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Abstract: Heme iron and nonheme dimanganese catalases protect biological systems against oxida-
tive damage caused by hydrogen peroxide. Rubrerythrins are ferritine-like nonheme diiron proteins,
which are structurally and mechanistically distinct from the heme-type catalase but similar to a
dimanganese KatB enzyme. In order to gain more insight into the mechanism of this curious enzyme
reaction, non-heme structural and functional models were carried out by the use of mononuclear
[FeII(L1–4)(solvent)3](ClO4)2 (1–4) (L1 = 1,3-bis(2-pyridyl-imino)isoindoline, L2 = 1,3-bis(4′-methyl-2-
pyridyl-imino)isoindoline, L3 = 1,3-bis(4′-Chloro-2-pyridyl-imino)isoindoline, L4 = 1,3-bis(5′-chloro-
2-pyridyl-imino)isoindoline) complexes as catalysts, where the possible reactive intermediates, diiron-
perroxo [FeIII

2(µ-O)(µ-1,2-O2)(L1-L4)2(Solv)2]2+ (5–8) complexes are known and well-characterized.
All the complexes displayed catalase-like activity, which provided clear evidence for the formation
of diiron-peroxo species during the catalytic cycle. We also found that the fine-tuning of iron redox
states is a critical issue, both the formation rate and the reactivity of the diiron-peroxo species showed
linear correlation with the FeIII/FeII redox potentials. Their stability and reactivity towards H2O2

was also investigated and based on kinetic and mechanistic studies a plausible mechanism, includ-
ing a rate-determining hydrogen atom transfer between the H2O2 and diiron-peroxo species, was
proposed. The present results provide one of the first examples of a nonheme diiron-peroxo complex,
which shows a catalase-like reaction.

Keywords: catalase mimics; peroxide; diiron-peroxo complexes; structure/activity; kinetic studies

1. Introduction

Nonheme manganese catalases (MnCAT), as alternatives to the heme-containing
catalases, contain a binuclear active sites and deplete hydrogen peroxide in cells through
a ping-pong mechanism interconventing between Mn2(II,II) and Mn2(III,III) states in
a two-electron catalytic cycle [1,2]. Manganese catalase enzymes such as Lactobacillus
plantarum (LPC) [3,4], Thermus thermophilus (TTC) [5,6], Thermoleophilium album (TAC) [7],
and Pyrobaculum calidifontis VA1 (PCC) [8] have been isolated and characterized from both
bacteria and archae. Despite their large numbers and importance, few catalase enzyme
structures are known and they can also be sub-divided into two groups, each with a
different active site.

Among them both LPC and TTC have a dimanganese catalytic core with Glu3His2
ligands coupled by two single-atom solvent bridges (Scheme 1A) [4,9]. In contrast to the
above structure, the cyanobacterial manganese catalase (KatB) from Anabaena shows a
markedly different active site with canonical Glu4His2 coordination geometry and two
terminal water molecules (Scheme 1B). However, it closely resembles the active site of
the ferritin-like ruberythrin (RBR), which is a nonheme diiron protein [10]. The Mn-Mn
distances (~3.8 Å) in KatB are similar to that was observed for the iron-containing ribonu-
cleotide reductase R2 (3.6–3.7 Å), but much shorter distances have been found for LPC and
TTC (3.0–3.1 Å). The H2O2 binds terminally to one of the Mn center in LPC/TTC, while in
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KatB and RBR, the symmetrical active sites and the relatively long M-M distances favor its
µ-1,2 binding mode [11]. These enzymes, coupled with superoxide dimutates (SOD), are
responsible for the full detoxification of O2

