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Abstract
Radiotherapy is a very important tool in the treatment of cancer; nevertheless, its side effects are a hindrance to its use. The
present study is designed to evaluate glucosamine effects against radiation-induced brain oxidative stress and depression-like
effect in rats. Four groups of female Wister rats were used as control, irradiated (4 × 2 Gy), glucosamine (1 g/kg P.O), and
glucosamine + irradiated group. The behavioral responses are estimated. The brain hippocampi of the rats are separated to
evaluate oxidative stress biochemical parameters and glycogen synthase kinase pathway in addition to the biogenic amines.
Irradiation exposure led to disturbances in the behavioral assessments (forced swimming test, light–dark box, and open field
test) and a significant decrease in brain GSH, neurotransmitters (serotonin, norepinephrine, and dopamine), phosphatidyli-
nositol 3 kinase (PI3K), and phosphorylated protein kinase-B (p-AKT) levels. Additionally, MDA and ROS levels increased
significantly post-irradiation along with the phosphorylated glycogen synthase kinase (p-GSK3). Glucosamine administration
before irradiation caused improvement in the behavioral valuations and the biochemical parameters in the brain as well.
Glucosamine might be used as a radioprotector to improve brain function and as an antidepressant drug. It could be promising
as a future therapy in managing depression occurring during radiotherapy.
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Introduction

Radiotherapy is considered a primary treatment modality, a
neoadjuvant or adjuvant therapy with chemotherapy for brain
cancer. Although recent radiation techniques aim at allowing
the delivery of higher radiation doses to the target site and
reducing the damage to normal tissues, but unfortunately, the
neurocognitive decline is still a detrimental factor consider-
ably affecting the quality of life.1 In addition, the diagnosis
and subsequent radiotherapy for head and neck cancer patients
may have effects on the psychosocial state, consequently
influencing their treatments and may lead to suicide. De-
pression and anxiety are the most important psychopatho-
logical complications of brain radiotherapy.2,3 Exposure to
whole-body gamma radiation (8 Gy) significantly caused
neural disorders.4 Recently, it has been found that brain

irradiation (8 Gy, 2 fractions) induced microvascular cognitive
impairment in juvenile murine unilateral hippocampal syn-
aptic plasticity.5
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The brain is affected by radiation exposure according to
age, brain region, and sex. Of the different brain regions, the
cortex and the hippocampus are mostly sensitive to irradiation.
The hippocampus is an active site of neurogenesis in the
mammalian brain and is considered the most affected brain
region regarding depression-like effects.6–9 It is well known
that, oxidative stress produced after radiotherapy destroys
neurons mainly by apoptosis, inflammatory signaling, and
reactive oxygen species (ROS), which oxidize the cellular
components, such as proteins, lipids, and DNA. This subse-
quently decreases the volume of the hippocampus, potentially
leading to a major depression.10 The brain and neurons are
more vulnerable to oxidative stress because of their high lipid
content and oxygen consumption.11 Hence, ROS are one of
the main causes of neurodegeneration, and their involvement
in the pathogenesis of major depression is unequivocally
established.12 Likewise, the potency of oxidative stress is
correlated to the severity of the depression.13 Thus, suitable
antioxidants, which scavenge ROS, could be an effective
approach for preventing and treating depression, especially in
patients undergoing radiotherapy.

Glucosamine hydrochloride is a natural constituent of
glycoproteins mainly found in connective tissues and gas-
trointestinal mucosal membranes. Therefore, it is considered
an effective therapeutic agent for treating osteoarthritis,14

gastritis, and inflammatory bowel diseases,15 as well as
lung injury.16 Glucosamine is found to be a major constituent
of brain glycogen, in addition, it has a protective effect against
brain damage,4,17 but its role in managing depression-like
effect has not been established yet. Glucosamine is considered
an effective compound in the health care field as it could
alleviate oxidative stress through its multiple antioxidant
activities as glucosamine showed a significant reducing power
and superoxide/hydroxyl-radical scavenging ability.18

