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Abstract

A central neuroscientific pursuit is understanding neuronal interactions that support computations 

underlying cognition and behavior. Although neurons interact across disparate scales – from 

cortical columns to whole-brain networks – research has been restricted to one scale at a time. We 

measured local interactions through multi-neuronal recordings while accessing global networks 

using scalp EEG in rhesus macaques. We measured spike count correlation, an index of functional 

connectivity with computational relevance, and EEG oscillations, which have been linked to 

various cognitive functions. We found a surprising non-monotonic relationship between EEG 

oscillation amplitude and spike count correlation, contrary to the intuitive expectation of a direct 

relationship. With a widely-used network model we replicated these findings by incorporating a 

private signal targeting inhibitory neurons, a common mechanism proposed for gain modulation. 

Finally, we report that spike count correlation explains nonlinearities in the relationship between 

EEG oscillations and response time in a spatial selective attention task.

Introduction

Action potentials, or spikes, are widely held to be the computational currency of the brain. 

Decades of research have identified numerous ways in which the activity of individual 

neurons is related to stimuli in the outside world and to our perception of those stimuli. 

Cognitive and perceptual processes, however, are not the product of any individual neuron’s 

activity, but instead are network-level phenomena in which groups of neurons act in concert. 

These phenomena can be studied by local recordings of many neurons simultaneously, via a 

multielectrode array or imaging of a voltage-sensitive dye, or through more global measures 

of neuronal activity, such as functional magnetic resonance imaging (fMRI) or 
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electroencephalography (EEG). A complete understanding of the neural basis of perception 

and behavior requires a bridge across these levels of analysis.

Investigations of small populations of neurons have focused on pairwise interactions such as 

correlated variability in firing rates from trial to trial, termed spike count correlation (or 

“noise” correlation; rsc), a measure of functional connectivity with known implications for 

coding1. Several recent investigations of spike count correlation have found that it is highly 

structured2-4 and modulated by cognitive and perceptual context5-9. However, identification 

of the signals that generate these dynamics has proved elusive, instead relying on 

speculation about the large-scale networks involved. Previous attempts to measure the 

interdependence of activity between brain areas have made tantalizing suggestions that 

spiking activity can be related to oscillations supported by large-scale networks10,11, but 

generally speaking such networks have proved inaccessible to micro-scale methods.

The most widely used methods for measuring large-scale network activity are fMRI and 

EEG. With these methods, an explanatory gap persists as to how the large-scale signals are 

related to the spiking activity of small populations of neurons. A fair amount of investigation 

has been directed at linking spiking activity to the fMRI blood oxygenation level dependent 

(BOLD) response12,13, but far less research has aimed to relate spiking activity and EEG14. 

The EEG is thought to reflect the post-synaptic potentials in the apical dendrites of 

pyramidal cells due to their mutual alignment that allows summation of electric fields15. The 

strength of the signal is related both to the magnitude of the post-synaptic activity, as well as 

its coherence: post-synaptic currents with low spatio-temporal coherence tend to 

destructively interfere at the level of the scalp15,16. The common postsynaptic activity that 

drives variability in the EEG signal likely also generates spike count correlation across 

neurons.

We sought to test whether EEG oscillations index the coordination of the spiking activity of 

the underlying neuronal population, using simultaneous recordings of evoked and 

spontaneous activity at the scalp and in the cortex of behaving macaque monkeys. We found 

that oscillations at the level of the EEG do, in fact, relate to spike count correlation, but they 

do so in a non-monotonic fashion. However, we found that a variation of a widely used 

simple network model incorporating excitatory and inhibitory subpopulations17,18 can 

account for this surprising relationship. Finally, we report that knowledge of the non-

monotonic relationship between EEG oscillations and spike count correlation can explain 

the connection between EEG oscillations and performance on a spatial selective attention 

task.

Results

We simultaneously recorded EEG from the scalp along with spiking activity from a “Utah” 

microelectrode array implanted in area V4 of two macaque monkeys (Fig. 1a) performing a 

fixation task. We started by isolating a snippet of EEG around the time of each recorded 

spike. We then Fourier-transformed those EEG snippets to determine the phase and 

amplitude of the global oscillations relative to the local spiking activity. In order to measure 

spike count correlation among neurons, we created surrogate spike trains (subsets of the full 

Snyder et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2015 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recording) in which the amplitude and phase of the EEG were within a specified range. This 

allowed us to ascertain how spike count correlation related to particular properties in the 

EEG. A simplified understanding of our approach can be visualized by thresholding the 

envelope of the continuously filtered EEG signal and apportioning spikes accordingly (Fig. 

1b). On the full data set, our actual method employed the spike-triggered Fourier 

coefficients to create surrogate spike trains (see Methods).

Relationship between EEG and spike count correlation

Surrogate data from a representative session illustrate one of the more robust and surprising 

effects we found (Fig. 2). We had predicted that spike count correlation would be directly 

related to oscillation amplitude, based on the assumption that greater amplitude oscillations 

are a result of more coherent input to the underlying brain area. In contrast to this prediction, 

we found that spiking activity during the intermediate amplitudes of alpha oscillations not 

only had relatively less spike count correlation than spiking activity during higher-amplitude 

oscillations (which we predicted) but also had less spike count correlation than spiking 

activity during lower-amplitude oscillations. In other words, the magnitude of spike count 

correlation followed a U-shaped relationship with EEG oscillation amplitude. While the 

overall magnitude of spike count correlation varied somewhat from session to session, the 

U-shaped relationship between oscillation amplitude and spike count correlation was highly 

reliable (Fig. 3a). This relationship was statistically significant (p = 0.01), as determined by 

a permutation test consisting of randomly shuffled data subjected to the identical analysis 

procedure (Fig. 3b; see Methods).

In addition to the U-shaped relationship between EEG oscillation amplitude and spike count 

correlation, we also found a sinusoidal relationship between EEG oscillation phase and spike 

count correlation in the ‘spontaneous’ activity condition (Fig. 3a). This effect was seen for 

all frequencies. Changes in correlation state with the phase of ongoing oscillations could 

potentially account for previous observations in both the sensory19,20 and motor21 domains 

that the effectiveness of information transmission can be modulated by oscillation phase. 