•– through the formation of H2O2 and its redox
disproportionation into water and dioxygen. H2O2 can also be classified as a ROS particle,
since it readily reacts with reduced transition metals and results in highly reactive HO•

radical via Fenton-like reactions. Many rationally designed synthetic biomimetics are being
developed against oxidative stress to treat various diseases, including Alzheimer’s, cancer,
aging, neurodegenerative, inflammatory and heart diseases [12–21]. The identification and
study of the structure of the above enzymes can greatly contribute to the design of new
catalase mimetics for potential therapeutic use. The structural and functional investigations
on low molecular-weight copper, manganese and iron containing model compounds that
are focused mainly on the effect of the used metals and their ligand environment (donor
sites) on redox potential and through it on reactivity. Based on the literature data, various
Schiff base, aminopyridine and azamacrocyclic derivatives have proven to be the most
popular and practical ligands [12–21]. Considering the reactivity of manganese catalases
(KatB) toward H2O2, including a ping-pong mechanism interconventing between Mn2(II,II)
and Mn2(III,III) states in a two-electron catalytic cycle, a similar interaction with H2O2
has not been reported for diiron(III) peroxo intermediates which may be proposed in the
catalytic cycles of RBR. Progress in recent years has made a number of diiron(III)-peroxo
complexes available that can be generated by stoichiometric amount of H2O2 [22–27].
Therefore, the opportunity has arisen to investigate both electrophilic and nucleophilic
reactivity towards various substrates, such as phenols, N,N-dimethylanilines, and various
aldehydes, respectively [25,26]. The differences in reactivity observed in the investigated
systems, as well as the stability of the peroxo intermediates can in principle be explained
by the disproportionation of H2O2 as a competing process. Clarification of the relationship
between catalase-like activity and catalytic oxidation is an important factor in the design
and development of high efficiency catalytic systems. In addition, the investigation of
the metal-based disproportionation of H2O2 may help us to understand the nature of the
catalytically active species present both, in the enzymatic and biomimetic systems. We
have reported that the [FeII(L1)(solvent)3](ClO4)2 (1) is an efficient catalyst for the oxidation
of thioanisoles and benzyl alcohols by the use of H2O2 as cooxidant, where a metastabile
green species (5) with a FeIII(µ-O)(µ-1,2-O2)FeIII core was observed and characterized
by UV-Vis, EPR, rRaman, and X-ray absorption spectroscopic measurements [24]. The
reactivity of 5 was also published both in nucleophilic (deformylation of aldehydes) and
electrophilic (oxidation of phenols) reactions [27].

As a possible functional model of RBR, we recently investigated the reactivity of
the peroxo adduct [Fe2(µ-O2)(MeBzim-Py)4(CH3CN)]4+ (MeBzim-Py = (2-(2′-pyridyl)-
N-methylbenzimidazole) with H2O2 and found direct kinetic and computational evi-
dence for the formation of low-spin oxoiron(IV) via dissociation process [22,23]. As a
continuation of this tudy, the previously reported and fully characterized FeIII

2(µ-O)(µ-
1,2-O2)(IndH)2(Solv)2]2+ (IndH = L1 = 1,3-bis(2-pyridyl-imino)-isoindolines) [24,25] and
their substituted isoindolin-containing derivatives (L2–L4, 2–4) were chosen as model
compounds, in which the dissociation of the diiron(III) core can be ruled out due to the µ-
oxo-bridge, and investigated its reactivity towards H2O2 to gain insight into the mechanism
of RBR enzymes (Scheme 2).
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2. Results and Discussions

In view of the above results, further studies were planned to elucidate the mechanism
of both the diiron(III)-peroxo formation and its decay mediated by H2O2. Complex 5
from its precursor complex 1 can be generated even at room temperature by the use of
excess of H2O2 in CH3CN. Its formation and decay process was followed as an increase
and decrease in absorbance at 690 nm (ε = 1500 M−1 cm−1 per Fe ion and assuming 100%
conversion), which can be assigned as a charge transfer between FeIII and the O2

2− ligand
(Figure 1a) [24]. Similar spectral feature can be observed for the complexes 6–8: 691 nm
(ε = 1404 M−1 cm−1), 692 nm (ε = 1460 M−1 cm−1), and 693 nm (ε = 1308 M−1 cm−1),
respectively. It is worth noting that the green species (5), after decomposition, can be
regenerated 2–3 times by adding additional H2O2 without significant decrease on the yields
(Table 1, Figure 1b and inset in Figure 2a). Similar behavior and yields were observed
for 6, but much lower values were obtained for 7 and 8. These results are consistent with
the stability and/or the reactivity of the intermediates at high concentrations of added
water, providing further information for the possible role of the binding water during the
formation of the reactive oxidant.