Glycogen synthase kinase-3 (GSK3) is a serine/threonine
kinase, first found as a phosphorylation-dependent inhibitor of
the glycogen synthase metabolic process.19,20 It is widely
expressed in many tissues with the highest level in the
brain.21,22 GSK3 hyperactivation could contribute to the de-
velopment of mood disorders, such as major depression, bi-
polar disorder, and hyperactivity-related illnesses. The
inhibition of induced p-GSK3 activity could be a common
therapy target for all brain disorders. One of the key mech-
anisms that suppress GSK3 activation is phosphorylated
protein kinase-B (p-AKT)-mediated phosphorylation of
GSK3 on serine-9.21,23 This regulating mechanism of AKTon
GSK3 needs the activation of phosphatidylinositol 3 kinase
(PI3K) for AKT to be phosphorylated and activated, allowing
it to phosphorylate GSK3 (p-GSK3) and inhibit its
activity.23,24

Consequently, the present work is designed to evaluate the
effectiveness of glucosamine as an antidepressant and a radio-
protective agent, through measuring the oxidative stress
markers and singling pathway of PI3K/p-AKT/p-GSK3 in the
brain. Thus, glucosamine may be included as a novel

supportive drug in the treatment protocols of cancer patients
suffering from depression through their exposure to
radiotherapy.

Material and Methods

Animals

Forty Wister premature female albino rats weighing 90–110 g
were obtained from the National Center for Radiation Re-
search and Technology (NCRRT), Cairo, Egypt. Animals
were housed for at least 1 week in the laboratory room of the
Animal Care Facility. They were kept in a plastic cage under
controlled environmental conditions; room temperature
(24°C–27°C), humidity (60% ± 10%), and alternating 12-h
light–dark cycle. Food (standard pellet diet) and water were
allowed ad libitum. All animals were held and administered
the drug by trained staff, and all efforts were made to minimize
the number of animals utilized and to decrease their suffering.
Adequate care was done, and parameters of health general
well-being and indicators of pain and distress were monitored
during the experiment period according to documented
guidelines.25 The Research Ethics Committee of the National
Center for Radiation Research and Technology (REC-
NCRRT), Cairo, Egypt, approved the experimental protocol
set from 28.01.2021 (approval code: 10A/21). The reporting
of this study conforms to ARRIVE 2.0 guidelines.26

Irradiation Process

The rats were exposed to fractionated doses of whole-body
gamma irradiation (2 Gy for four consecutive days) to induce
brain dysfunction and a potential depression-like effect.4,5 The
irradiation process was performed at the NCRRT, Egyptian
Atomic Energy Authority (EAEA), Cairo, Egypt, using a
Canadian Gamma Cell-40 biological radiator (137Cesium),
manufactured by the Atomic Energy of Canada Limited,
Ontario, Canada, and it is characterized by a uniform distri-
bution of rays. The irradiation chamber’s dimensions are
10 cm (height) X 40 cm (diameter), which accommodated a
complete animal group at a time. The radiation dose rate was
.655 rad/sec at the time of exposure. The irradiation process
was performed in the morning; it takes 6 min for each fraction
dose. The Dosimetry Department members at the NCRRT
have carried out the dosimetry dose validation on a scheduled
basis to ensure the dose rate of the gamma-ray source, the
absorbed dose received by the animals, and the uniformity of
dose via dose mapping measurements.

