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Results of a comprehensive simulation study are reported investigating the effects of

sample size, test length, number of attributes and base rate of mastery on item parameter

recovery and classification accuracy of four DCMs (i.e., C-RUM, DINA, DINO, and

LCDMREDUCED). Effects were evaluated using bias and RMSE computed between true

(i.e., generating) parameters and estimated parameters. Effects of simulated factors on

attribute assignment were also evaluated using the percentage of classification accuracy.

More precise estimates of item parameters were obtained with larger sample size and

longer test length. Recovery of item parameters decreased as the number of attributes

increased from three to five but base rate of mastery had a varying effect on the

item recovery. Item parameter and classification accuracy were higher for DINA and

DINO models.

Keywords: diagnostic classification models, cognitive diagnostic models, sample size, item recovery,

classification accuracy

INTRODUCTION

Diagnostic classification models (DCMs), also known as cognitive diagnostic models (CDMs),
can be viewed as restricted versions of general latent class models (Rupp and Templin, 2008).
These models provide one way of classifying respondents into different diagnostic states. They are
computationally intensive and generally require use of iterative algorithms to obtain estimates of
model parameters. Both general and specific DCMs have been proposed in the educational and
psychological measurement literature. Examples of Specific DCMs include deterministic inputs,
noisy “and” gate (DINA; Haertel, 1989; Junker and Sijtsma, 2001), deterministic inputs, noisy “or”
gate (DINO; Templin and Henson, 2006), noisy-input, deterministic “and” gate (NIDA), and the
compensatory reparameterized unified model (C-RUM; Hartz, 2002). General DCMs include the
log-linear cognitive diagnostic model (LCDM; Henson et al., 2009), the general diagnostic model
(GDM; von Davier, 2005), and the generalized DINA (G-DINA; de la Torre, 2011) model. de la
Torre (2011) and von Davier (2014) have shown that these three general models are equivalent.

The LCDM specifies the conditional probability that examinee j with attribute pattern αc

provides a correct answer to item i as

P (Xic = 1|αc) =
exp

(

λi,0 + λ
T
i h

(

αc, qi
))

1+ exp
(

λi,0 + λ
T
i h

(

αc, qi
)) (1)
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where λi,0 represents the intercept, that is the logit of a correct
response for an examinee who has not mastered any of the
attributes required by item i. λT

i h
(

αc, qi
)

is the kernel function
as shown below:

λ
T
i h

(

αc, qi
)

=
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A
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)

αcaαca
′ qiaqia′ +...

(2)

The qi represents the ith row vector of the Q-matrix (Tatsuoka,
1983) that consists of 0 and 1 to indicate an item i gives
information about the presence of an attribute a (a = 1, . . . ,
A). That is, qia = 1 when item i requires attribute a for correct
response and 0 otherwise. The vector αc = (αc1, . . . ,αcA)T

includes the attribute mastery pattern that belongs to latent class
c. The total number of possible latent classes in a DCM equals
2A where A is the number of attributes that should be mastered
to respond to an item correctly. For instance, an item requiring
three attributes yields eight latent classes. A full LCDM can
have different item parameters including intercept [e.g., λ1,0],
main [e.g., λ1,1(2)], and interaction [e.g., λ1,2(3,4)]. Other DCMs
such as DINA, DINO, and C-RUM models can be obtained
from the full LCDM (see Equation 1) by modifying different
parameter constraints.

Suppose that a number of items measuring arithmetic
ability (addition, subtraction, multiplication, and division) were
included on the test. Some of the items may require only
addition (Attribute 1), and some may require only subtraction
(Attribute 2). However, some of the items can require two
attributes (multiplication and division) at the same time. Suppose
Item 1 (for example, 5×8/4 =) requires having two attributes:
multiplication (Attribute 3) and division (Attribute 4). The item
response function for Item 1 can be written as

P (X1c = 1|αc3,αc4)

=
exp(λ1,0 + λ1,1(3)αc3 + λ1,1(4)αc4 + λ1,2(3,4)αc3αc4)

1+ exp(λ1,0 + λ1,1(3)αc3 + λ1,1(4)αc4 + λ1,2(3,4)αc3αc4)
, (3)

where αc3 and αc4 are latent variables for Attribute 3 and 4,
respectively. This model includes one intercept (λ1,0), two main
effects [λ1,1(3) and λ1,1(4)], and a two-way interaction effect
[λ1,2(3,4)] between two attributes. The latent predictor variables
are combined by a series of linear modeling effects that can result
in compensatory or non-compensatory DCMs. These specific
DCMs do not include all of the terms in the item response
function. Each DCMmakes different assumptions about mastery
of attributes and their effects on the item response. For example,
the DINA model requires mastery of both attributes to be able to
correctly respond to this item. Thus, the item response function
for Item 1 includes an intercept and a two-way interaction term
as shown below:

P (X1c = 1|αc3,αc4) =
exp(λ1,0 + λ1,2(3,4)αc3αc4)

1+ exp(λ1,0 + λ1,2(3,4)αc3αc4)
(4)

The DINO model, on the other hand, functions differently than
the DINA, as it requires the mastery of at least one attribute

for a correct response. Students mastering either Attribute 3 or
Attribute 4 can get this item correct. Thus, the item response
function for this item can be written as

P (X1c = 1|αc3,αc4) =
exp

(

λ1,0 + λaA
)

1+ exp
(

λ1,0 + λA
) (5)

where λA = λ1,1(3)αc3 + λ1,1(4)αc4 − λ1,2(3,4)αc3αc4 (see also
Rupp et al., 2010, p. 163) As shown in the equation, the DINO
model includes two parameters (λ1,0 and λA). Finally, consider
Item 1 for the C-RUM. The C-RUM can be considered an LCDM
without an interaction effect as it includes only intercept and
main effects as shown below:

P (X1c = 1|αc3,αc4) =
exp(λ1,0 + λ1,1(3)αc3 + λ1,1(4)αc4)

1+ exp(λ1,0 + λ1,1(3)αc3 + λ1,1(4)αc4)
(6)

Slipping and guessing parameters are typically used in DCMs
to describe item characteristics. Slipping parameter is used for
a situation when a respondent who mastered all the required
attributes for an item but fails to answer the item correctly, and
guessing parameter refers to a situation when a respondent who
lacks at least one of the required attributes for an item correctly
answers the item. These parameters can be obtained using the
intercept, main, and interaction terms presented in Equations

(3)–(6). For instance,
exp(λ1,0)

1+exp(λ1,0)
can be used to estimate guessing

(gi) and
exp(λ1,0+λ1,2(3,4))

1+exp(λ1,0+λ1,2(3,4))
to estimate the one minus slipping

(1 – si) parameter in DINA model (Rupp et al., 2010). Slipping
parameter can be defined differently for other DCMs (see also
Rupp et al., 2010).

As is the case with many statistical models, model parsimony
is an important consideration in DCM selection, such that the
simpler model is generally preferred over the more complex
model. More complex DCMs require larger sample sizes to yield
accurate estimates and more reduced DCMs can usually be
estimated accurately with smaller sample sizes. Reduced models
also typically provide for more straightforward interpretations
and higher correct classification rates than more saturated
models, particularly when the sample sizes are small.