However, in parallel to the relationship between EEG phase and spike count correlation that 

we observed, we also found a sinusoidal relationship between EEG oscillation phase and the 

firing rate of the population (Fig. 4), as has been previously reported for the gamma 

band14,22. In our case, the phase with the lowest average firing rate was also the phase with 

the lowest spike count correlation. Varying rate complicates the interpretation of spike count 

correlation measurements, because previous modeling work has shown that the input 

correlation of a pair of neurons is underestimated by spike count correlation when firing 

rates are low23,24. This was not a potential issue for the analysis of oscillation amplitudes, 

because our approach of binning spikes based on amplitude deciles ensured equal numbers 

of spikes (and therefore equal average rates) across bins. To determine whether changes in 

firing rate with EEG phase could account for the effects on spike count correlation, we 

repeated the analysis with phase bins chosen such that the spike counts in each bin were 

equal22. We did not find any relationship between EEG phase and spike count correlation 

with this equal-count binning (Fig. 3a), which suggests that nearly all of the modulation of 

spike count correlation that we observed with respect to EEG phase could be accounted for 

by variations in firing rate.
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Our initial analysis focused on alpha oscillations because of their historical prominence in 

the EEG literature25,26, but we found that the U-shaped relationship between EEG 

oscillation amplitude and spike count correlation was evident across frequencies. Each of the 

frequency bands of interest revealed a U-shaped relationship between amplitude and 

correlation, but the strength of this relationship was directly related to frequency: low-

frequency oscillations showed relatively less modulation of spike count correlation with 

amplitude and high-frequency oscillations showed relatively greater modulation of 

correlation with amplitude (Fig. 5a). The magnitude of the relationship between EEG 

oscillation amplitude and spike count correlation also displayed spatial specificity, with the 

strongest relationships seen for EEG measured at the electrode nearest the array and at the 

electrode diametrically across skull (Fig. 5b). This spatial specificity was most evident for 

the frequencies with the greatest effect sizes. The antipodal topographical pattern we 

observed is generally consistent with both the positive pole and negative pole of a single 

dipole source located near the array reflecting the amplitude-correlation relationship.

All of the above analyses were performed based on spontaneous spiking and EEG activity 

recorded during fixation. When a stimulus was presented in the receptive field of the 

neurons recorded on the array, we saw a similar U-shaped relationship between EEG 

oscillation amplitude and spike count correlation to what we found for the spontaneous 

condition (Fig. 6a). However, we did not observe a relationship between correlation and 

EEG phase in the evoked condition, indicating that the visual stimulus abolished the phase-

locking between the spikes and the EEG. Analysis of the firing rate of our pairs (Fig. 6b) 

revealed that we were able to control for responsiveness in both phase and amplitude bins 

(note the much higher firing rates in the evoked condition compared with spontaneous data 

in Fig. 4).

Although the subjects were required to maintain fixation, small (< 1°) eye movements were 

possible, and prior reports have suggested that microsaccades are related to EEG 

oscillations27,28. In addition, variability in gaze position between trials could lead to 

spurious measurements of “noise” correlation due to similarities in tuning (i.e., “signal” 

correlation), since the image in the receptive field would shift slightly from trial to trial 

(although this caveat would not apply to our spontaneous data). Thus, we tested whether 

small eye movements could confound our results by dividing each session into two sets of 

trials using a median split based on the variance of the gaze position over the trial. We found 

that spike count correlation was nearly identical in the more variable and more stable gaze 

position trials (all p’s > 0.17, median: p = 0.77), which indicated that the relationship 

between EEG oscillations and spike count correlation reported here was not due to eye 

movements.

Relationship between local field potentials and spike count correlation

We wondered whether the effects we observed were specific to the EEG, because there is a 

demonstrated relationship between the EEG and local field potentials (LFPs)16. Although 

there is unquestionable value in relating EEG (the predominant electrophysiological method 

in humans) to spiking activity, an important question is whether the same mechanisms 

operate at the scale of hundreds of micrometers (LFP) as at the scale of centimeters (EEG). 

Snyder et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2015 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We therefore performed the same analysis on the stimulus-evoked condition using the LFP 

from a randomly chosen electrode in the array (3 of 18 datasets were excluded because of 

errors saving the LFP data). We found that the LFP-rsc relationship closely mirrored the 

EEG-rsc relationship both qualitatively and quantitatively. To assess this we measured the 

Pearson’s correlation between the data points comprising the two sets of curves, and we 

found significant positive correlations at each frequency (all r’s > 0.72, all p’s < 0.001, one-

sample t-test). The magnitude of the modulation (max – min) of rsc did not differ 

significantly whether based on oscillations in the EEG or the LFP (p = 0.24 across all 

frequencies, paired-samples t-test). These results are consistent with the EEG and LFP both 

reflecting the same mechanisms that modulate spiking activity.

Potential role of cross-frequency interactions in EEG

We were surprised to find a U-shaped relationship of spike count correlation to oscillation 

amplitude. Our guiding prediction had rather been that spike count correlation would 

increase monotonically with oscillation amplitude, under the reasoning that greater-

amplitude oscillations would be generated by more coherent postsynaptic currents in the 

underlying brain area, and that more coherent postsynaptic currents would lead to correlated 

spike output. This reasoning can account for the pattern of results we observed at high 

amplitudes, where amplitude and spike count correlation were directly related, but it cannot 

explain the pattern of results we observed at low amplitudes, where amplitude and spike 

count correlation were inversely related.

Since cross-frequency EEG interactions have been linked to multiunit activity14, we 

wondered whether dependencies between the frequency bands might lead to the non-

monotonic effect we observed. If the amplitudes of some of our frequency bands tended to 

be inversely related to each other, then this could potentially account for the non-

monotonicity while still remaining consistent with the essentially monotonic mechanism that 

guided our initial predictions. In other words, two oscillations that consistently trade-off in 

amplitude from trial to trial could be driving changes in spike count correlation, giving 

merely the appearance of a non-monotonic mechanism. This was not the case, however, as 

we calculated the Pearson correlation of amplitude between all pairings of the six 

frequencies of interest and found that no pair of frequencies was inversely related. We did 

find significant positive correlations between some frequencies, however. In particular, 

lower frequencies (delta, theta and alpha) were correlated with each other in the range of r = 

0.02 to 0.08, and higher frequencies (alpha, beta, low gamma and high gamma) were 

correlated with each other in the range of r = 0.08 to 0.26. The highest frequency pairs had 

the greatest correlation, which is consistent with the diminishing frequency resolution 

achieved as frequency increases. In general, it is not surprising that nearby frequencies were 

correlated, simply due to their proximity. The only significant correlation we observed 

between distant frequency bands was between delta and low gamma (r = 0.05, p = 0.002), 

which is noteworthy because interactions between these two frequency bands in particular 

has recently been linked to multiunit activity14. To summarize, the main finding that none of 

the pairs of frequencies was inversely correlated rules out amplitude trade-offs between 

frequency bands as a potential cause of the non-monotonic amplitude-correlation 

relationship.
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Neural network modelling