Treatment

Glucosamine sulfate (Joflex capsules, 500 mg) purchased
from Pharaonia Pharmaceuticals Co., Cairo, Egypt, was used
in the investigation. The dose was 1 g/kg b. wt orally. Distilled
water was added to the finely powdered glucosamine sulfate,
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mixed on a Vortex mixer for 1 min, and sonicated for 5 min or
until all solids dissolved. Each 100 g rat body weight was
administered with .5 mL.28

Experimental Design

Forty rats were randomly classified into four groups (n = 10/
group) as follows: Group 1 (control): rats were administered
distilled water. Group 2 (irradiation): rats were administered
vehicle alone (distilled water) and exposed to fractionated
doses of whole-body gamma radiation at a dose level of 8 Gy4

(2 Gy for 4 consecutive days). Group 3 (glucosamine): rats
treated with 1 g/kg glucosamine, P.O.27 Group 4 (glucosamine
+ irradiation): rats treated with 1 g/kg glucosamine, P.O., 1 h
before each irradiation dose. Behavioral tests were performed
24 hrs after the last dose of the irradiation process. Then the
animals were sacrificed under deep anesthesia using urethane
(1.2 g/kg)28 and human-killed by cervical dislocation and
brain tissues were dissected out, rinsed with saline, dried on a
filter paper, and hippocampi were rapidly excised according to
the technique of Sierakowiak et al.29 The hippocampal tissues
were homogenized in ice-cold phosphate buffer saline (PBS)
to prepare 10% (w/v) homogenates and kept at �80°C for
biochemical analyses.

Depression-like Behavioral Tests

For all the behavioral tests, rats have been trained for 1 day
before the test. At the end of the experiment, they were al-
lowed to perform the tests separately. Each animal was vi-
deoed for 5 min, and then a manual recording of the events
was done in a blind way with codes to avoid any bias. The
behavior tests were done for each group parallel together as
3 rats were taken for each test separately to avoid animals
being exposed to overstress due to behavior tests.

Forced Swimming Test. FST is a specific test for assessing
depression-like effect. Rats were individually forced to swim
in transparent cylindrical glass containers (40 cm in height and
22 cm in diameter) filled with 20 cm of water (23°C–25°C).
Animals were trained for the test 1 day before the test. Each
animal was allowed to swim for 5 min to record the immobility
time, latency to immobile, and climbing time according to the
method of Yankelevitch-Yahav et al.30 Then, each rat was
removed from the water, dried with a towel, and returned to its
cage. An increase in the duration of immobility is indicative of
depressive-like behavior.31

Light–Dark Box Test. LDBT is a way of measuring anxiety and
depression in rodents. The apparatus for the LDBT consists of
a box (42 × 21 × 25 cm) divided into a small (one-third) dark
part and a large (two-thirds) lightened part.32 A restricted
opening (3 × 4 cm) connects the two chambers. Prior to in-
troducing each rat to the area, it was cleaned with 10% alcohol
to eliminate possible bias due to odors that may remain from

the previously tested rats. At the start of the test, each animal
was placed in the brightened chamber and videoed for 5 min.
Latency time to enter the dark, number of transitions (enter
and exit) between two compartments, time spent in the light
compartment, and time spent in the dark compartment were
assessed. Rats naturally select dark places while escaping
bright places.33 A longer time spent in the light part reflected
the depressive-like effect.

Open Field Test. OFTassists the general locomotor activity and
depression of rats and adjusts the habituation of other tests.34

Each animal was placed in the central point of an opened
square box (30 × 30 × 15 cm) divided into 16 squares of equal
area. Rats were allowed to freely explore the apparatus for
5 min. Then, they were observed for the following parameters:
latency time (i.e., time taken to move, a longer time spent in
the center zone reflected the depressive-like effect of the rats),
ambulation to express locomotor activities (i.e., number of
squares crossed), number of grooming events (i.e., body
cleaning with paws and picking at the body with mouth), and
number of rearing events (i.e., rats stand on hind legs or with
their forearm against the wall or in the free air). Prior to in-
troducing each rat to the area, it was cleaned with 10% alcohol
to eliminate possible bias due to odors that may remain from
the previously tested rats.35