Complexities which require larger samples tend to increase
with the numbers of attributes and items. Sessoms and Henson
(2018) have shown that 61% of the studies of DCMs have used
sample sizes >1,000 and 31% have used sample sizes of 1,000–
2,000. Some research has been reported with samples as small
as 44 (Jang et al., 2015) and 96 (Im and Yin, 2009). Results of
these latter studies have been reported with low or negative item
discrimination values.

One concern with respect to sample size is that there is as yet
little information reported on use of DCMs with smaller samples
although a number of studies have been conducted on the effect
of sample sizes on different aspects of diagnostic models. For
instance, Akbay (2016) showed that the non-parametric cognitive
diagnosis approach (Chiu and Douglas, 2013) performs as well as
the CDM based empirical Bayes estimation method for attribute
classification in the presence of small sample sizes such as 250,
500, and 1,000. Sünbül and Kan (2016) investigated the effect of
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several factors including number of attributes and sample size
(i.e., 200, 500, 1,000, and 5,000) on model fit, item recovery,
and classification accuracy of the DINA model. The number
of attributes and sample size had positive effects on the model
estimates. Lei and Li (2016) investigated the performance of
several model-fit indices for selecting model and on Q-matrix
design under four sample size levels (500, 1,000, 2,000, and
4,000). Results indicated that performance of fit indices appeared
to increase as the sample size increased. Tzou and Yang (2019)
also compared the performance of model fit indices in CDMs
using small sample sizes (i.e., 50, 75, 100, and 200) and showed
that AIC (Akaike, 1974) performed better than other indices.
Similarly, Hu et al. (2016) evaluated model fit for CDMs using
sample sizes of 200, 500, and 1,000 and showed that performances
of the three relative fit statistics AIC, BIC (Schwarz, 1978), and
CAIC (Bozdogan, 1987) improved when sample size increased.
Başokcu (2014) found classification accuracy increased as the
number of attributes (1–5) decreased and sample size increased
in DINA and G-DINA models. Similarly de la Torre et al. (2010)
showed that sample size increase from 1,000 to 4,000 reduced the
bias in item parameter estimates.

In another sample size related simulation study, Cui et al.
(2012) showed that the asymptotic normal theory of classification
consistency index and classification accuracy index can be
applied with small sample sizes (100, 500 and 1,000) for
attribute classifications in DINA model. Paulsen (2019) also
investigated the effect of very small sample sizes including
25, 50, 150, and 1,000 simulated respondents on three CDMs
(DINA, non-parametric cognitive diagnosis, and the supervised
artificial neural network models) by focusing on characteristics
such as model performances and model fit. Results of that
study showed that those three models were able to estimate
examinee classifications at even the smallest sample size. Galeshi
and Skaggs (2016) conducted a simulation study using C-
RUM under different sample size levels including 50, 100, 500,
1,000, 5,000, and 10,000, and showed that attribute classification
was effected by different combinations of sample size and
test length.

Choi et al. (2010) found that relative model fit indices were
able to detect the correct DCM with samples of 200 or more.
Rojas et al. (2012) found attribute classification accuracy of
DINA, DINO, A-CDM, and G-DINA models was more accurate
when test length and sample size were large. Previous simulation
studies have focused on a limited number of models under
the assumption that test items measured a common underlying
model. However, this may not necessarily be the case as each
item may also be designed to reflect a specific DCM. Thus,
a more comprehensive simulation study is needed to examine
the effects of small sample size on the classification accuracy
and on parameter estimates when the test items reflect different
model structures.

The present study was designed to investigate the effects
of sample size on estimation and accuracy of parameter
estimates and on classification as a function of sample size
and for different types of DCMs. This study investigated
the performance of specific DCMs under a set of practical
testing conditions.

MATERIALS AND METHODS

Simulation Study Design
Parameter recovery and classification accuracy for the LCDMs
were assessed under several simulated conditions. In this regard,
five factors were manipulated: sample size (50, 100, 200, 300, 400,
500, 1,000, and 5,000), test length (12, 24, and 36 items), number
of attributes (3 and 5), base rate (0.25 and 0.50), and generating
model (the reduced LCDM, the DINA model, the DINO model,
and the C-RUM). A total of 100 replications were simulated
for each condition using the maximum likelihood estimation
algorithm as implemented in the Mplus 8.4 software package
(Muthén and Muthén, 1998–2019).

Constant Factors
For purposes of this study, tetrachoric correlation between
each pair of attributes, item quality, and Q-matrices were
held constant across simulation conditions. The tetrachoric
correlation between each pair of attributes was set to be 0.70.
This is within the typical range of correlations for subdomains
in national and international educational assessments (Kunina-
Habenicht et al., 2012).

Medium level item quality was used to simulate items that
were better at separating masters and non-masters of the
measured attributes. This was achieved with medium level
item discrimination based on the difference in the probability
of a correct response for two groups of students (i.e., item
discrimination value of 0.60 = 0.85–0.25). In this study, two
different Q-matrix specifications were used for models with three
and five attributes. The Q-matrix specification used in this study
was intended to reflect the kinds of Q-matrices used in previous
simulation studies with DCMs (e.g., Kunina-Habenicht et al.,
2012; de la Torre and Chiu, 2016). The Q-matrix of the models
with three attributes and 36 items used in this study is presented
in Table 1. The first 12 rows of the Q-matrix in Table 1 were used
for the 12-item models and the first 24 rows of the Q-matrix in
Table 1 were used for the 24-item models. The Q-matrix of the
models with 5 attributes and 36 items is presented in Table 2. The
12-item and 24-item models include the first 12 and 24 rows of
this table, respectively.

Manipulated Factors
The simulation study had five manipulated factors including
sample size, test length, number of attributes, base rate, and
generating models. The sample sizes were 50, 100, 200, 300, 400,
500, 1,000, and 5,000 simulated examinees. These values were
selected to represent a range of sample sizes from very small
(50) to large (5,000). The number of respondents were selected
to comply with studies reported in the DCM literature. Rojas
et al. (2012), for example, used 100, 200, 400, 800, and 1,600 and
Başokcu (2014) used 30, 50, 100, 200, and 400 for the sample size
conditions. In this study, we extended sample sizes to include
5,000 simulated examinees.

Test length included 12, 24, and 36 items. These were intended
to simulate small, medium, and long test lengths. For a math test,
for example, it usually takes about 1 ½ min per multiple-choice
item. For a 36-item test, this would actually be 48min, which
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TABLE 1 | Q-Matrix for conditions with three attributes.

Attribute Attribute

Item 1 2 3 Item type* Item 1 2 3 Item type*

1 1 0 0 LCDM** 19 1 0 0 DINO**

2 0 1 0 DINA** 20 0 1 0 C-RUM**

3 0 0 1 DINO** 21 0 0 1 LCDM**

4 1 1 0 C-RUM 22 1 1 0 DINA

5 1 0 1 LCDM 23 1 0 1 DINO

6 0 1 1 DINA 24 0 1 1 C-RUM

7 1 0 0 DINO** 25 1 0 0 LCDM**

8 0 1 0 C-RUM 26 0 1 0 DINA**

9 0 0 1 LCDM** 27 0 0 1 DINO**

10 1 1 0 DINA 28 1 1 0 C-RUM

11 1 0 1 DINO 29 1 0 1 LCDM

12 0 1 1 C-RUM 30 0 1 1 DINA

13 1 0 0 LCDM** 31 1 0 0 DINO**

14 0 1 0 DINA 32 0 1 0 C-RUM**

15 0 0 1 DINO** 33 0 0 1 LCDM**

16 1 1 0 C-RUM 34 1 1 0 DINA

17 1 0 1 LCDM 35 1 0 1 DINO

18 0 1 1 DINA 36 0 1 1 C-RUM

*Item type specified for LCDMREDUCED model across all items.