We next asked whether a network of interconnected neurons could produce the non-

monotonic relationship by virtue of the complexity of the dynamics that a neural network 

can generate. We modeled a balanced network of excitatory and inhibitory neurons driven 

by an external population of random, doubly-poisson neurons and an additional applied 

current17. The parameters for the model were set based on the previous literature17 and we 

did not modify them; rather, we only modified the input currents that we applied to this “off-

the-shelf” model. We used band-filtered (alpha band, 8 – 12 Hz) white noise signals for our 

applied current to model a coherent oscillatory input to the network. We modeled the 

resulting spike train for each neuron in the network, and we modeled the corresponding EEG 

as the summed post-synaptic potential of the excitatory neurons in the network. We divided 

our set of modeled trials into decile bins by EEG alpha amplitude, and calculated the 

average spike count correlation within each bin.

When we applied a single oscillatory current ranging from 0 – 0.3 nA in amplitude 

identically to all the neurons in the network, we found that correlation between model 

excitatory neurons was on the order of 1/N (rsc EE ≈ 0.001; Fig. 7a), consistent with prior 

calculations17 demonstrating the ability of a balanced network to cancel input correlations. 

When much larger-amplitude oscillation amplitudes were included (> 0.3 nA), correlation 

increased monotonically with alpha amplitude as the spiking activity became unnaturally 

coherent with the driving oscillation (not shown). Because the spiking behavior induced by 

these large-amplitude input oscillations was physiologically implausible, we restricted our 

subsequent analyses to input oscillations below that range. To summarize, the simple 

balanced neural network with a single input shared by the entire network cannot reproduce 

the non-monotonic behavior we observed in our experiment.

We next tested whether applying separate input oscillations to the excitatory and inhibitory 

subpopulations of our network might produce a non-monotonic relationship between EEG 

amplitude and correlation. We were guided in this hypothesis by the observation that 

feedback signals tend to target these two cell types differentially. For example, in V4 

attention-dependent modulation of the activity of putative inhibitory neurons is stronger than 

that for putative excitatory neurons (using waveform shape to separate neurons into 

subclasses)29. When we applied a separate input oscillation to the inhibitory subpopulation 

(0 – 0.2 nA), in addition to the global input oscillation that was shared by all the neurons, 

this resulted in a U-shaped relationship between EEG alpha amplitude and spike count 

correlation that matched our experimental data (Fig. 7a). This effect was robust over the 

entire range of input amplitudes of the model we tested that produced physiologically 

plausible spike trains (Fig. 7b). This indicates that a balanced neural network is sufficient to 

generate the non-monotonic relationship we found if the inhibitory subpopulation receives a 

separate input oscillation in addition to that shared with the population at large.

It is notable that our neural network model is spatially homogenous – that is, neurons are 

connected to each other randomly without regard for their relative spatial positions. 

Functional connections among real neurons are known to decay with distance and tuning 

similarity3,4 and in our own data, we see that the relationship between EEG and spike count 

correlation is strongest for scalp locations closest to the multielectrode array. Extensions of 
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this model will need to incorporate these distance effects as well as tissue conduction in 

order to more fully model the EEG. An additional important question is how critical it was 

that we applied band-limited input to our neural network model, because such input might 

not be ecologically typical (although intrinsic filtering properties of dendritic membranes 

may make individual synapses particularly sensitive to limited frequency bands30,31). Two 

observations suggest that band-limited input is not critical. First, although our input 

oscillation was band-limited to the alpha range, the resulting modeled EEG had a broad-

band power spectrum by virtue of the internal network dynamics (Supplemental Fig. 1). 

Second, we also observed a U-shaped relationship between correlation and EEG amplitude 

at all other resolvable frequency bands in the model (delta was below our resolution) that 

were qualitatively similar to what we observed in vivo. Because both the field potentials and 

the effects on correlation generated by our neural network model were not limited to the 

input frequency band, this neural network model is consistent with the essentially broadband 

field potentials that have been previously linked to spiking activity in vivo32,33.

Spatial attention task

In a variety of contexts, psychophysical performance has been found to follow a U-shaped 

relationship with EEG oscillation power34-37, much like the relationship we found between 

the EEG and spike count correlation. To date, interpretations of this observation have been 

speculative, typically invoking the notion of stochastic resonance. Our results, however, hint 

at an alternative explanation – that changes in spike count correlation could serve as the 

computational basis for this effect, as decorrelation has been previously linked to improved 

performance in an attention task5, potentially due to improved signal averaging during the 

decorrelated state1. We therefore sought to test this hypothesis by performing an additional 

experiment.

Two animals were trained on a selective attention task in which they maintained central 

fixation while two drifting gratings were presented; one in the receptive field area, and one 

in the mirror symmetric position in the opposite hemifield. The task was to detect a change 

in the drift speed of one of the two gratings and to make an eye movement to the grating, if 

any, that changed, or to maintain fixation until the end of the trial (1.2 s) otherwise. On most 

trials a briefly flashed visual cue indicated the stimulus location that was most likely to 

contain the target, and analysis of behavioral data indicated that this cue resulted in a robust 

enhancement of performance at the cued location.

For the analysis of this experiment, we focused on the amplitude in the alpha frequency 

band of the EEG, which has been most consistently linked to selective attention26. Our goal 

was to determine whether the underlying spike count correlation mediated a U-shaped 

relationship between EEG alpha amplitude and response time. We divided trials into six bins 

based on alpha amplitude, and calculated spike count correlation over the trials in each bin. 

Following the procedure outlined by Baron and Kenny38, we used a regression analysis to 

determine the degree to which alpha band amplitude could explain variance in behavioral 

response time to targets contralateral to the array, and the degree to which this relationship 

was mediated by spike count correlation. We found that response time indeed followed a U-

shaped relationship with alpha amplitude measured at the parieto-occipital electrode over the 
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array, with the fastest response times observed at intermediate alpha amplitudes (Fig. 8). 

Inclusion of a linear term for correlation improved the variance-accounted-for by the 

regression equation (by 118% for Monkey B, p = 0.011; 240% for Monkey R, p = 0.042). 