Oxidative Stress Biomarkers in the Hippocampus

Lipid peroxidation (LPO) was estimated in the hippocampi
homogenate by thiobarbituric acid assay, which is based on
malonaldehyde (MDA) reaction with thiobarbituric acid
creating thiobarbituric acid reactive substances (TBARS), a
pink color complex was formed, and the absorbance was
measured at 532 nm according to Yoshioka et al.36 Reactive
oxygen species (ROS) were measured using a kit purchased
from LifeSpan BioSciences, Inc., USA (Cat. No: LS-F97590).
Reduced glutathione (GSH) was determined by a colorimetric
assay kit purchased from Bio Diagnostic, Egypt, according to
Beutler et al.37

Enzyme-Linked Immunosorbent Assay (ELISA)
Detection of Biogenic Amines and Phosphorylated
Glycogen Synthase Kinase (p-GSK3) Pathway
Parameters

The homogenized hippocampi were used for estimating
biogenic amines (i.e., serotonin [ST], norepinephrine [NE],
and dopamine) and p-GSK3 pathway parameters using ELISA
kits. The dopamine kit was purchased from Eagle Biosciences,
Inc., USA (Cat. No: DOU39-K01). The ST (catalog no:
MBS9362408), NE (catalog no: MBS269993), p-GSK3
(catalog no: MBS730623), phosphorylated protein kinase-B
(p-AKT) (catalog no: MBS702819), and phosphatidylinositol
3 kinase (PI3K) (catalog no: MBS702819) kits were
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purchased from MyBioSource, Inc., USA. All parameters
were estimated according to the catalog instruction guidelines.

Statistical Analysis

The data were expressed as mean ± standard error (SE). All
results were analyzed using one-way analysis of variance
(ANOVA), followed by the Tukey–Kramer post-
comparison test and graphs were plotted using Prism 5
(GraphPad Software, Inc., San Diego, CA, USA). Differ-
ences with P-values of less than .05 were considered sta-
tistically significant.

Results

It was noticed that no significant differences were detected in
any of the tested markers (behavioral and biochemical) be-
tween control animals and those given glucosamine without
being irradiated.

Effect of Glucosamine on Depression-like Behavioral
Tests

The irradiated group revealed a significant increase in im-
mobile time in the FST compared with the control group
(160%). Meanwhile, the glucosamine + irradiation group
recorded a significant decrease in the time of immobility by
75% in the FSTcompared with the irradiated group (Figure 1).
However, the irradiated group showed a significant decrease in
the number of entries/exits (Figure 2(A)) (77%), the number of
crossed squares (Figure 2(B)) (60%), and the number of jumps
(Figure 2(C)) (50%) compared with the control group in the
LDBT. Pretreatment with glucosamine showed a significant
increase in the number of entries/exits (50%), number of
crossed squares (150%), and number of jumps (200%)
compared with the irradiated group in the LDBT. The irra-
diated group showed a significant decrease in the time spent in
the dark by 40% and a significant increase in the time spent in
the light by 94%, compared to the control
group. Administration of glucosamine before irradiation
significantly increased the time spent in the dark by 67% and a
significant decrease was observed in the time spent in the light
by 63% compared to irradiated rats (Figure 2). As a result,
glucosamine administration before irradiation increased the
locomotive activity, which appears in the increased entry,
crossed squares, and jumps.

Rats exposed to gamma radiation showed a significant
elevation in latency time (33%) (Figure 3(A)) and rearing
(63%) (Figure 3(C)) compared with the control group in the
OFT. Glucosamine administration before irradiation showed a
significant decrease in the latency time (75%) (Figure 3(A))
and a significant increase in rearing (17%) compared with the
irradiated group. Ambulation (Figure 3(B)) and grooming in
tests (Figure 3(D)) were significantly reduced in the irradiated

group (50% and 50%, respectively) compared with those in
the control group. Animals that received glucosamine dis-
played a significant increase in ambulation and grooming
compared with those in the irradiated group (100% and 25%,
respectively) (Figure 3(B) and 3(D)).

