exacerbates adipose tissue dysfunction, worsening both inflam-
matory and metabolic dysregulation [128]. Hence, in vivo disruption of PAI-1 protects
against obesity in part via enhanced EE [129]. Indeed, increased body weight due to energy
overload was suppressed following the inhibition of PAI-1 by M5441 in association with
an upregulation of thermogenic genes (i.e., UCP-1, DIO-2, CIDEA, PRDM-16) in brown
depots [126] and amelioration of lipid turnover [130]. In this scenario, decreased plasma
leptin levels were observed, suggesting that the metabolic benefits associated with PAI-1
inhibition could be due to the recovery of leptin sensitivity [126]. Obese mice pre-treated
with M5441 responded to leptin infusion with sustained suppression of body weight gain
as compared with untreated mice, which showed a weak leptin sensitiveness (Table 1) [126].
Nowadays, the paucity of human studies considering the anti-obesity effects of PAI-1 an-
tagonism makes clinical application still a distant expectation. Data from in vivo research,
however, allows us to highlight that PAI-1 antagonists might be an effective intervention
to prevent the development of obesity and its sequelae by restoring leptin responsiveness
with improved energy dissipation and thermogenic control.

Notably, the sensitiveness of leptin may also be regulated by indirect mechanisms.
Compelling efforts reported that modifications of the gut microbiota could affect leptin
sensitivity [131]. It is well-known that the contributions of gut microbiota in preserving
healthy metabolism, as well as its alterations, can lead to the development of metabolic
illness [132]. Several studies have discovered that feeding habits and certain natural com-
ponents modify the intestinal microbial profile [133]. Particularly, in a recent study, it
was shown that Panax notoginseng saponins (PNS) modulates the gut microbiota via an
increased abundance of healthy bacterial species (i.e., Akkermansia muciniphila, Parabac-
teroides distasonis) mostly implicated in the regulation of energy homeostasis [7]. Moreover,
PNS-based therapy-induced weight loss, increased EE and enhanced the expression of
BAT thermogenic (i.e., UCP-1, PGC-1α, DIO-2) and browning genes (i.e., UCP-1, PRDM-16,
PGC-1α) in DIO mice [7]. Nevertheless, this compound failed to promote these favourable
metabolic effects in mice with leptin signalling abrogation, revealing that the presence of
leptin resistance might interfere with PNS-based therapy [7]. Accordingly, this finding
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suggests that leptin signalling participates in the regulation of thermogenesis induced
by modifications to the gut microbiota [7]. Indeed, WAT from mice treated with PNS
showed increased phosphorylation of key mediators of a leptin-mediated thermogenic
response (i.e., AMPK-α, STAT3), whose activity is essential for the leptin pathway function
(Table 1) [7,134].

Therefore, lifestyle and dietary modifications could be a promising anti-obesity thera-
peutic to restore leptin signalling, similarly to what has been observed after PNS treatment.
Whether PNS modifies the human gut microbiota and promotes thermogenesis through
the leptin/AMPK-α/STAT3 axis is still unclear. Further investigations should elucidate the
involvement of gut microbiota in leptin signalling control.

7. Pharmacological Treatment of Leptin Deficiency

Some genetic forms of obesity result from complete congenital leptin deficiency or het-
erozygous leptin deficiency [104]. Several data have demonstrated that leptin deficiency is
entirely treatable with daily subcutaneous injections of recombinant human leptin [135,136].
The form of leptin that is available for human therapy is the recombinant methionyl hu-
man leptin (metreleptin), which is composed of 146 amino acids, as in the mature human
leptin, with an additional methionyl residue at the N-terminal end of the recombinant pro-
tein [137]. It has been demonstrated that patients with congenital leptin deficiency treated
with metreleptin showed profound weight loss, increased physical activity, less hunger
and desire to eat, less food intake, greater fullness both before and after meals, and changes
in endocrine function and metabolism, including the resolution of type 2 diabetes mellitus
and hypogonadism. These results highlight the role of the leptin pathway in adults with
key effects on the regulation of body weight, gonadal function behaviour [135]. In regard to
EE, Galgani et al. demonstrated that, before weight loss, subjects with congenital leptin de-
ficiency and control subjects had similar EE profiles, while, after weight loss (approximately
15 kg), control subjects had EE levels lower than expected for their new weight and body
composition, whereas leptin-treated subjects presented EE values that were not different
from the reference population. In addition, before weight loss, fat oxidation was similar
between groups, and, after weight loss, leptin-treated subjects had higher fat oxidation than
both controls and the reference population [136]. Collectively, these data highlighted that,
in congenital leptin-deficient subjects, leptin replacement enhanced energy metabolism by
partially preventing the reductions in metabolic rate and fat oxidation so often observed
during energy restriction. Similar results on leptin replacement-induced weight loss were
obtained in other studies where leptin therapy did not increase EE [101,137]. Of note,
metreleptin also showed metabolic effects (e.g., decrease in triglycerides and increase in
high-density lipoprotein cholesterol [101,109,135]), endocrine effects (i.e., increased white
blood cell count and T-cell responsiveness [101,138]) and neuroimaging changes (i.e., de-
creased activation of regions linked to hunger and increased activation of regions linked to
inhibition and satiety [139]) in humans with congenital leptin deficiency due to mutations
in the LEP gene. In the future, clinical trials will be needed to evaluate whether leptin
therapy may also be effective in individuals with a partial genetic deficiency in leptin [139].