Preliminary kinetic studies were performed at 20 ◦C to establish the role of the ob-
served diiron(III)-peroxo intermediates in the catalytic disproportionation reaction of H2O2.
The formation and decomposition of 5 in the presence of H2O2 was monitored by following
the rise and fall of its visible chromophore (Tables 2 and 3), as well as the appearance of
the dioxygen formed by gas volumetric methods (Figure 2b). Dioxygen formation started
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after a short lag phase during which the peroxo-adduct (5) accumulated. The lag phase
was followed by a linear dioxygen formation period during which time 5 persisted in a
pseudo-steady-state. This profile is similar to that found for the water-assisted decay of
FeIII(H2O)(OOH) intermediate into the reactive FeV(O)(OH) species [28]. Upon depletion
of H2O2, 5 decomposed rapidly and the dioxygen formation ceased. The yield of dioxygen,
TON (turnover number = mol H2O2/mol catalyst) and the TOF (turnover frequency =
mol H2O2/mol catalyst/h) values were determined to be Yield = 85%, TON = 10.4 and
TOF = 288 h−1 as a result of volumetric method via the measurements of dioxygen evolu-
tion from the reaction mixture ([H2O2] = 0.243 M and [1] = 0.002 M) at 20 ◦C in CH3CN.
Similar values were obtained for the complexes 2, 3 and 4 under the same conditions
(Table 4). The results clearly indicate that diiron-peroxo intermediates play a key role in
the formation of the reactive species responsible for the H2O2 oxidation.
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Table 1. Dependence of the yield of peroxo complexes (5–8) and the evolved oxygen (parantheses)
on the number of cycles. [Fe]0 = 2 mM, [H2O2]0 = 24 mM (4×) in CH3CN at 20 ◦C.

Cycles Yield (5) and (O2)/% Yield (6)/% Yield (7)/% Yield (8)/%

I. 100 (95) 100 100 100
II. 91 (92) 87 48 43
III. 73 (78) 70 39 20
IV. 61 (64) 53 31 13
V. 41 (27) 36 26 12

2.1. Kinetic Studies on the Formation of Diiron-Peroxo Complexes (5–8)

Detailed kinetic studies on the reaction of 1 (2 mM) with H2O2 (24–98 mM) were
carried out in CH3CN at 15 ◦C, and the formation of the green species 5 was followed
by UV-vis spectroscopy as an increase in absorbance at 690 nm under pseudo-first-order
conditions (excess of H2O2) (Table 2). At constant [1]0 = 2 mM, the formation of 5 exhibits
a first-order dependence, and the first-order rate constants show a good linear dependence
with [H2O2]0 (Figure 3a), affording the second-order rate constant k2 = 0.93 M−1 s−1 at
15 ◦C and 1.09 M−1 s−1 at 20 ◦C. These values are about 5–6 times smaller than those
obtained for [FeII(MeBzim-Py)]2+ (5.5 M−1 s−1), FeII(MeBzim-Py)2+ (6.6 M−1 s−1) and
FeII(TBA)2+ (6.54 M−1 s−1) complexes under the same conditions at 20 ◦C [23,26]. It is
worth noting that adding large volumes of water (~0.5 M) resulted in nearly twice the rate
of the diiron-peroxo formation. Furthermore, a kinetic isotope effect (KIE) of 2.99 and 3.07
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were observed for the formation of 6 and 7, when the experiments were carried out in the
presence of added H2O or D2O. This value may represent the result of much more multiple
effects compared to the elemental step, but clearly indicate the key role of the water during
the diiron-peroxo complex formation.
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Table 2. Kinetic data for the formation of intermediates 5, 6, 7 and 8 in CH3CN.