Effect of Glucosamine on Oxidative Stress Biomarkers
(MDA, ROS, and GSH)

MDA and ROS contents in the hippocampal homogenate
significantly increased after irradiation by 50% and 150%,
respectively, compared to the control rats (Figure 4(A) and(c)).
While GSH contents significantly reduced (58%) in the ir-
radiated rats compared with those in the control group
(Figure 4(B)). Pretreatment with glucosamine prevented the
increase in MDA level (50%) and led to a significant increase
in the GSH contents (250%) as compared to the irradiated
group.

Effect of Glucosamine on Neurotransmitters
(Serotonin [SE], Norepinephrine [NE],
and Dopamine)

SE, NE, and dopamine contents significantly decreased (67%,
66%, and 90%, respectively) after radiation exposure com-
pared to the control group (Figure 5(A)-(C)). The glucosamine
+ irradiation group showed a significant increase in the
neurotransmitter’s concentration compared with the irradiated
group by 250%, 150%, and 107%, respectively (Figure 5(A)-
(C)). Consequently, this revealed an improvement in the mode
after glucosamine treatment.

Effect of Glucosamine on Glycogen Synthase
Kinase Pathway

Exposure to gamma radiation revealed a significant decline in
PI3K and p-AKT contents (57% and 63%, respectively)
compared with the control group. The glucosamine treatment
pre-irradiation succeeded in returning the levels of PI3K and
p-AKT to the normal values (101% and 102%, respectively)
(Figure 6(A) and (B)). Rats exposed to gamma radiation
showed a significant increase in p-GSK contents (175%)
compared with the control group (Figure 6(C)). The glu-
cosamine + irradiation group presented a significant reduction
in p-GSK concentration compared with the irradiated group
(64%). Pretreatment of irradiated rats with glucosamine im-
proved the glycogen synthase pathway.

Discussion

The present study was carried out to investigate the possible
antidepressant effect of glucosamine on the depressive-like
consequence resulting from gamma irradiation in female
rats. To achieve this aim, FST, LDBT, and OFT were
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performed. The obtained data showed that gamma irradi-
ation significantly increased the immobility time of FST,
while glucosamine given before irradiation significantly
reduced the immobility time. This test was conducted by
Slattery and Cryan38 who stated that the FST is the most
extensively used test for evaluating antidepressant effec-
tiveness and also used to distinguish the antidepressant
impact from the stimulatory effect.39 According to Gorlova
et al,40 the disturbance in behavioral symptoms in neuro-
psychiatric diseases was attributed to the elevation in ox-
idative stress. The antidepressants exert their therapeutic
role by quashing the production of ROS and increasing
antioxidant protection.

The data obtained from LDBT showed that the number of
entries/exits, the number of squares crossed, the number of
jumps, and the time spent in the dark decreased after ir-
radiation. However, glucosamine administration reversed
these actions. The LDBT was based on the nature of ro-
dents, that rodents favor dark environments, and avoid
lighted ones and on their proclivity for exploratory be-
havior.32 Additionally, the increase of transitions is an index
of the locomotive activity and tendency of rats to explore.41

Likewise, glucosamine acted in the present study. This
natural behavior has been used to determine the degree of
anxiety in animals and depression-like effect.42

In the current study, an increase of rearing and latency time
in OFT occurred after irradiation, reversely glucosamine ac-
ted. The rearing activity is a critical indicator of depression-
like behavior.43 It has been proposed that rearing is a good
indicator of environmental novelty and that hippocampal
realizing is an important component of the system that controls
rearing in novel situations.44 These findings confirmed the
results of previous studies indicating that persistent tetrahy-
drocannabinol therapy in rats reduces the rearing activity.45–47

The current results showed a remarkable improvement in all
behavioral measurements of the irradiated rats pretreated with
glucosamine, confirming the glucosamine’s neuroprotective
effects, which is also supported by the biochemical parameter
estimation.