**The parameterization of four DCMs are the same for items requiring only 1 attribute.

TABLE 2 | Q-Matrix for conditions with five attributes.

Attribute Attribute

Item 1 2 3 4 5 Item 1 2 3 4 5

1 1 0 0 0 0 19 1 0 1 0 0

2 0 1 0 0 0 20 1 0 0 1 0

3 0 0 1 0 0 21 1 0 0 0 1

4 0 0 0 1 0 22 0 1 1 0 0

5 0 0 0 0 1 23 0 1 0 1 0

6 1 1 0 0 0 24 0 1 0 0 1

7 1 0 1 0 0 25 1 0 0 0 0

8 1 0 0 1 0 26 0 1 0 0 0

9 1 0 0 0 1 27 0 0 1 0 0

10 0 1 1 0 0 28 0 0 0 1 0

11 0 1 0 1 0 29 0 0 0 0 1

12 0 1 0 0 1 30 1 1 0 0 0

13 1 0 0 0 0 31 1 0 1 0 0

14 0 1 0 0 0 32 1 0 0 1 0

15 0 0 1 0 0 33 1 0 0 0 1

16 0 0 0 1 0 34 0 1 1 0 0

17 0 0 0 0 1 35 0 1 0 1 0

18 1 1 0 0 0 36 0 1 0 0 1

would be a relatively long amount of time for most students up to
and including high school age. These test lengths were set to be
multiples of four to produce items based on four different models
in the reduced LCDM model. The numbers of items included in

this study are typical of test lengths observed in real tests such as
the TIMSS and PISA tests. For example, TIMSS assessment items
are grouped into a series of item blocks, with ∼10–14 items in
each block at the fourth grade and 12–18 items at the eighth grade
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TABLE 3 | Item-to-profile table for item 4.

c1 c2 c3 c4 c5 c6 c7 c8

αc [0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]

LCDM λ4,0 λ4,0 λ4,0 + λ4,1(2) λ4,0 + λ4,1(2) λ4,0 + λ4,1(1) λ4,0 + λ4,1(1) λ4,0 + λ4,1(1) + λ4,1(2) + λ4,2(1,2) λ4,0 + λ4,1(1) + λ4,1(2) + λ4,2(1,2)

Mplus label t4_1 t4_1 t4_2 t4_2 t4_3 t4_3 t4_4 t4_4

TABLE 4 | Mplus syntax specifications for item 4 (Q-matrix entry 110).

Full LCDM C-RUM DINA DINO

NEW (l4_0 l4_12 l4_11 l4_212); NEW (l4_0 l4_12 l4_11); NEW (l4_0 l4_e); NEW (l4_0 l4_e);

t4_1 = –(l4_0); t4_1 = –(l4_0); t4_1 = –(l4_0); t4_1 = –(l4_0);

t4_2 = –(l4_0 + l4_12); t4_2 = –(l4_0 + l4_12); t4_2 = –(l4_0); t4_2 = –(l4_0 + l4_e);

t4_3 = –(l4_0 + l4_11); t4_3 = –(l4_0 + l4_11); t4_3 = –(l4_0); t4_3 = –(l4_0 + l4_e);

t4_4 = –(l4_0 + l4_11 + l4_12 + l4_212); t4_4 = –(l4_0 + l4_11 + l4_12); t4_4 = –(l4_0 + l4_e); t4_4 = –(l4_0 + l4_e);

! Order constrains ! Order constrains ! Order constrains ! Order constrains

l4_12 > 0; l4_12 > 0; l4_e > 0; l4_e > 0;

l4_11 > 0; l4_11 > 0;

l4_212 > –l4_11;

l4_212 > –l4_12;

level. Similarly, von Davier et al. (2019) notes that the number of
items administered in each assessment cycle of PISA consisted
of 28 items for reading in 2003 and 35 items for mathematics
assessment in 2009.

The numbers of attributes were three and five to reflect
numbers commonly found in educational and psychological tests
(Kunina-Habenicht et al., 2012). For instance, Chen and Chen
(2016) reported a Q-matrix with five attributes by employing
the five processes (skills) of reading under the PISA assessment
framework. Examples of simulation or real data studies with
three or five attributes include de la Torre and Douglas (2004), de
la Torre (2009), de la Torre and Lee (2010), Kunina-Habenicht
et al. (2012), Templin and Bradshaw (2014), de la Torre and Chiu
(2016), Hu et al. (2016), and Sen and Bradshaw (2017). The base
rate of mastery for an attribute is the proportion of examinees
who have mastered the attribute in the population. This was
set to 0.25 and 0.50. A base rate of 0.50 is commonly reported
in the literature (e.g., Kunina-Habenicht et al., 2012; Bradshaw
and Madison, 2016; Sen and Bradshaw, 2017). As in Sen and
Bradshaw (2017), the 0.25 base rate condition was added to
investigate item recovery and classification accuracy comparisons
under less optimal conditions. Base rate mastery and tetrachoric
correlations between each pair of attributes were generated using
the SAS macro created by Templin and Hoffman (2013). The
SAS code used to generate the 0.25 base rate is presented in
the Supplementary Data.

Four different data-generating models were simulated,
including (a) Reduced LCDM, (b) C-RUM, (c) DINA, and (d)
DINO. For the reduced LCDM, the underlying DCM structures
were generated to differ across the complex items with the
following common sub-models of the LCDM. For a 12-item test,
three complex items were generated under the DINA model,
three under the DINO model, three under the C-RUM, and

three under the saturated LCDM (see Table 1). The specific item
structures used in LCDMREDUCED model for 12-, 24-, and 36-
item tests are presented in Table 1. For the DINA, DINO, and
C-RUMmodels, the underlying DCM structure was generated to
be the same. That is, all of the items were of a common type. The
same patterns were used for the 5-attribute matrix presented in
Table 2.

Data Generation
Data generation was done using Mplus. First, a full saturated
LCDM syntax was created using MplusDCM_functions.R
function with the MplusAutomation (Hallquist and Wiley, 2018)
package in R. The MplusDCM_functions.R function created
by Andre Rupp and Oliver Wilhelm was used to build, run,
and parse Mplus syntax for estimation of the LCDM. After
generating the full LCDM syntax using this function, the syntax
for specific DCMs was created by modifying the syntax using
the descriptions provided by Rupp et al. (2010) and Sen and
Terzi (2020). The LCDM syntax for Item 4 from Table 1, for
example, included an intercept (λ4,0), two main effects [λ4,1(1)

and λ4,1(2)] for Attribute 1 and Attribute 2 and an interaction
effect [λ4,2(1,2)] between these two attributes. In this example, 3
attributes yield 8 attribute patterns or classes. Then, the LCDM
kernel (see Equation 2) was specified for each class and each item
to assign latent classes to an attribute pattern or profile. Finally,
unique item response functions for each item were specified in
the Item-to-Profile table (see Table 3). The following labels used
in the Mplus code as shown in Table 3 are t4_1, t4_2, t4_3, and
t4_4. These were created using the Item-to-Profile table.