Since leptin shares its signalling pathway with other hormones involved in energy
metabolism regulation, combined therapies might provide significant metabolic improve-
ments. The pancreatic hormone amylin (a short-term satiety signal) is one hormone of
interest [140–142], and, in a rodent model of obesity, the combined administration of
amylin with leptin elicited synergistic effects on body weight and markedly reduced adi-
posity [143]. Clinical evidence to support integrated neurohormonal therapy for obesity
was also obtained in overweight/obese humans where combination treatment with pram-
lintide, an amylin analogue, and metreleptin induced greater weight loss than either agent
alone [144,145].

Recent studies have demonstrated that melatonin receptor type 1 signalling played an
important role in maintaining metabolic homeostasis and was an important modulator of
leptin signalling, while its removal led to leptin and insulin resistance [146]. Specifically, its
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anti-obesity properties were evaluated in ob/ob mice, where the administration of melatonin
induced significant weight loss and reduced adipose tissue inflammation by restoring the
physiological adipokine patterns (i.e., reduced TNF-α, resistin, visfatin) [147]. In addition,
chronic melatonin treatment in rats behaved as an inducer of white fat browning with
thermogenic properties (i.e., increased UCP-1 and PGC-1α), underling the anti-obesity
effect of melatonin as well as its antidiabetic and lipid-lowering properties (Table 1) [148].
Given these promising results, it may be useful to consider the possibility of also using
melatonin in pathological conditions of leptin deficiency.

In addition, it has been demonstrated that treatment with a melanocortin receptor ag-
onist is effective to counteract obesity and related metabolic defects both in leptin-resistant
(e.g., DIO models) and leptin-sensitive (ob/ob) mouse models of obesity, and that its effects
on food intake and body weight are more pronounced in DIO mice than in lean mice [149].
Recently, results from phase III trials support setmelanotide, a specific melanocortin re-
ceptor agonist, for the treatment of severe obesity and hyperphagia caused by POMC or
LepRb deficiency [150]. In this multicentre study, the treatment of setmelanotide was asso-
ciated with significant weight-loss reductions in hunger scores and a good safety profile,
supporting its potential long-term use as a treatment for early-onset severe obesity and
hyperphagia caused by POMC or LEPR deficiency.

Table 1. In vivo and in vitro effects of potential therapeutic strategies of obesity-related hyperleptinaemia and leptin deficiency.

Drugs Species In Vitro In Vivo/Ex Vivo Effects

For Hyperleptinaemia

hLep3 antibodies Mouse -

↑ UCP-1 and PGC-1α mRNA
in WAT and BAT [111]
↓ SOCS3, TNF-α and IL-1β

mRNA in the hypothalamus
[111]

↑ Glucose tolerance [111]
↑ EE [111]

↓ Body weight [111]
↓ Hypothalamus

inflammation [111]
↑ Leptin sensitivity [111]

Telmisartan
Mouse

↑ PPAR-δ signalling
[119]

↓ Adipogenesis [119]
↑ UCP-1 protein in BAT [119]

↑ Leptin sensitivity [115]
↓ Hypothalamus

inflammation [117]
↑ Leptin transport through

the BBB [118]
↓ Body weight [118]
↓ Insulin resistance [120]
↑ Sympathetic nervous

system [120]