The pathophysiology of depression and other brain ill-
nesses, such as Parkinson’s disease, Alzheimer’s disease,
bipolar disorder, major depression, and schizophrenia, has
been linked to oxidative stress,48–52 which appears with ra-
diotherapy. Furthermore, there is evidence that raising brain
GSH levels (via the GSH precursor N-acetylcysteine) can help
people with such diseases.53,54 The present study revealed that
irradiation exposure significantly increased the MDA and
ROS levels and significantly decreased the GSH content in the
hippocampus of brain tissues which is in line with what was
reported by Said et al.55 It was found that a whole-body

Figure 1. Effect of glucosamine on forced swimming test immobility time (A), latency to immobile (B), and climbing time (C). Each value
represents mean ± SE. Statistical analysis was performed using one-way ANOVA, followed by the Turkey–Kramer multiple comparisons
test. @ Significantly different from control group at P < 05. # Significantly different from the irradiated group at P < 05.
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gamma irradiation (5 Gy) caused an imbalance between ox-
idant and antioxidant species in the cerebral hemispheres of
rats. Moreover, an impairment of hippocampal function after a
4 Gy dose of gamma irradiation exposure was reported.56

Oxidative stress-induced ROS is the main cause of radiation
side effects.57 However, brain tissue lipid content is 60%, and
it consumes a lot of energy.58 Because of its high O2 usage
rate, a high content of polyunsaturated fatty acids formed
(which are prone to lipid peroxidation) and a high content of
iron, which increases the generation of free radicals via Fenton
reactions. Furthermore, compared with other organs, the brain
is deficient in antioxidants.59 Therefore, the brain has been
considered a radiosensitive organ.60 A reduction in GSH, the
most common cellular non-protein thiol in the brain, plays a
critical role in protecting cells from the damaging effects of
radiation-induced ROS.61

It was noticed that no significant differences were detected
in any of the tested markers between control animals and those
given glucosamine without being irradiated, indicating that
glucosamine administration is safe. Likewise, glucosamine
administration before irradiation improved the antioxidant and

oxidative stress parameters. Glucosamine has a regulatory
function in the activation of the hexosamine biosynthesis
pathway.62 The ability of glucosamine to block the activation
of nuclear factor kappa B (NF-κB) was largely responsible for
its anti-inflammatory actions.16 Glucosamine helps in man-
aging the stress response and reducing inflammation, hence
preventing tissue damage.63 The study of Hwang et al 664

supported the present findings; they reported that glucosamine
or its derivatives have been suggested as potential neuro-
protective or anti-inflammatory drugs. Moreover, Chen et al65

proved that glucosamine could protect retinal ganglion cells
against oxidative stress-induced injury by modulating protein
O-GlcNAc glycosylation.

Antidepressant medicines enhance the reduced GSH levels,
which are essential for depression treatments because lowered
GSH levels have been documented in the brains of people with
bipolar disorder, schizophrenia, and mental disorders.52 The
effects of antidepressant medications on lipid peroxidation
appear to be linked to increases in the reduced GSH levels.
The lower dose of fluoxetine, which also raised the GSH
levels, reduced the increase in MDA levels in mice brains

Figure 2. Effect of glucosamine on dark/light box: Number of transitions between two compartments (A), time spent in the light
compartment (B), time spent in the Dark compartment (C), and number of jumps (D). @ Significantly different from the control group at
P < 05. # Significantly different from the irradiated group at P < 05.
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caused by lipopolysaccharide endotoxin, suggesting an anti-
oxidant impact.66 As well, glucosamine could be used to
improve heart and brain damage induced by gamma radiation
exposure or aluminum chloride due to its antioxidant effect.4

Normally, ST and NE are important modulators of pain
perception and depression; therefore, it is logical to assume
that impairments in both functions are the result of abnor-
malities in SE and NE metabolism and transmission.67 The
current results showed a significant decrease in monoamine
levels after irradiation (i.e., SE, dopamine, and NE); however,
glucosamine administration attenuated all of them. These
observations came by those of Said et al.55 They described that
radiation-induced oxidative stress and monoamine oxidation
could decrease monoamine levels in the cerebral hemispheres
of irradiated rats. This drop in monoamines could be due to the
decrease in their synthesis because of radiation-induced injury
to the ileal mucosa, or the reduction in net ilea absorption,
where the decrease in tryptophan absorption reduces SE
synthesis, and the decrease in L-tyrosine absorption reduces
the generation of dopamine and NE.68