Nr. Complex T/◦C [1–4]0/mM [H2O2]0/M kobs10−2 s−1 k2/M−1 s−1

1 1 15 2 0.0243 2.12 0.87 ± 0.03
2 1 15 2 0.0367 3.15 0.86 ± 0.04
3 1 15 2 0.0489 4.07 0.83 ± 0.03
4 1 15 2 0.0734 6.76 0.92 ± 0.04
5 1 15 2 0.0979 9.04 0.92 ± 0.03
6 2 15 2 0.0243 4.45 1.83 ± 0.09
7 2 15 2 0.0367 5.83 1.58 ± 0.05
8 2 15 2 0.0489 8.44 1.72 ± 0.06
9 2 15 2 0.0734 10.5 1.43 ± 0.04

10 2 15 2 0.0979 14.45 1.48 ± 0.04
11 3 15 2 0.0243 9.22 3.79 ± 0.15
12 3 15 2 0.0367 12.64 3.44 ± 0.13
13 3 15 2 0.0489 16.95 3.46 ± 0.14
14 3 15 2 0.0734 24.61 3.35 ± 0.14
15 3 15 2 0.0979 31.07 3.17 ± 0.11
16 4 15 2 0.0243 9.25 3.81 ± 0.15
17 4 15 2 0.0367 13.17 3.59 ± 0.14
18 4 15 2 0.0489 18.48 3.78 ± 0.16
19 4 15 2 0.0734 27.07 3.69 ± 0.15
20 4 15 2 0.0979 35.83 3.66 ± 0.15
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Table 3. Kinetic data for the disproportionation of H2O2 mediated by 5, 6, 7 and 8 in CH3CN.

Nr. Complex T/◦C [1–4]0/mM [H2O2]0/M kobs/10−3 s−1 k2/10−2 M−1 s−1

1 1 15 0.738 0.0243 0.358 1.47 ± 0.06
2 1 15 1.48 0.0243 0.387 1.59 ± 0.07
3 1 15 2 0.0243 0.370 1.52 ± 0.06
4 1 5 2 0.0243 0.116 0.477 ± 0.02
5 1 10 2 0.0243 0.160 0.658 ± 0.03
6 1 20 2 0.0243 0.523 2.15 ± 0.11
7 1 25 2 0.1 3.33 3.33 ± 0.11
8 1 25 2 0.2 5.57 2.79 ± 0.08
9 1 25 2 0.3 10.1 3.36 ± 0.09

10 1 25 2 0.6 17.3 2.89 ± 0.07
11 1 25 2 0.9 27.1 3.01 ± 0.06
12 1 25 0.3 0.3 10.3 3.42 ± 0.12
13 1 25 0.6 0.3 10.1 3.38 ± 0.11
14 1 25 1 0.3 11.1 3.68 ± 0.14
15 1 25 1.4 0.3 9.47 3.16 ± 0.13
16 1 10 2 0.3 1.99 0.663 ± 0.02
17 1 15 2 0.3 3.63 1.21 ± 0.05
18 1 20 2 0.3 6.12 2.04 ± 0.08
19 2 15 0.738 0.0243 0.823 3.39 ± 0.11
20 2 15 1.07 0.0243 0.692 2.85 ± 0.09
21 2 15 1.48 0.0243 0.772 3.18 ± 0.10
22 2 15 1.77 0.0243 0.744 3.06 ± 0.09
23 2 15 2 0.0243 0.730 3.00 ± 0.11
24 2 5 2 0.0243 0.332 1.37 ± 0.04
25 2 10 2 0.0243 0.413 1.70 ± 0.05
26 2 20 2 0.0243 1.09 4.49 ± 0.27
27 3 15 0.738 0.0243 3.92 16.1 ± 0.72
28 3 15 1.48 0.0243 4.71 19.4 ± 0.62
29 3 15 2 0.0243 4.83 19.9 ± 0.68
30 3 5 2 0.0243 2.42 9.96 ± 0.35
31 3 10 2 0.0243 3.41 14.01 ± 0.63
32 3 20 2 0.0243 8.90 36.6 ± 2.01
33 4 15 0.738 0.0243 5.49 22.6 ± 0.79
34 4 15 1.48 0.0243 5.44 22.4 ± 0.83
35 4 15 2 0.0243 5.75 23.8 ± 0.85
36 4 5 2 0.0243 2.89 11.9 ± 0.48
37 4 10 2 0.0243 4.20 17.3 ± 0.67
38 4 20 2 0.0243 10.2 42.01 ± 1.77