Most critically for our predictions, we found that inclusion of spike count correlation in the 

regression equation led to a decrease of the quadratic term for alpha amplitude (by 15% for 

Monkey B, p = 0.047; 16% for Monkey R, p = 0.030). In other words, the U-shaped 

relationship between response time and alpha amplitude was substantially mediated by the 

degree of spike count correlation in the underlying area. To illustrate the effect of this 

mediation, we used the resultant regression equation to model the predicted response times 

for each alpha amplitude while adjusting for the effect of spike count correlation, which 

resulted in a marked flattening of the relationship (Fig. 8). This relationship with behavior 

was specific to the alpha band (for all other frequency bands for both subjects: all p’s > 

0.186).

Discussion

We found that functional connectivity among spiking neurons (measured by spike count 

correlation) followed a U-shaped relationship with EEG spectral power measured at the 

scalp. This surprising result is counter to the basic intuition that increasing EEG power 

would reflect increasingly coherent input to the underlying neurons, and in turn lead to an 

increase in spike count correlation. The relationship we found was topographically specific, 

with the EEG electrode sites nearest the multielectrode array showing the strongest effects, 

but with additional contributions from the diametrically opposing sites, consistent with the 

two poles of a dipole source. We also found the general pattern to be robust across 

frequencies, although higher frequencies had stronger amplitude-correlation relationships. 

Our results provide a powerful insight into the relationship between local neuronal 

populations and global brain activity, and advance our understanding of how the functional 

connectivity of small scale networks is modulated by the context of global brain states, 

which is a fundamental aspect of brain function.

To further understand our results, we employed a popular computational model using a 

balanced network of excitatory and inhibitory neurons17,18. In its basic form, this model 

effectively cancels correlations in common input and produces an asynchronous network of 

neurons with near-zero mean correlations. We first considered the simplest modification to 

this model, a global excitatory oscillatory input applied to all of the neurons, which failed to 

produce the behavior we observed in vivo and instead produced a monotonic increase in 

correlations with excitatory oscillations of sufficient magnitude. We then considered a 

second addition to the model, in which we delivered an independent oscillation exclusively 

to the inhibitory subpopulation of neurons. Although the spatially homogenous organization 

of dendrites in inhibitory interneurons39 would largely hide such an oscillation at the level of 

the EEG, it produced a non-monotonic relationship between EEG power and spike count 

correlation that was an excellent match to the physiological data. That a relatively simple 

and well-studied model reproduces our in vivo findings while implicating a specific 

subpopulation of neurons provides a powerful link to phenomena proposed to depend on 

selective activation of inhibition, such as attention29, sensory binding40 and memory 

formation40.
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For example, several recent studies have reported an inverted-‘U’ effect of EEG oscillations 

during attention-demanding detection tasks, with performance varying non-monotonically 

with EEG power34-37. Without concurrent population recordings, such studies are left to 

speculate high-level functional explanations of behavior, invoking phenomena such as 

stochastic resonance. Our data confirm that the inverted ‘U’ shape relating EEG oscillations 

to performance during attention in these studies can be explained by the decorrelation in 

spiking observed at intermediate oscillation amplitudes, which reflects a change in 

processing state of the neuronal population1. Moreover, our model posits a key role for 

inputs to inhibitory neurons underlying this non-monotonic effect. Indeed, modulation of 

inhibitory subpopulations by long-range feedback signals appears to be a key mechanism to 

adjust gain during selective attention29 and may be mediated by cholinergic receptors on 

inhibitory neurons41,42. Our observations thus connect studies of attention in humans, in 

which changes in EEG alpha power are the critical observation26, and in monkeys, where a 

reduction in correlated variability with attention has been reported5,6. This link provides 

explanatory power for interpreting electrical potentials at the scalp in terms of the activity of 

groups of local neurons, and in linking studies of spatial attention and its mechanisms across 

species and electrophysiological methods.

While knowledge of the relationship between spiking activity and the EEG has clear benefits 

for future EEG research, the inferential power actually moves in both directions. As 

advances in multielectrode array technology have spurred a shift in focus from the first-

order spiking statistics available from single neurons to higher-order spiking statistics 

available in population recordings, a key question has emerged: What are the signals that 

give rise to correlated spiking variability, its structure3,4, and its dynamics5-8,43? One 

hypothesis is that weakly correlated noise in the sensory input is inherited in a feedforward 

fashion across the cortex44. Recent observations that the degree of correlated variability can 

be modulated in an exquisitely complex and goal-directed fashion8 suggest an alternative 

hypothesis, however: that correlated variability is due at least in part to feedback input from 

the large-scale networks that support cognitive processes involving coordination between 

brain areas. Researchers have attempted to account for the influence of the broader network 

context using intracranial local field potentials10,45, which reflect the summed activity of all 

the neurons within a sub-millimeter volume46 of cortex. Another approach has leveraged 

local recordings of neuronal populations to infer the properties of modulatory signals driving 

correlated variability47. Both of these methods are a far cry from the truly global scale 

networks probed by EEG recordings. For researchers studying complex cognitive processes 

at the level of small populations of neurons, the ability to relate their findings to studies of 

whole-brain EEG signals is a vital advancement.

Our study uncovered a simple and yet non-intuitive relationship between correlated 

variability measured at the level of a small population of neurons and the amplitude of EEG 

oscillations measured at the scalp. Both correlated variability and EEG oscillations have 

been demonstrated to have important functional consequences across a variety of brain 

processes, and here we establish a definitive link between these measurements. Our 

modification of a simple and widely employed model suggests that selective feedback to 

inhibitory subpopulations, which are largely invisible to EEG, is a critical mechanism for 

coordination of local neuronal populations by global brain networks. These findings 
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highlight the critical role of observations across scale in revealing the mechanisms by which 

neuronal networks give rise to complex perceptual and cognitive experiences.

Methods

Experimental procedures were approved by the Institutional Animal Care and Use 

Committee of the University of Pittsburgh.

Subjects

We implanted one, 100-electrode “Utah” array (Blackrock Microsystems) in V4 in each of 

three adult male rhesus macaques (Macaca mulatta). We implanted the arrays in the right 

hemisphere for Monkeys W and B, and in the left hemisphere for Monkey R. The basic 

surgical procedures have been described previously4, and were conducted in aseptic 

conditions under isoflurane anesthesia. In addition to the microelectrode arrays, the animals 

were implanted with a titanium head post to immobilize the head during experiments. We 

recorded neurons with receptive fields centered 3.16°, 5.66° or 10.23° from the fovea in the 

lower visual field of each animal.