AKT (protein kinase B)-mediated phosphorylation of
glycogen synthase kinase-3 (GSK-3) on serine-9 is one of the
primary mechanisms that regulate GSK-3 activation. For AKT

to be phosphorylated and activated, phosphoinositide 3-kinase
(PI3K) must be activated which allows the phosphorylation of
GSK-3 and suppression of its function.23,24 Otherwise, the 5-
hydroxytryptamine (5-HT) (ST) receptor stimulation is
thought to stabilize the dephosphorylated form of GSK-3,
resulting in enhanced kinase activity. Agents that induce in-
hibitory serine-9 phosphorylation of GSK-3 have been
demonstrated to improve the serotonergic activity by blocking
5-HT re-uptake transporter, inhibiting 5-HT metabolism, or
increasing 5-HT release from the presynaptic neuron. Ac-
cording to these findings, serotonergic neurotransmission may
play a key role in controlling GSK-3 activity in the brain via
serine-9 phosphorylation-mediated inhibition. The lack of
serotonergic neurotransmission seen in depression would
corroborate this idea by contributing to impaired GSK-3
activity.23,69

The therapeutic effects of various psychiatric medicines
are mediated in part by their ability to suppress the PI3K/
AKT/GSK3 signaling. The mood stabilizer lithium, for
example, competitively reduces the Mg2+-adenosine
triphosphate-dependent catalytic activity of GSK3, and it
has been used as a treatment for schizophrenia, depression,
and other mental diseases.70 The antipsychotic medication

Figure 3. Effect of glucosamine on open field test: latency time (A), ambulation (B), rearing (C), and grooming (D). @ Significantly different
from the control group at P < 05. # Significantly different from the irradiated group at P < 05.
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Figure 4. Effect of glucosamine on MDA (A), GSH (B),the and ROS (C) concentrations in brain tissue of irradiated rats. @ Significantly
different from the control group at P < 05. # Significantly different from the irradiated group at P < 05.

Figure 5. Effect of glucosamine on serotonin (A), norepinephrine (B), and dopamine (C) contents in brain tissue of irradiated rats.
@ Significantly different from the control group at P < 05. # Significantly different from the irradiated group at P < 05.
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haloperidol has been associated with AKT signaling
suppression.71 The present study showed that, irradiation
activated PI3K/p-AKT/p-GSK3 signaling, whereas glu-
cosamine administration before irradiation inactivated
PI3K/p-AKT/GSK3 signaling. In the same line, the neu-
roprotective effects of curcumin could be mediated by
managing oxidative stress regulating PI3K/AKT/
GSK3 signaling pathway.72,73 Various plants or fruit
components may also be beneficial. Likewise, liquir-
itigenin and kaempferol are plant constituents that may be
effective in protecting neurons and treating major de-
pression by modifying PI3K/AKT/GSK3 signaling.74,75

Therefore, the antioxidant effect of glucosamine was
established by inhibiting the PI3K/p-AKT/p-GSK3 signaling
pathway, decreasing oxidative stress markers, and increasing
monoamines.

Conclusion

It could be concluded that glucosamine has a potent anti-
depressant-like effect by regulating the PI3K/p-AKT/
p-GSK3 signaling pathway and decreasing ROS as well as
managing the behavioral status. Thus, it could be utilized as a
promising drug for some neuropsychiatric disorder treatments
or a controlling agent against the side effects of radiation

during radiotherapy. Further studies are recommended to
identify different mechanisms of glucosamine as an antide-
pressant drug on a molecular basis. In addition, clinical trials
are most important to figure out the beneficial effect of glu-
cosamine on depressive patients exposed to radiotherapy.
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