The specific part of the Mplus syntax for LCDM is presented
in the first column of Table 4. As can be seen in the first column,
the LCDM syntax to estimate intercept, main effects, and the
interaction term is labeled as l4_0, l4_12, l4_11, and l4_212,

Frontiers in Psychology | www.frontiersin.org 5 January 2021 | Volume 11 | Article 621251

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Sen and Cohen Sample Size Requirements for DCMs

TABLE 5 | Partial eta-squared values for manipulated variables in simulation.

RMSE Bias

Intercept Main e parameter Interaction Intercept Main e parameter Interaction

N 0.976* 0.983* 0.985* 0.960* 0.469* 0.674* 0.356* 0.407

Att 0.540* 0.810* 0.167* 0.788* 0.119* 0.349* 0.001 0.406

k 0.777* 0.903* 0.800* 0.835* 0.236* 0.197* 0.113* 0.739

BR 0.420* 0.460* 0.339* 0.452* 0.007 0.004 0.090* 0.038

Model 0.633* 0.446* 0.404* - 0.049* 0.001 0.018 -

N×Att 0.127* 0.314* 0.019 0.552* 0.094* 0.247* 0.236* 0.300

N×k 0.274* 0.543* 0.217* 0.772* 0.077* 0.492* 0.037 0.222

N×BR 0.137* 0.077 0.039 0.206 0.055* 0.022 0.164* 0.107

N×Model 0.328* 0.158* 0.080 - 0.053 0.014 0.054 -

Att×k 0.198* 0.334* 0.148* 0.354* 0.059* 0.092* 0.010 0.673

Att×BR 0.074* 0.005 0.575* 0.060 0.000 0.040* 0.042* 0.036

Att×Model 0.025 0.121* 0.247* - 0.040* 0.003 0.021 -

k×BR 0.048* 0.001 0.016 0.187* 0.015 0.037 0.025 0.091

k×Model 0.407* 0.224* 0.047* - 0.140* 0.045* 0.012 -

BR×Model 0.059* 0.001 0.070* - 0.034* 0.014 0.008 -

N, sample size; Att, number of attributes; k, test length; BR, base rate of mastery; Model, model type; *p < 0.01.

respectively. C-RUM, DINA, and DINO models are presented in
the next three columns of Table 4. The C-RUM does not include
any interaction effect. The DINA and DINOmodels only include
intercept and e parameters. The Mplus syntax for these latter
two models are not the same, however, due to differences in the
kernel function.

The MONTECARLO command in Mplus was used to
generate 100 data sets for each condition. The true generating
values for intercept, main, e parameter, and interaction effects
were set to be −1.1, 1.3, 3, and 0.24, respectively. These values
were selected to produce items withmedium-quality with an item
discrimination value of 0.60. The item discrimination is specified
by taking the difference in the probability of a correct response
for two groups of students (0.60= 0.85–0.25).

Estimation
All of the models were estimated using maximum likelihood
estimation (i.e., MLR) as implemented in Mplus. The following
Mplus options were used to obtain estimates of model
parameters: ANALYSIS: TYPE =MIXTURE; STARTS = 200 20;
PROCESSORS= 8;. Eight classes and 32 classes weremodeled for
the 3-Attribute and 5-Attribute models in theMODEL command
using the labels from Table 3. The MODEL CONSTRAINT
part in Mplus syntax was modified using the model constraints
described in Table 4. The vectors of attribute classifications were
obtained based on expected a posteriori estimation by specifying
the FILE = “respondents#.cprob”; option under SAVEDATA
command in Mplus. In total, 38,400 Mplus analyses (8 ×3 ×

2 × 4 × 2 × 100) were run using a Linux (64-bit Centos 7) high
performance computing (HPC) cluster. Item parameter estimates
for intercept, main, e parameter, and interaction effects and class
probability values were extracted from each Mplus files using
MplusAutomation package.

Evaluation Criteria
Recovery of item parameters were assessed using the root mean
square error (RMSE) and bias across replications. RMSE and bias
values for intercept, main, e parameter, and interaction terms
were calculated using the following formulas:

RMSE =

√

√

√

√

∑R
r=1

(

λi − λ̂ir

)2

R
, (7)

Bias =

∑R
r=1 (λi − λ̂ir)

R
, (8)

where R is the total number of replications (r = 1, . . . R) and
λi is the true parameter value of intercept, main, e parameter or
interaction term for item i. λ̂ir refers to estimated item parameters
for item i under the rth replication. Classification accuracy
of attribute profiles under each condition was determined
by calculating the percentage of examinees whose estimated
attribute profile was the same as the simulated (i.e., true)
attribute profile.

RESULTS

Results of item recovery and classification accuracy were
obtained for the 384 conditions in the study. Mean RMSE
and mean bias values were computed over 100 replications.
The percentage of classification accuracy was also calculated for
each condition. Mean RMSE and bias values are presented in
Supplementary Tables 1–12. Figures 1–5 summarize the mean
RMSE and absolute mean bias results for each fitted model.
Separate plots are provided for intercept, main, e parameter, and
interaction effects in each figure. Each plot displays 12 labeled
lines representing 12 different conditions for the 2 attributes, 3
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test lengths, and 2 base rates. For instance, 3ATT12ITEM25BR
label represents a condition with 3 attributes, 12 items, and 0.25
base rate of mastery.

Item Parameter Recovery Results
Recovery of the C-RUM
Figure 1 presents the item parameter recovery results for the C-
RUM when model-data fit holds. As can be seen in Figure 1,
mean RMSE and bias values for the intercept and main
parameters of the C-RUM appear to decrease as the sample size
increases. Mean RMSE values for the intercept parameter ranged
from 0.040 to 0.759 (see Supplementary Tables 1–3). Mean bias
values for the intercept parameter were between 0.001 and 0.259.

Bias and RMSE values for the intercept parameter in 12-item
conditions was higher than in the 24-item conditions, which was
than the 36-item conditions. The 5-attribute conditions yielded
higher RMSE and bias values than the 3-attribute conditions,
and the 0.50 base rate conditions yielded higher RMSE and bias
values than 0.25 base rate conditions. Overall, the highest mean
RMSE values were for the 5-attribute× 12-item × 0.50 base rate
conditions and the lowest mean RMSE and bias values were for
the 3-attribute 36-item × 0.25 base rate conditions. Similarly,
the highest mean bias values were obtained in the 5-attribute ×
12-item for both 0.25 and 0.50 base rate conditions. The lowest
mean bias values were in the 3-attribute × 36-item × 0.25 base
rate conditions.