Behavioral tasks

We presented visual stimuli with custom software written in MATLAB (The MathWorks) 

using the Psychophysics Toolbox extensions48-50. Monkeys W and B performed the 

following tasks. We trained the subjects to maintain fixation on a 0.6° blue dot at the center 

of a flat-screen cathode ray tube monitor positioned 36 cm from their eyes. The background 

of the display was 50% gray. We measured the monitor luminance gamma functions using a 

photometer and linearized the relationship between input voltage and output luminance 

using lookup tables. In the ‘spontaneous’ task, subjects were trained to maintain fixation on 

the central dot for 2 s, at which time the fixation point would be moved 11.6° in a random 

direction and the animal received a liquid reinforcement for making a saccade to the new 

location. No other stimuli were presented for the spontaneous task. The ‘evoked’ task was 

identical, except we presented a drifting sinusoidal grating (100% contrast, maximum 

luminance of 145 cd/m2) in the aggregate receptive field (RF) area of the neurons recorded 

on the microelectrode arrays during the 2 s fixation interval. Both subjects completed the 

spontaneous task (Monkey B: 14 sessions; Monkey W: 10 sessions) prior to performing the 

evoked task (Monkey B: 10 sessions; Monkey W: 8 sessions).

Microelectrode array recordings

Signals from the microelectrode arrays were band-pass filtered (0.3 – 7500 Hz), digitized at 

30 kHz and amplified by a Grapevine system (Ripple). Signals crossing a threshold 

(periodically adjusted using a multiple of the root-mean-squared [RMS] noise for each 

channel) were stored for offline analysis. These waveform segments were sorted using an 

automated clustering algorithm51 followed by manual refinement using custom MATLAB 

software52 (available at http://www.smithlab.net/spikesort.html), taking into account the 

waveform shapes and interspike interval distributions. After sorting, we calculated the 

signal-to-noise (SNR) ratio of each candidate unit as the ratio of the average waveform 
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amplitude to the standard deviation of the waveform noise52. Candidates with an SNR below 

2.5 were discarded.

Receptive field mapping and tuning curves

Prior to beginning the experiments, we mapped the RF areas of the units recorded on our 

arrays by presenting small (~1°) sinusoidal gratings at four orientations positioned one at a 

time on the vertices of a lattice in the likely RF area per the anatomical location of the 

implant. After inspecting the responses of the units to these small probe stimuli, we picked a 

stimulus size and position to roughly cover the aggregate RF area. For Monkey B this was 

5.87° diameter centered 4.00° below and 4.00° to the left of fixation, for Monkey W this was 

4.70° diameter centered 1.18° below and 2.94° to the left of fixation, and for Monkey R this 

was 5.87° diameter centered 8.94° below and 4.99° to the right of fixation. Throughout this 

report we use the term ‘RF’ to refer to this aggregate area. We next measured tuning curves 

for the recorded units by presenting sinusoidal gratings to the RF area in four orientations 

and at a variety of spatial and temporal frequencies. For each subject we chose a 

compromise temporal and spatial frequency that evoked the maximum response from the 

array as a whole.

EEG recordings

We recorded EEG from 8 Ag/AgCl electrodes (Grass Technologies) adhered to the scalp 

with conductive paste (see Fig. 1a for positioning). Signals were referenced online to the 

head post, digitized at 1 kHz and amplified by a Grapevine system (Ripple) and low-pass 

filtered online at 250 Hz. Data were first divided into trial epochs time-locked to the onset of 

the grating stimuli (−0.5 to 3 s); analyses focused on subsets of this interval. Trials 

containing excessive muscle activity or transient artifacts were rejected using an automatic 

threshold criterion (± 300 μV) and visual inspection. After artifact rejection, data were 

rereferenced to the average activity across all electrodes.

Eye tracking

We tracked the gaze of the subjects using an infrared eye tracking system (EyeLink 1000; 

SR Research). Gaze was monitored online by the experimental control software to ensure 

that subjects maintained fixation within 1.17° of the central fixation point during each trial.

Data analysis

To examine the relationship between spectral properties of the EEG and the spike count 

correlation of the neurons recorded on our microelectrode arrays, we constructed surrogate 

spike trains characterized by particular phase and amplitude properties (similar to the 

procedure of Womelsdorf et al.22). Specifically, we focused on the six frequency bands 

analyzed by Musall et al.16, who compared spiking activity to a single EEG ring electrode: 2 

– 4 Hz (delta), 4 – 8 Hz (theta), 8 – 12 Hz (alpha), 12 – 30 Hz (beta), 30 – 60 Hz (low 

gamma) and 60 – 100 Hz (high gamma). Average power spectra for Monkeys B and W, 

measured over the 2 s fixation periods, are illustrated in Supplementary Figure 2. For each 

spike, we calculated the fast Fourier transform of the 500 ms Hanning-windowed segment of 

each channel of EEG data centered at the time of the spike. Note that spikes occurring in the 
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first or final 250 ms of a trial were therefore excluded because the window would have 

overlapped the trial boundary. These spike-triggered spectra were used to compute the 

average amplitude across each frequency band around the time of each spike, as well as the 

phase of the center frequency for each frequency band around the time of each spike. We 

next created virtual spike trains for each combination of 10 amplitude ranges and 12 phase 

ranges measured at each EEG channel and for each frequency band. We divided amplitude 

measurements into 10 deciles that each contained an equal number of spikes. We divided 

phase into 12 bins, each subtending 60 degrees of phase, with 50% overlap between adjacent 

bins. In a separate control analysis, we used six, non-overlapping phase bins spaced to 

equate as closely as possible the number of spikes in each bin for each session. Each virtual 

spike train spanned 1.5 s of real time, but consisted only of spikes that occurred when the 

amplitude and phase of a given frequency band measured at a given electrode was within the 

specified ranges. We summed the spikes of these surrogate spike trains to produce a single 

spike count for each 2 s trial. We normalized the spike counts of each neuron for each 

grating orientation by z-scoring. We then computed the spike count correlation (rsc) as the 

Pearson product moment correlation coefficient of normalized spike counts for all pairs of 

neurons recorded simultaneously from separate microelectrodes. Correlation was measured 

separately for each recording session.