In the next step, we investigated the effect of the the ligand modification by introducing
electron withdrawing (Cl) or electron releasing (CH3) substituents on the pyridine arms
in the fourth and fifth positions with emphasis on the redox potential and Lewis acidity
of the precursor complex. Since the redox potential of the substituted complexes can be
measured under the same conditions, it can be used as excellent reactivity descriptor. On
the cyclic voltammogram of the Fe(II)-isoindoline complexes (1–4) irreversible reduction
and oxidation peaks can be recognized within the range of −440 to +1160 mV (vs. Fc/Fc+).
The huge peak separations (∆E = Epa − Epc, Table 4) indicates the irreversibility of the redox
processes and suggests chemical reactions coupled to the electrode reaction. The results,
obtained at the scan rate of 100 mV/s, show that oxidation potential is mainly influenced
by the electronic properties of the ligands, since the anodic peak potentials (Epa) of the
complexes are increasing in the order of electron releasing ability of the substituent on the
pyridine moiety (Figure 4). The Epa spans a 128 mV range from 655 mV (1) to 783 mV (4),
which is not too large but informative, in terms of the effect of the substituents. However,
the fact that the anodic peak of complex 1 can be found at lower potentials than it could be
expected according to electronic effects, suggest that steric effects are also influencing the
oxidation reactions. One can assume that the steric effect of the methylated and chlorinated
ligands can cause an anodic shift in the oxidation peak potential of the complexes.
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Table 4. Rate constants, electrochemical data and activation parameters for the formation of FeIII
2(µ-

O)(µ-1,2-O2)(L1-L4)2(Solv)2]2+ (5–8) complexes and their catalase-like reactions.

1 (5) 2 (6) 3 (7) 4 (8)

Epa(FeII/FeIII)/mV vs. Fc/Fc+ 655 683 765 783
Epc(FeII/FeIII)/(mV vs. Fc/Fc+ −90 −223 −155 −143

∆E/mV 745 905 920 925
yield/% 85 100 92 85

TON ([S]/[Fe]) 10.4 12.2 11.3 10.4
TOF ([S]/[Fe]/h) 288 418 354 234

k2(cat)/10−2 M−1 s−1 (15 ◦C) 1.52 3.05 19.9 23.8
EA/kJ mol−1 72.3 55.9 57.5 55.5

∆S 6=/J mol−1 K−1 −37.7 −88.1 −65.9 −71.4
∆H 6=/kJ mol−1 70 53.5 55 53.1
∆G 6=/kJ mol−1 81 78.9 74 73.7

kdecay/10−2s−1 (15 ◦C) 0.13 0.15 1.22 1.41
kform/M−1 s−1 (15 ◦C) 0.93 1.43 3.16 3.66
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Figure 3. (a) Formation of diiron-peroxo (5–8) complexes. Plots of kobs against H2O2 concentration to determine a second-
order rate constant. [1–4]0 = 2 mM, in CH3CN at 15 ◦C. (b) Dependence of the formation rate of peroxo-diiron complexes
(5–8) on the oxidation potential (Epa) of the [FeII(L1–4)(solvent)3](ClO4)2 (1–4) complexes.