The RMSE and bias plots for intercept indicate that sample
size, test length, and base rate of mastery had effects on mean
RMSE and bias for the intercept parameter. It appears that
the number of respondents, test lengths, number of attributes,
and mastery base rates had an impact on the recovery of
intercept parameter. As the number of respondents increased
and test length, number of attributes, and base rate decreased,
the recovery of the intercept parameter appeared to increase.
Only conditions with 5,000 respondents produced RMSE values
<0.10. Some of the 1,000-respondent conditions also yielded
RMSE values <0.10. Mean RMSE values for the conditions <200
exceeded 0.20. The conditions with 12 items produced highest
bias values. A sharp decline was observed with other conditions
after 200 respondents.

In the lower panels in Figure 1, the item recovery values are
plotted for the main effect of the C-RUM. As can be seen, both
RMSE and bias values decreased as the number of respondents
increased. This pattern is clearer for the RMSE plot (see the left
lower panel) than of the bias plot (see the right lower panel).
Mean RMSE values for the main effect ranged from 0.080 to
1.210 (see Supplementary Tables 1–3). Mean bias values ranged
between 0.001 and 0.297. Item parameter recovery values for the
main effect parameter in the 12-item conditions was higher than
in the 24-item conditions and both were higher than in the 36-
item conditions. The 5-attribute conditions yielded higher RMSE
and bias values than the 3-attribute conditions. The pattern is
clearer for RMSE as some of the conditions showed reversals for
mean bias values. The 0.50 base rate conditions yielded higher
RMSE values than the 0.25 base rate conditions. Except for the
36-item conditions, the 0.50 base rate conditions yielded higher
bias values than the 0.25 base rate conditions.

Overall, the highest mean RMSE values were obtained with
the 5-attribute × 12-item × 0.25 base rate conditions while the
lowest mean RMSE values were observed with the 3-attribute
× 36-item × 0.50 base rate conditions. Similarly, the highest
mean bias values were obtained with 5-attribute × 12-item for
both 0.25 and 0.50 base rate conditions. The lowest mean bias
values were observed with 3-attribute × 36-item × 0.50 base
rate conditions. The RMSE and bias plots for the intercept
indicate that sample size, test length, and base rate of mastery had
effects on mean RMSE and bias for the main effect parameter.
The number of respondents, test length, number of attributes,
and base rate of mastery also had effects on the recovery of
the intercept parameter. As the number of respondents and
base rate increased and test length and number of attributes
decreased, the recovery of the main effect parameter increased.
Except for the 12-item conditions, only conditions with 5,000
respondents produced RMSE values <0.10. Mean RMSE values
for the main effect under conditions with <1,000 exceeded
0.20. The conditions with 12 items produced the highest bias
values. Bias values <0.10 were more likely under conditions with
more than 200 respondents. Overall, the recovery of intercept
parameter was found to be better than that of the main effect
parameter for the C-RUM.

Recovery of the DINA Model
Figure 2 shows item recovery results for the DINA model when
model-data fit holds. As can be seen in Figure 2, mean RMSE
and bias values for intercept and e parameter of the DINA
model decreased as sample size increased. Mean RMSE values
for the intercept parameter ranged from 0.037 to 0.628 (see
Supplementary Tables 4–6). Mean bias values for the intercept
parameter ranged from 0.001 to 0.218. When the data generating
model was the DINA, recovery values for the intercept parameter
in the 12-item conditions were higher than in the 24-item
conditions and both were higher than in the 36-item conditions.
The 5-attribute conditions yielded higher RMSE and bias values
than the 3-attribute conditions.

The 0.50 base rate conditions yielded higher RMSE values than
the 0.25 base rate conditions for the intercept parameter. The 0.50
base rate conditions produced lower RMSE values than the 0.25
base rate conditions for the 3-attribute conditions. However, the
0.25 base rate conditions produced lower values than for the 0.50
base rate conditions under most of the 5-attribute conditions.

Overall, the highest mean RMSE values were obtained with
5-attribute × 12-item × 0.50 base rate conditions while the
lowest mean RMSE values were observed with 3-attribute and
0.25 base rate conditions with 24 and 36 items. Similarly, the
highest mean bias values were obtained with 5-attribute × 12-
item conditions for both the 0.25 and 0.50 base rate conditions.
The lowest mean bias values were observed with the 3 attribute×
0.25 base rate conditions with 24 and 36 items. It appears that the
number of respondent, test length, number of attributes, and base
rate of mastery had an impact on the recovery of the intercept
parameter. As the number of respondents and test length
increased, and the number of attributes and base rate decreased,
the recovery of the intercept parameter appeared to increase.
Only conditions with 5,000 respondents with 24 and 36 items
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FIGURE 1 | Mean RMSE and bias plots for the C-RUM.

produced RMSE values <0.10. Mean RMSE values, however,
were found to be higher than 0.10 for 12-item conditions even
with 5,000 respondents. For 24- and 36-item conditions, mean
RMSE values exceeded 0.20 with sample sizes <200. This was
not the case with the 12-item conditions as conditions with 12
items also produced the highest bias values. Mean bias values
for the intercept parameter were found to be between 0.001 and
0.10 under most of the conditions except for two conditions: 5-
attribute× 12-item× 0.25 base rate and 5-attribute× 12-item×

0.50 base rate.
As can be seen in the lower part of Figure 2, similar patterns

were observed for recovery of the e parameter. However, both
RMSE and bias values of the e parameter were higher than for the
intercept parameter.

Mean RMSE values for the e parameter ranged from
0.080 to 1.067 (see Supplementary Tables 4–6). Mean bias
values for the e parameter were between 0.001 and 0.592.
When the data generating model was the DINA model,
item recovery values for the e parameter in the 12-item
conditions was higher than in the 24-item conditions and
both were higher than in the 36-item conditions. The 3-
attribute conditions yielded higher RMSE values than the 5-
attribute conditions for the 0.25 base conditions. However,
the 5-attribute conditions yielded higher RMSE values than

the 3-attribute conditions for the 0.50 base rate of mastery.
Mean bias results for the e parameter did not show any
clear pattern with respect to the number of attributes and
base rate.

Overall, the highest mean RMSE values for e parameter
were obtained with the 3-attribute × 12-item × 0.25 base rate
conditions while the lowest mean RMSE values were observed for
the 36-item × 0.50 base rate conditions with 3 and 5 attributes.
Similarly, the highest mean bias values for the e parameter were
obtained with the 5-attribute × 12-item conditions with both
the 0.25 and 0.50 base rates. The lowest mean bias values were
observed with 3-attribute × 0.25 base rate conditions with both
24 and 36 items. It appears that the number of respondents,
test length, number of attributes, and mastery base rates had
an impact on the recovery of the intercept parameter. As the
number of respondents and test length increased, the recovery
of the e parameter appeared to increase. The effect of number
of attributes and base rates appeared to be less clear. Only the
24- and 36-item conditions with 5 attributes produced RMSE
values <0.10 when the sample size was 5,000. As can be seen
in Supplementary Tables 4–6, a few RMSE values <0.20 were
observed, even with 1,000 respondents. Overall, the intercept
parameter of the DINA model appeared to be recovered better
than the e parameter based on mean RMSE and bias values.
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FIGURE 2 | Mean RMSE and bias plots for the DINA Model.