Statistical analysis

We used curve-fitting combined with a non-parametric resampling procedure to quantify our 

statistical confidence in the relationships between spectral properties of the EEG and spike 

count correlation. We first fit curves (described below) to our observed data in the ordinary 

least-squares sense, and quantified the strength of the relationship according to the fitted 

function. We then randomly shuffled the pairings between spikes and EEG data windows, so 

that the relationship between spikes and EEG was random, which represents the null 

hypothesis. We repeated the analysis making surrogate spike trains for specific EEG spectral 

properties, this time using the randomly-shuffled data. We then fit curves to the results from 

the shuffled-data analysis. The data shuffling and reanalysis were iterated a total of 1000 

times to create a distribution of resultant curve fits under the null hypothesis. The proportion 

of this distribution that exceeded the observed value was the p-value for the claim that the 

relationship we observed was stronger than would be expected by chance. We considered p 

< 0.05 to be significant. All statistics were performed across sessions, treating the data from 

each day as a unit of observation. We viewed this to be the most conservative approach, 

when compared with the alternative of adding together the pairs across days and treating 

each pair as an observation.

To characterize the U-shaped relationship between EEG oscillation amplitude and spike 

count correlation, the function we fit to the data was a ratio of two quadratics. This is the 

simplest function that can be non-monotonic and can also have a bounded range (since 

correlation must be bounded at least between −1 and 1). We collapsed across phase for this 

fit, and considered only amplitude. We measured the coefficient of determination, adjusted 

for the number of free parameters (i.e., ), for both the rational function fit, as well as for a 

simple linear fit. We quantified the strength of the non-monotonic relationship as the change 

in adjusted coefficient of determination from the linear fit to the rational fit ( ).
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To test whether the presence of small eye movements could have confounded our results, we 

performed a median split of trials for each experimental session based on gaze position 

variance, and repeated the analysis described in the “Data analysis” section above. Since 

gaze position is two-dimensional, we derived a scalar measure of gaze position variance 

using the generalized variance:

where X is a n x 2 matrix of gaze position coordinates, and n is the number of samples in the 

2 s analysis window. After we repeated our analysis on both halves of trials for each session, 

we tested for differences between trials with relatively stable gaze positions and trials with 

relatively variable gaze positions using independent samples t-tests at each amplitude of 

each frequency for both conditions (a total of 120 tests). We did not adjust the reported p-

values for the familywise error rate.

To test for amplitude covariance between the frequency bands of interest, we measured the 

amplitude of each of the six frequency bands of interest by windowing each 2 s trial with a 

Hann function and then applying the fast Fourier transform (FFT). We calculated the 

Pearson product-moment correlation coefficient of amplitude over trials for each pair of 

frequencies for each recording session (spontaneous and evoked conditions). We applied 

Fisher’s r-to-z transformation to the correlation values, and tested the distributions of 

transformed values against the null hypothesis of zero correlation with a two-tailed 

Student’s t-test at α = 0.05, Bonferroni-corrected for the 15 pairs of frequency bands.

Neural network modeling

We simulated spiking neuron populations using a conductance-based leaky integrate-and-

fire network with band-pass (alpha band, 8 – 12 Hz) noise oscillatory input, adapted from 

that presented by Renart and colleagues17. Briefly, the network was comprised of three 

populations— one excitatory ( ‘E’; NE = 1000 neurons), one inhibitory (‘I’; NI = 250 

neurons), and one input (‘X’; NX = 1000 neurons) population— and was iterated with time 

step Δt = 0.05 ms in a Runge-Kutta-2 integration scheme using MATLAB. The membrane 

voltage of the ith neuron in the α population, , was governed by

where Cm = 0.25 nF was the membrane conductance, gL = 16.7 nS was the leak conductance 

(such that the membrane time constant Cm/gL = 15 ms), VL = −70 mV was the resting 

potential and θ = −50 mV was the spiking threshold. Following a spike, the voltage  was 

reset to VR = −60 mV, after which a refractory period of 2 or 1 ms was assumed for the E 

and I populations, respectively. All parameters were consistent with the original model17.

, the synaptic current from population β (E, I, or X) onto population α (E or I), was 

governed by
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where  is the reversal current of the efferent population (  mV and  mV). 

 was the probability that cell i in population α was connected to cell j in population β, 

defined for all populations as a binary random variable with a mean of 0.2 (i.e. densely but 

randomly connected).  was the synaptic conductance from cell i in population α to cell j 

in population β, defined as a Gaussian random variable with mean gαβ and standard 

deviation 0.5gαβ. We used gEE = 2.4 nS, gEI = 40 nS, gIE = 4.8 nS, gII = 40 nS, and gEX = 

gIX = 5.4 nS.  was a synaptic gating term, which integrated post-synaptic potentials from 

the β population at the ij synapse according to the following double-exponential ODE (with 

intermediate variable ):

where  were spike times of neuron j and τd = 5 ms and τr = 1 ms were the decay and rise 

time constants, respectively.  was the conductance delay between pairs of neurons, 

defined as a uniform random variable with resolution Δt = 0.05 ms with 

 and . The spike times of neurons of the input 

population (X) were independently Poisson-distributed with mean 10 Hz.

 was an applied oscillatory current to the α population, constructed as white noise that 

was bandpass-filtered to the alpha band, 8 – 12 Hz. We used two oscillations: one global 

oscillation delivered to both E and I populations and a private oscillation delivered only to 

the I population. To represent varied input oscillation amplitudes, the RMS amplitude of the 

global and private oscillations were scaled independently; 10 different global oscillations 

ranged from 0 – 0.60 nA, 10 different private oscillations ranged from 0 – 0.20 nA, and all 

pairs of amplitudes were simulated. This range was chosen to cover the full range of 

possible network behaviors under the oscillations. We found that global oscillation 

amplitudes greater than 0.30 nA yielded ecologically implausible bursting activity coherent 

with the input oscillation, and therefore focused only on oscillations below that value.

We simulated 48 different networks, each for 6 – 12 s for each individual pairing of E and I 

amplitudes. Every segment of data was decomposed into 200 ms “trials,” giving us 

frequency resolution at and above 5 Hz. By this method, we accrued at least 1920 trials for 

each E and I amplitude pair. We modeled the EEG as the sum of postsynaptic potentials in 

the excitatory neurons, reasoning that the EEG signal is primarily generated by currents in 

the apical dendrites of pyramidal cells15. We sorted these trials into deciles of the alpha-
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band amplitude of the modeled EEG (Figure 7), and pseudo-randomly subsampled the 

population in each decile bin so that the resulting average pairwise geometric mean firing 

rate was as nearly constant as possible across bins. Finally, we calculated rsc between pairs 

of excitatory neurons, which are the predominant cell type recorded on our multielectrode 

arrays.