Human - - ↑ Cardiac function [121]
↓ Plasma leptin levels [122]

PAI-1 inhibitor M5441 Mouse -
↑ UCP-1, DIO-2, CIDEA and

PRDM-16 mRNA in BAT
[126]

↑ Leptin sensitivity [126]
↓ Plasma leptin levels [126]
↓ Body weight [126]
↑ Lipolysis [130]

Panax notoginseng
saponins Mouse -

↑ UCP-1, PGC-1α and DIO-2
mRNA/protein in BAT [7]
↑ UCP-1, PRDM-16 and

PGC-1α mRNA/protein in
WAT [7]

↑ AMPK-α/STAT3 signalling
in WAT [7]

↑ EE [7]
↓ Body weight [7]



Int. J. Mol. Sci. 2021, 22, 6445 13 of 20

Table 1. Cont.

Drugs Species In Vitro In Vivo/Ex Vivo Effects

For Leptin Deficiency

Metreleptin Human - -

↓ Triglycerides [101]
↑ HDL [101]

↑ T-cell responsiveness [101]
↓ Body weight [135]
↑ Physical activity [135]
↓ Hunger [135]

↑ Fat oxidation [136]
↓ Fall in EE during caloric

restriction [136]

Metreleptin/pramlintide
Mouse - - ↓ Body weight [143]

Human - - ↓ Body weight [144]

Melatonin Mouse -

↓ TNF-α, resistin and visfatin
proteins in adipose tissue

[147]
↑ UCP-1 and PGC-1α
proteins in WAT [148]

↓ Body weight [147]
↓ Adipose tissue

inflammation [147]

Melanocortin receptor
agonists

Mouse - - ↓ Body weight [149]
↓ Food intake [149]

Human - - ↓ Body weight [150]

↑, increase; ↓, decrease; -, not available. Uncoupling protein 1 (UCP-1), peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1α), white adipose tissue (WAT), brown adipose tissue (BAT), suppressor of cytokine signalling 3 (SOCS3), tumour necrosis
factor alpha (TNF-α), interleukin-1beta (IL-1β), type II iodothyronine deiodinase (DIO-2), cell death activator (CIDEA), PR domain–
containing 16 (PRDM16), AMP-activated protein kinase alpha (AMPK-α), signal transducer and activator of transcription 3 (STAT3).

8. Conclusions

Leptin is a pleiotropic peptide hormone produced predominantly by adipocytes,
released into the bloodstream and crucial for the neuroendocrine control of energy home-
ostasis. Obesity might also be associated with hyperleptinaemia, which reflects a state
of leptin resistance involving leptin and molecular pathways downstream of LEPR, or
with leptin deficiency, which might be either complete or heterozygous (Figures 1 and 2).
Impairment of leptin signalling in neuronal populations of hypothalamic nuclei that control
energy balance leads to increased food intake, reduced EE, insulin resistance and adipose
tissue expansion. Indeed, recent studies showed that re-sensitisation of leptin signalling
mediated by neutralising antibodies restores both leptin and insulin sensitivity, promoting
weight lowering and thermogenic activation and thus constituting a promising therapy
against leptin resistance in obesity.

In addition, treatment of perturbations of leptin signalling with LEPR agonists ob-
served in obese patients with leptin deficiency was associated with significant weight loss
and reduction in hunger scores after 1 year of treatment. Strategies aimed at restoring
leptin sensitivity in hypothalamic neurons might represent a hopeful approach for the
treatment of obesity and associated comorbidities.

Lastly, in view of the critical role of leptin in regulating thermogenesis via central
control and the presence of BAT and beige adipocytes also in adult humans, a potential role
of leptin as a possible new thermolipokine could be envisioned. However, the direct effects
of leptin on BAT activity are still poorly explored, even though some reports observed
the capability to induce browning. Nevertheless, based on current evidence, the action of
leptin on thermogenesis appear to occur largely via an indirect central response.

Therefore, in the context of obesity and hyperleptinaemia, a better understanding
of the mechanisms that impair leptin-mediated adaptive thermogenesis may facilitate
the development of drugs able to promote a re-sensitisation of leptin signalling, with the
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ultimate aim of enhancing thermogenesis, favouring body weight reduction resolving
obesity-associated metabolic disorders (Table 1).
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