Recovery of the DINO Model
Item recovery results for the DINO model (see Figure 3),
indicate that mean RMSE and bias values for intercept and e
parameter of DINO model appear to decrease as the number of
respondents increases when model-data fit holds. Mean RMSE
values for intercept parameter ranged from 0.038 to 0.688 (see
Supplementary Tables 7–9). Mean bias values for the intercept
parameter ranged between 0.001 and 0.182. Item recovery values
for the intercept parameter in the 12-item conditions was higher
than in the 24-item conditions and both were higher than in
the 36-item conditions. The 5-attribute conditions yielded higher
RMSE and bias values than the 3-attribute conditions for the
intercept parameter.

The 0.50 base rate conditions yielded higher RMSE values
than 0.25 base rate conditions for the intercept parameter. The
0.25 base rate conditions also yielded lower values than the 0.50
base rate conditions under most of the 3-attribute conditions.
However, the 0.25 base rate conditions produced lower values
than the 0.50 base rate conditions for over half of the 5-
attribute conditions.

Overall, the highest mean RMSE values for the intercept
parameter were obtained for the 5-attribute × 12-item × 0.50
base rate conditions while the lowest mean RMSE values were
observed with the 3-attribute × 0.25 base rate conditions for
both 24 and 36 items. Similarly, the highest mean bias values

were obtained with the 5-attribute × 12-item × 0.25 base rate
conditions in addition to 5-attribute 12-item and 0.50 base rate
under the small sample size conditions (i.e., <200). However,
the highest mean bias values were obtained with the 3-attribute
× 12-item × 0.50 base rate conditions for sample sizes >200.
The lowest mean bias values for the intercept parameter of
DINOmodel were observed with the 3-attribute× 0.25 base rate
conditions for both 24 and 36 items. It appears that the number of
respondents, test length, number of attributes, and mastery base
rates had an impact on recovery of the intercept parameter. As the
number of respondents and test length increased, and number
of attributes and base rate decreased, the recovery of intercept
parameter appeared to improve. Conditions with 5,000 simulated
respondents produced RMSE values <0.100. The conditions
with 12 items also produced the highest bias values for the
intercept parameter. Mean bias values for the intercept parameter
were between 0.001 and 0.100 except for two conditions: The 5
attribute× 12 item× 0.25 base rate and the 5 attribute× 12 item
× 0.50 base rate conditions.

As can be seen in the lower panels of Figure 3, similar patterns
were observed with the recovery of the e parameter, although
both RMSE and bias values were higher than for the intercept
parameter. Mean RMSE values for the e parameter ranged from
0.076 to 0.934 (see Supplementary Tables 7–9). Mean bias values
for the e parameter ranged between 0.002 and 0.269. Recovery
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FIGURE 3 | Mean RMSE and bias plots for the DINO Model.

values for the e parameter in the 12-item conditions were higher
than in the 24-item conditions and both were higher than
in the 36-item conditions. The 3-attribute conditions yielded
higher RMSE values than 5-attribute conditions for the 0.25 base
conditions. However, the 5-attribute conditions yielded higher
RMSE values than 3-attribute conditions for the 0.50 base rate
conditions. For both 0.25 and 0.50 base rate conditions, mean
bias values of the e parameter for the 5-attribute conditions were
higher than for the 3-attribute conditions.

Overall, the highest mean RMSE values for the e parameter
were with 5-attribute× 12-item× 0.50 base rate conditions while
the lowest mean RMSE values were for the 3-attribute × 36-
item× 0.50 base rate conditions. Similarly, the highest mean bias
values for the e parameter were obtained with the 12-item× 0.25
base rate conditions with both 3 and 5 attributes while the lowest
mean bias values were observed with 3-attribute × 12-item ×

0.50 base rate conditions.
The number of respondents, test length, number of attributes,

and base rates of mastery appeared to affect recovery of the
intercept parameter. As the number of respondents and test
length increased, recovery of the e parameter increased. However,
the effects of the number of attributes and base rates were less
clear. Only the 5-attribute conditions × 5,000 respondents for
the 24 and 36 items yielded RMSE values <0.10. As can be seen
in Supplementary Tables 7–9, relatively few RMSE values <0.20

were observed evenwith 1,000 respondents. Overall, the intercept
parameter of the DINO model appeared to be recovered better
than the e parameter.

Recovery of the LCDMREDUCED Model
Figures 4, 5 are plots of the mean RMSE and bias results,
respectively, for the LCDMREDUCED model when model-
data fit holds. The mean RMSE and bias summaries are
presented separately as the number of estimated parameters in
the LCDMREDUCED model is higher than C-RUM, DINA,
and DINO models. Separate recovery plots are provided for
the intercept, main effect, e parameter, and interaction effects.
As can be seen in Figure 4, mean RMSE values for the
intercept, main, e parameter, and interaction effects of the
LCDMREDUCED model decreased as sample size increased.
Mean RMSE values for the intercept parameter ranged from
0.041 to 0.741 (see Supplementary Tables 10–12). Mean RMSE
values for main effects ranged between 0.096 and 1.206. Mean
RMSE values for the e parameter ranged from 0.078 to 1.266
(see Supplementary Tables 10–12). Mean RMSE values for the
interaction effects ranged between 0.158 and 1.569.

When the data generating model was the LCDMREDUCED,
mean RMSE values for the intercept, main effects, e parameter,
and interaction effects in the 12-item conditions were higher
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FIGURE 4 | Mean RMSE plots for the LCDMREDUCED Model.

than in the 24- and 36-item conditions. However, the 36-
item conditions yielded smaller RMSE values than the 24-item
conditions under more than half of the conditions. The 0.25 base
rate conditions yielded lower RMSE values than the 0.50 base rate
conditions except for the main effect parameters under the 12-
item conditions. The base rate did not show any clear pattern of
effects for the 24-item and 36-item conditions. Except for the 0.25
base rate for the e parameter, the 3-attribute conditions produced
lower mean RMSE values than the 5-attribute conditions for
intercept, main, e parameter, and interaction effects.

Overall, the highest mean RMSE values were obtained with
5-attribute × 12-item conditions for both 0.25 and 0.50 base
rate conditions for the intercept, main effects and interaction
parameters. The highest RMSE for the e parameter was observed
with the 3-attribute × 12-item × 0.25 base rate conditions. The
lowest mean RMSE values were observed with the 3-attribute
× 36-item × 0.50 base rate conditions for the main effects, e
parameter, and interaction effects. The 3-attribute × 24-item ×

0.25 base rate conditions yielded the lowest RMSE values for the
intercept parameter.

Separate bias plots are presented in Figure 5 for the intercept,
main effects, e parameter, and interaction effects. As can be
seen in Figure 5, mean bias values for intercept, main effect,
e parameter, and interaction effects of the LCDMREDUCED
model appeared to decrease as the number of respondents

increased. Mean bias plots of the intercept and e parameter
showed clearer patterns than those of the main and interaction
effects. Mean bias values for the intercept parameter ranged from
0.001 to 0.194 (see Supplementary Tables 10–12). Mean bias
values for main effects ranged between 0.001 and 0.232. Mean
bias values for the e parameter ranged from 0.002 to 0.718 (see
Supplementary Tables 10–12). Mean bias values for interaction
effects were between 0.002 and 0.750.