Attention experiment

Monkeys B and R participated in the attention experiment. The animals were trained to 

fixate a central yellow dot. After fixating for a randomly chosen duration of 300 or 700 ms, 

a peripheral visual cue was presented for 120 ms on 89% of trials (no-cue trials were 

identical in all other respects). For Monkey B, the cue was a 0.6° dim gray dot (87 cd/m2; 

9% contrast) centered on one of the two locations of subsequently presented grating stimuli. 

For Monkey R, the cue was a yellow annulus (isoluminant with the display background, 

6.45° inner diameter, 7.03° outer diameter, masked to prevent crossing the vertical meridian) 

that encircled one of the two stimulus locations. The cue onset was followed by another 

randomly-chosen duration of 300 or 700 ms, after which the two drifting sinusoidal gratings 

were presented. One grating was presented at 0° orientation and the other was presented at 

90° orientation. Orientation was counterbalanced between stimulus locations across trials. 

All other properties of the gratings were the same as described for the ‘evoked’ task above. 

One grating was presented in the receptive field area of the neurons recorded on the array, as 

described above, and the other grating was presented in the mirror symmetric location in the 

opposite hemifield. The animal’s task was to detect a speed change (acceleration or 

deceleration) of one of the two gratings and to make a saccade to the stimulus that changed 

within 800 ms of the change onset. Correct responses were reinforced with juice or water. 

The speed change was governed by a triangular ramp function (i.e., a gradual increase 

followed by a return to baseline, or vice versa). We titrated the maximum magnitude of the 

speed change in each direction prior to the experiment using a staircasing procedure to set an 

overall correct detection rate for each type of speed change between 70% and 80% correct. 

On 40% of trials, neither grating changed speed, and the animal was rewarded for 

maintaining fixation for the full stimulus duration, 1.2 s. The speed change, if any, could 

begin between 250 ms and 700 ms after grating onset, uniformly distributed. If a cue and 

speed change both occurred, the cue validly indicated the correct location of the target with 

80% probability. The attention task design is shown in Supplementary Figure 3.

While the animals performed the task, we recorded EEG data and spiking data as described 

above. Initial preprocessing (e.g., EEG artifact rejection, spike identification and sorting) 

also proceeded as described above. We excluded from this analysis recording sessions with 

less than 72 correct responses to targets contralateral to the array (15 sessions in Monkey B 

and 4 sessions in Monkey R), because fewer responses produced highly variable estimates 

of rsc. We also excluded sessions for which an animal was both slower and less accurate for 

targets preceded by valid cues (zero sessions in Monkey B and 4 sessions in Monkey R), 

which indicated poor attention performance. This resulted in a total of 8 recording sessions 

in the analysis for Monkey B, and a total of 34 recording sessions in the analysis for 

Monkey R. We also excluded trials with targets that occurred ipsilateral to the array, uncued 

trials, and trials with targets onsetting less than 500 ms after the grating onset or for which 
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the animal prematurely left the fixation window, so that we always had a 500 ms interval of 

constant stimulation over which to compute alpha-band amplitude and rsc (n = 91.25 ± 7.18 

trials per dataset in the analysis for Monkey B; n = 179.56 ± 8.30 trials per dataset for 

Monkey R). We calculated alpha amplitude at the parieto-occipital EEG electrode over the 

array by multiplying the 500 ms of EEG data following grating onset by a Hanning window, 

taking the Fourier transform of the windowed data, and averaging the amplitude values over 

8 – 12 Hz. We log transformed the alpha amplitudes to approximate a normal distribution. 

Because we were particularly interested in the effect of within-session variation in alpha 

amplitude, we calculated normalized amplitude by dividing each dataset’s amplitude values 

by the mean amplitude for that session. We likewise normalized response times (RTs) and 

rsc by dividing by the average for the session. We next binned each session’s trials into six 

quantiles based on alpha amplitude, and calculated mean RT, mean alpha amplitude and rsc 

within each quantile. Values exceeding 3 standard deviations from the mean were excluded 

as outliers (2 data points excluded). We calculated rsc by counting each unit’s spikes in the 

500 ms interval following grating onset, standardizing each unit’s spike counts over trials 

separately for each grating orientation with a z-transform, and then calculating Pearson 

product-moment correlation over trials for each pair of units. We next used a regression 

analysis to quantify the relationship between alpha amplitude and RT, and the degree to 

which any such effect was mediated by rsc. Although the regression of RT on alpha 

amplitude could have in principle been performed using single trials, we used the means of 

the amplitude bins for this analysis so that the result could be meaningfully compared to a 

model that included rsc, which is only defined for sets of multiple trials. In line with our 

driving hypothesis, we first performed a second-order polynomial regression of RT on alpha 

amplitude in the ordinary least squares sense using the following equation:

Where x represents mean normalized alpha amplitude. Next, we added a linear term for rsc, 

again in line with our driving hypothesis:

Where y represents rsc. Since we were testing the specific model where RT follows a U-

shaped relationship with alpha power and a direct linear relationship with rsc, we constrained 

 and  to each be non-negative.

We calculated the coefficient of determination (R2) for each model, and statistically tested 

the improvement in the proportion of variance-accounted-for by inclusion of the rsc term 

against the null hypothesis that rsc adds no information by using a bootstrap resampling 

procedure. For the bootstrap, we created 1000 surrogate samplings of rsc values by drawing 

at random an equal number with replacement from the original sample. For each bootstrap 

sample we repeated the bivariate regression described above and calculated R2 to derive a 

distribution of R2 values reflecting the null hypothesis. The proportion of the bootstrapped 

R2 values exceeding the observed R2 value is the p-value for the statistical test.

Snyder et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2015 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Most critically for our predictions, we tested whether the inclusion of a linear term for rsc led 

to a significant decrease in the magnitude of the quadratic term for alpha amplitude (i.e., 

). If so, then this would indicate that any specific U-shaped relationship between RT and 

alpha amplitude was mediated by the linear relationship between RT and rsc. The statistical 

significance for this test was assessed using a bootstrap resampling procedure as above. One 

advantage of a bootstrap procedure for this statistical test is that we compared the 

improvement in the model by including an additional term (i.e., rsc) for the observed data to 

the same improvement by including an additional term for the resampled data, which reflect 

the null hypothesis. Therefore, significant differences between the observed and resampled 

data could not be simply due to having a greater number of model terms. We also performed 

this analysis for the other five frequency bands of interest besides the alpha band to test for 

frequency specificity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1). 
Recording set-up and analysis strategy. A) Model of a representative subject’s head derived 

from an MRI with co-registered electrode positions (colored scatter points). Each color 

represents a different position, and each marker of a given color represents a separate 

recording session. The corresponding ellipsoids each subtend ±1 standard deviation of the 

position (approximately 5 mm) along each of the three principle axes of the position 

distribution. The points by the left lateral canthus are occluded in this view. Unless 

otherwise specified, EEG data from the right occipital electrode (teal) are depicted in 

subsequent figures. The microelectrode array is shown to scale positioned in right V4 

outlined by the green square. B) Conceptual illustration of the procedure for creating 

surrogate spike trains. From top to bottom: First, the raw EEG signal (black) is filtered at the 

alpha-band (gray); second, the envelope (black) is taken for the filtered signal (gray); third, 

periods of high (red) and low (blue) amplitude are identified from the envelope (illustrated 

here using a median split for clarity, in actuality deciles were used); fourth, spikes are 

divided into surrogate spike trains consisting wholly of spikes occurring during periods of 

high alpha amplitude (red raster points) or low alpha amplitude (blue raster points). The 

continuous filter used here is for conceptual illustration; in actuality the amplitude (and 

phase) of the EEG was measured using an FFT of a snippet of data centered on each spike 

(see Methods).
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Figure 2). 
Single-session example of surrogate datasets. A, C, E) Normalized spike counts of surrogate 

spike trains of 43 single units from 200 trials, as a proportion of the maximal spike count for 

each unit. Spikes were split into surrogate spike trains based on which decile of alpha power 

(relative to the entire session) was observed in a 500 ms window of data around the time of 

each spike. In the lowest (A) and highest (E) amplitude deciles, common periods of high and 

low spike counts are evident as dark and light vertical bands, respectively, indicating 

correlated variability in firing rate. In the intermediate decile (C), relative spike counts are 

more uniformly distributed across trials, indicating relatively less correlated variability. B, 

D, F) Matrices of all pair-wise spike count correlations (rsc) for the data depicted in panels 

(A), (C) and (E). Note that the lowest (B) and highest (F) amplitude deciles have greater 

overall correlation than the intermediate decile (D).
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Figure 3). 
Correlation results for spontaneous task across sessions (N = 24. Monkey B: 14 sessions; 

Monkey W: 10 sessions). The results illustrated are for alpha-band EEG measured at the 

right occipital electrode, but similar results were seen across frequencies and at other 

electrodes (see Figure 5). A) The false-color plot shows spike count correlation (rsc) as a 

function of the phase and amplitude of the EEG, interpolated to fill the phase/amplitude 

space. At top, the change in rsc relative to the session average is plotted as a function of 

phase measured when alpha amplitudes were in the top 10%. The black line shows phase 

measured in 12 equally-sized bins. The grey line shows phase measured in 6 bins spaced to 

equate firing rates. Note that the phase-correlation relationship is greatly reduced when the 

phase-rate relationship is controlled. At right, the relative change in rsc is plotted as a 

function of amplitude (midpoint of each decile bin), averaged across phase. Error bars = ± 1 

SEM. B) Curve fitting result for amplitude-correlation relationship. A rational function 

closely approximates the observed data , and was better than a simple linear fit 

. The inset histogram shows the distribution of rational function fits to 

bootstrap permutations of the data, relative to linear fits. The observed  is indicated by 

the vertical dark line and is greater than 99% of the bootstrap values, indicating that the 

relationship is significantly better explained by a rational function than would be expected 

by chance.
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Figure 4). 
Firing rate results for spontaneous task across all sessions and subjects. The results 

illustrated are for alpha-band EEG measured at the right occipital electrode, but similar 

results were seen across frequencies and at other electrodes. A) The false-color plot shows 

firing rate as a function of the phase and amplitude of the EEG, interpolated to fill the phase/

amplitude space. At top, the change in firing rate relative to the session average is plotted as 

a function of phase measured when alpha amplitudes were in the top 10%. At right, the 

relative change in rsc is plotted as a function of amplitude (midpoint of each decile bin), 

averaged across phase. Firing rate was controlled for amplitude by design. Error bars = ±1 

SEM. For the marginal amplitude plot, error bars are smaller than the line thickness.
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Figure 5). 
Amplitude-correlation relationship across all six frequency bands of interest. Panels A and C 

depict the spontaneous condition, panels B and E depict the stimulus-evoked condition. A,B) 

Spike count correlation (rsc) as a function of amplitude (midpoint of decile bin) for each 

frequency. Higher frequencies had greater modulation of rsc as a function of amplitude. 

Lines depict rational function fits as in Figure 3b. C,D) Spline-interpolated topographical 

maps of the strength of the amplitude-correlation relationship (Δrsc = max rsc - min rsc) for 

each frequency. The relationship was qualitatively similar at all electrodes, but was strongest 

at electrodes nearest the array and at those diametrically opposite the array, and was weakest 

at orthogonal locations. This antipodal topography was most evident at higher frequencies 

where the amplitude-correlation relationship was strongest overall.
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Figure 6). 
Results for evoked task. The results illustrated are for alpha-band EEG measured at the right 

occipital electrode, but similar results were seen across frequencies and at other electrodes. 

A) Correlation results, plotted as in Figure 3a. B) Firing rate results, plotted as in Figure 5. 

Note that phase effects are greatly reduced for the evoked task compared to the spontaneous 

task. Error bars = ± 1 SEM.
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Figure 7). 
Neural network modeling results. A) Spike count correlation between excitatory neurons 

(rsc EE) was on the order of 1/N if global input oscillations only were applied to the model 

(gray), and did not vary substantially with modeled EEG alpha power. If an independent 

input oscillation was applied to the inhibitory population, the resulting rsc EE spanned a 

range similar to our observed results and followed a U-shaped profile as a function of 

modeled EEG alpha power (black). B) Amplitude-correlation relationship as a function of 

global oscillation amplitude. The U-shaped amplitude-correlation relationship was robust 

when considering trials derived using a single global input oscillation (and a mixture of 

private inhibitory input oscillations), across a broad range of global input oscillation 

magnitudes.
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Figure 8). 
Psychophysical performance vs. alpha amplitude. Response time followed a U-shaped 

relationship with alpha amplitude (black). The curve depicts the best-fitting second-order 

polynomial. After adjusting for a linear relationship between response time and spiking 

correlation, the relationship between response time and alpha amplitude was more uniform 

(gray), indicating that spiking correlation mediated the relationship (Monkey B, p = 0.047; 

Monkey R, p = 0.030). Error bars: ± 1 SEM.
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