When the data generating model was the LCDMREDUCED,
mean bias values for the intercept, main, e parameter, and
interaction effects in the 12-item conditions were higher than in
the 24- and 36-item conditions. The 36-item conditions yielded
smaller bias values than the 24-item conditions formore than half
of these conditions. Mean bias values showed less clear patterns
with respect to base rate and number of attributes.

Overall, the highest mean bias values were obtained with the
5-attribute × 12-item conditions under both the 0.25 and 0.50
base rate conditions for intercept, main effects and e parameters.
In addition, the 3-attribute× 36-item× 0.25 base rate conditions
yielded higher RMSE values for sample sizes >400. The highest
mean bias values for the interaction effect were for the 3-
attribute × 12-item conditions under both 0.25 and 0.50 base
rate conditions. There was no clear pattern of lowest mean
bias values, however, for the intercept, main, e parameter, and
interaction effects.
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FIGURE 5 | Mean bias plots for the LCDMREDUCED Model.

It appears that the number of respondent, test length, number
of attributes, and base rate of mastery had an impact on
the recovery of LCDMREDUCED parameters. As the number
of respondents and test length increased, the recovery of
LCDMREDUCED parameter also improved.

Only the intercept parameter conditions produced RMSE
values <0.10 when the sample size was 5,000. Main effect RMSE
results were also very close to 0.10 when the sample size was
5,000. As can be seen in Supplementary Tables 10–12, RMSE
values tended to be higher than 0.20 even with 1,000 respondents.
Overall, the intercept parameter of the LCDMREDUCED model
appeared to be recovered better than the other parameter based
on mean RMSE and bias values, and recovery of the interaction
effect appeared to be less accurate than for the other parameters.

A Linear Model Analysis of Item Recovery
Statistics
Mean RMSE and bias results were summarized using a linear
model. Effects of each of the different conditions for each of the
RMSE and bias values were assessed using a factorial ANOVA.
Table 5 presents partial eta-squared values for each of the main
effects and the two-way interactions. As can be seen in Table 5,
sample size (N) was the most influential factor on RMSE and
bias for each item parameter except for interaction bias. Test
length (k) was the second most influential factor on RMSE and
bias values. Base rate of mastery was the least influential factor

on RMSE and bias calculated for intercept and the interaction
parameters. Model type was the least influential factor on RMSE
and bias calculated for the main effect parameters. Number of
attributes was the least influential factor on RMSE and bias for the
e parameter. Effects of two-way interactions between simulated
factors appeared to be less than for main effects (see Table 5).
Most of the main and interaction effects were found to have
significant effects on RMSE and bias values.

Classification Accuracy Results
Figure 6 presents the classification accuracy results for C-RUM,
DINA, DINO, and LCDMREDUCED models when model-data
fit holds. Classification accuracy percentages appear to increase
for the 12-item conditions (i.e., conditions 3ATT12ITEM25BR,
3ATT12ITEM50BR, 5ATT12ITEM25BR, 5ATT12ITEM50BR) as
the number of respondents increases. The classification accuracy
percentages appear to change only slightly for the 24- and 36-item
conditions across the different sample sizes.

For the C-RUM, classification accuracy percentages ranged
from 21.640 to 70.344 (see Supplementary Table 13). When the
data generating model was the C-RUM, classification accuracy
results were very close for the 24- and 36-item conditions.
Neither the number of attributes nor the base rate, however,
appeared to have a significant effect on the classification
accuracy for the 24- and 36-item conditions. The sample size
increase also appears to have slight effect on the classification
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FIGURE 6 | Classification accuracy plots for the C-RUM, DINA, DINO, and LCDMREDUCED Models.

accuracy for the 24- and 36-item conditions. C-RUM results
varied for the 12-item conditions. The 5-attribute × 12-
item × 0.50 base rate conditions had the lowest percentages
(see Figure 6). The 3-attribute × 12-item × 0.25 base rate
conditions produced the highest percentages for the C-RUM for
sample sizes >200.

For the DINA model, classification accuracy percentages
ranged from 47.480 to 80.210 (see Supplementary Table 13).
For the DINA generating model, classification accuracy results
for the 24- and 36- item conditions were very close. The
5-attribute conditions had higher percentages than the 3-
attribute conditions for the 24- and 36-item conditions. The
increase in sample size appeared to have a slight effect on
the classification accuracy for the 24- and 36-item conditions.
However, DINA model results varied for the 12-item conditions.
The 5-attribute × 12-item × 0.50 base rate conditions
produced the lowest percentages for the DINA model. The 3-
attribute × 12-item conditions for both 0.25 and 0.50 base
rates produced the highest percentages. Results for the 12-
item conditions appear to be stable for sample sizes of 200
or more.

For the DINO model, classification accuracy percentages
ranged from 51.00 to 88.27 (see Supplementary Table 13). When
the data generating model was the DINO model, classification
accuracy results were similar for the 24- and 36-item conditions.

The 5-attribute conditions had higher percentages than the 3-
attribute conditions for both 24- and 36-item conditions. The
sample size increase appears to have a slight effect on the
classification accuracy under the 24- and 36-item conditions. The
5-attribute × 12-item × 0.50 base rate conditions had the lowest
percentages for the DINO model. The 3-attribute × 12-item
× 0.25 base rate conditions produced the highest percentages.
DINO model results for 12 items appeared to be more stable for
samples of 200 or more.

For the LCDMREDUCED, classification accuracy percentages
ranged from 32.820 to 77.456 (see Supplementary Table 13).
When the data generating model was the LCDMREDUCED,
classification accuracy results were similar between the 24-
and 36-item conditions. The 5-attribute conditions had higher
percentages than the 3-attribute conditions for both 24- and 36-
item conditions. The sample size increase appears to have a slight
effect on the classification accuracy under the 24- and 36-item
conditions. LCDMREDUCED results were variable for the 12-
item conditions. The 5-attribute × 12-item × 0.50 base rate
conditions had the lowest percentages for the LCDMREDUCED,
and the 3-attribute× 12-item× 0.25 base rate conditions had the
highest percentages for LCDMREDUCED model.

The number of respondents, number of attributes, and
mastery base rate had an impact on the classification accuracy
of DCMs in the 12-items conditions. When all models were
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compared, the highest classification was observed with the
DINO model (the mean across all conditions = 66.35). The
models with the next highest classification percentages after
the DINO model were the DINA, LCDMREDUCED and C-
RUMmodels, respectively. The average classification percentages
across all conditions were 63.16, 57.54, and 52.82 for the DINA,
LCDMREDUCED, and C-RUMmodels, respectively.

DISCUSSION

The present simulation study was designed to investigate
the effects of sample size on item parameter recovery and
classification accuracy of four DCMs, the C-RUM, DINA, DINO,
and LCDMREDUCED. Effects of additional factors including
test length, number of attributes, and base rate of mastery were
also examined. Bias and RMSE values were computed between
true generating parameters and estimated parameters. Effects of
simulated factors on attribute assignment were also evaluated
using the percentage of classification accuracy.

The present study differed from previous studies (Rojas et al.,
2012; Başokcu, 2014) in several respects. Although previous
simulations on DCMs showed that classification accuracy and
item recovery can be poor with small sample sizes, they tended
to focus on a limited number of sample size conditions, making
results somewhat difficult to generalize to other practical testing
conditions. This study extended the sample size conditions from
50 to 5,000. Results showed that sample size appears to have an
impact on recovery of DCM model parameters. Larger sample
sizes showed better item parameter recovery. The effect of sample
size on item parameter recovery is consistent with previous
research (Rojas et al., 2012; Başokcu, 2014). Conditions with
sample sizes <200 showed poor results. In general, it appears
that sample sizes should be at least 500 for the four DCMs
considered in this study in order to obtain precise estimates. This
is consistent with previous research in which a sample size of 500
was considered to be a small sample size for DCMs (Bradshaw
and Madison, 2016; Madison and Bradshaw, 2018), although
small RMSE and bias values were difficult to obtain with samples
of 1,000 respondents under some conditions. The results of this
simulation study showed that a sample size as small as N = 1,000
would be sufficient to adequately recover all model parameters,
under all the given conditions, adequately for the DINA, DINO
and C-RUM models. However, the LCDMREDUCED model
does appear to require larger sample sizes for some model
parameters such as the interaction effect.

Another important finding from this study is that increase
in test length did result in more precise estimates of item
parameters. The average RMSE and bias values decreased as test
length increased from 12 to 36 items. This finding is consistent
with previous research indicating that the CDM framework
requires assessments that are at least of moderate test lengths of
15 or 20 items (de la Torre, 2009).

Another important finding obtained is the effect of number
of attributes on the recovery of item parameter estimates. The
recovery of item parameters worsened when the number of
attributes increased from three to five. This is important as

the most of the studies in DCM literature use more than
three attributes. For example, Sessoms and Henson (2018) has
conducted a literature review on the applications of DCMs and
found that number of attributes estimated varied from four to 23.
The average number of attributes estimated was 8 and almost half
of the application studies modeled 8 ormore attributes. As shown
in this simulation study, higher numbers of attributes clearly
required larger sample sizes. Results of this study, in other words,
suggest that tests with large numbers of attributes also need larger
sample sizes to accurately estimate model parameters.

Another important point to be noted is the distribution of
attributes over items. In this study, the distribution of attributes
over items was not equal for the five-attribute case. This does have
an effect on estimation. For instance, Madison and Bradshaw
(2015) compared performance of the LCDM using various Q-
matrix designs and found that classification accuracy varied
markedly for different Q-matrix designs. For a given number of
items an attribute is measured, classification accuracy increased
as the number of items measuring the attribute in isolation
increased. In contrast, classification accuracy suffered most when
a pair of attributes wasmeasured. In this study, the same numbers
of attributes over items were used in the LCDMREDUCED
model for the four models that were estimated (C-RUM, DINA,
DINO, and LCDM). It is important to note that operational tests
are constructed to meet the requirements of test blueprints so
may not have this type of regular pattern. As is the case for
any simulation study, the generalizability of the results of this
study is necessarily limited to conditions manipulated in this
study. It would be helpful, in this regard, to study the effects
of different patterns of attributes in future research. Among the
limitations of this study are the lacks of consideration of a general
model (e.g., LCDM) and of the number of attributes larger
than five.

This simulation study also showed that mastery base rate
had a varying effect on item parameter recovery. This effect
varied for item parameter types (i.e., intercept, main, e parameter,
and interaction effects) and model type. It appears that
intercept and e parameters were better recovered than main
and interaction parameters. Consistent with previous research
(Kunina-Habenicht et al., 2012; Bradshaw and Madison, 2016),
the recovery of the interaction terms was lower than for the
intercepts, main effects, and e parameters.

Parameters of DINA and DINO models were more likely to
be recovered well than C-RUM and LCDMREDUCED models
whenmodel-data fit holds. This was also the case for classification
accuracy. The DINO model had better fit with small sample
sizes than the other three DCMs. This result is consistent
with previous research (Roussos et al., 2007; de la Torre,
2011). Previous simulation studies generated data sets under the
assumption of a common underlying model for the whole test.
The simulation in the present study also considered different
underlying model for each model (i.e., the LCDMREDUCED
model). The LCDMREDUCED model consisted of four different
model structures including the C-RUM, DINA, DINO, and
full LCDM. The item parameter recovery and classification
accuracy of the LCDMREDUCED model was worse than for the
other DCMs.
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Patterns of bias and RMSE values computed between true
(i.e., generating) parameters and estimated parameters were
consistent for almost all conditions. However, some irregularities
were observed in which reversals occurred in the results for bias.
Previous research has also reported this finding in which different
patterns occurred for bias compared to RMSE (Harwell, 2018).
As Harwell has noted, it may be that average bias is masking
important patterns in recovery accuracy compared to RMSE.

Consistent with previous research (de la Torre et al., 2010;
Rojas et al., 2012), the sample size did not result in any
change in classification accuracy percentages for the 24 and 36
item conditions. Higher attribute assignments, however, were
observed with larger sample sizes in the 12-item conditions.
Overall, the classification accuracy rates were below 90% even
for the 5,000 sample size. Consistent with previous research (de
la Torre et al., 2010; Kunina-Habenicht et al., 2012; Lei and Li,
2016), results from the present study showed that sample size
explained only a small proportion of the variance in classification
accuracy. Higher attribute assignments were observed with the
12-item conditions, compared to the 24- and 36-item conditions.
This was expected as the longer test lengths provide more
information on which the classifications can be based.

Classifications with the DINO and DINA models were more
accurate than the C-RUM and LCDMREDUCED models. The
simulation study results showed that the DINO and DINA
models performed better in this regard for small samples than
other two DCMs.

Several practical suggestions may be made from this study
for researchers or practitioners who seek to design diagnostic
tests from a DCM framework. Results of this study showed
that simpler models were recovered better than more complex
models. Thus, before drawing any conclusion based on a specific
DCM, one might alternatively specify other appropriate DCMs,
which can capture potential relationships among the attributes.
Another finding of this study was the increasing accuracy of
the recovery of the item parameters as sample sizes increased.
For instance, to ensure model identifiability and consistent
estimation, it is necessary to collect sufficient data (i.e., typically
samples of 1,000 or more) that satisfy identifiability, when
designing the diagnostic tests. It was also shown that longer
tests produced more precise and consistent estimates. Results of

this study showed varying effects of mastery base rate on item
parameter recovery. It would be useful to explore this issue in
future research.

The probability of making a correct classification and
accurately recovering item parameters depends at least in part
on the fit of the model to the data. In this study, model-
data fit was assumed for each condition, as the generating
and estimated models were the same. It is difficult to know
in practice, however, whether the selected DCM is the best
fitting model to real test data. As Ma (2020) has noted, the
usefulness of DCMs depends on whether they can adequately fit
the data. It is for this reason that fit indices play an important
role in selecting the best fitting DCM. Several studies have
been conducted to examine the performances of absolute fit
(Hu et al., 2016) and relative fit indices (de la Torre and
Douglas, 2008; Hu et al., 2016; Sen and Bradshaw, 2017) in the
DCM framework. These studies can help guide practitioners to
choose appropriate model fit indices to estimate model fit under
various conditions.

Results of this study suggest that the precision of the
parameter estimates and classification accuracy are a function
not only of the sample size but also of test length, number of
attributes, base rate of mastery, and model type. Selection of the
appropriate DCMs needs to be guided in part by sample size.
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