The four iron complexes, 1–4 have been compared to investigate the effect of the
various aryl substituents. Figure 3a shows the results of the activity for the precursor
complexes (1–4) during the formation of their appropriate diiron-peroxo intermediates
(5–8). This demonstrates only small differences exist, based on the first-order rate constants
obtained under the same conditions. It was found that complex 4 with 5-chloropyridyl
side chains is the most reactive complex with kobs of 3.66 M−1 s−1, whilst complex 1 with
unsubstituted side chains was proved to be the least active with kobs of 0.93 M−1 s−1

at 15 ◦C. Based on the CV data, we have got a clear evidence that the formation rate
of the diiron-peroxo species (k2) increases almost linearly with the redox potential (Epa
for FeIII/FeII) of the precursor complex (Figure 3b). In summary, the higher the redox
potentials of FeIII/FeII redox couple the higher is the activity of the precursor complex
towards to H2O2. Complexes with 4- and 5-chloro-pyridine side chains (3 and 4), whose
metal sites are electron-deficient are faster in their reaction with H2O2 than electron-rich
derivatives 1 and 2 with more Lewis basic side chains.
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Figure 4. Cyclic voltammograms of [FeII(L1–4)(solvent)3](ClO4)2 complexes (1–4) (5 mM in acetoni-
trile, supporting electrolyte: tetrabutylammonium-perchlorate (0.1 M), scan rate: 100 mV/s).

2.2. Catalase-Like Activity of Peroxo-Diiron Complexes

The ability of the in situ generated diiron-peroxo species (5) to mediate the dispropor-
tionation reaction of H2O2 into O2 and H2O was tested in CH3CN by UV-vis spectroscopy
as a decrease in absorbance at 690 nm under pseudo-first-order conditions (excess of H2O2)
(Table 3). The initial rate of decay of diiron-peroxo species was measured as a function of
the complex and substrate concentrations in CH3CN. At constant [H2O2]0 = 300 mM, the
disproportionation reaction shows first-order kinetic behavior on [5], and the first-order
rate constant k1 = 4.968 × 10−3 s−1 was obtained at 20 ◦C from the slope of the plot of Vi
versus [5]0 (Figure 5a). At constant [5]0 = 2 mM, initial rates (Vi) exhibit a linear depen-
dence with [H2O2]0 (Figure 5b) affording first-order rate constant k1′ = 29.63 × 10−3 s−1.
The second-order rate constant, k2 = 3.4 M−1 s−1 was obtained from either k1/[H2O2]0
or k1′/[5]0. This value is much smaller than that was found for the analogue [Mn(L1)]2+

complex (k2(kcat/KM) = 79 ± 4 M−1 s−1) in protic solution, where MnIV(O) intermediate
was proposed as reactive species [29]. A kinetic isotope effect (KIE) of 1.73 and 1.66 were
observed for the decay of 6 and 7, when the experiments were carried out in the pres-
ence of added H2O or D2O. These results indicate the key role of the water during the
diiron-peroxo mediated disproportionation reaction.

In the next step, we investigated the effect of the ligand modification by introducing
electron donating (-CH3) and electron withdrawing (-Cl) phenyl-ring substituents. The
substituted ligand-containing diiron-peroxo intermediates 5, 6, 7 and 8 show an increasing
rate in the listed order (Figure 6a). It was found that complex 8 with 5-chloropyridine
side chains is the most efficient oxidant with the fastest rate k2 = 23.8 × 10−2 M−1 s−1,
while complexes 5 and 6 with unsubstituted and 4-methylpyridine side chains are the less
efficient oxidants with k2 = 1.52× 10−2 M−1 s−1 and k2 = 3.05× 10−2 M−1 s−1, respectively.
These results give clear evidence that substituents affect the redox potential and the catalase
activity of the complexes. Table 4 and Figure 6b show that the redox potentials (Epa) of the
complexes and their activity increase with increasing electron-withdrawing ability of the
substituent.
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Based on the temperature dependence of the reactivity of diiron-peroxo complexes
(Figure 7a), the experimentally determined the difference between ∆G 6= values was
7.3 kJ mol−1. Significantly lower free activation energy value was obtained for the 8-
mediated disproportionation of H2O2 in comparison to 5. The calculated Gibbs energy
values correlate very well with the reaction rates (Figure 7b). The values of −T∆S 6= were
lower than ∆H 6= in the investigated temperature range, indicating an enthalpy-controlled
reactions. As a result of a compensation effect increasing activation enthalpies are offset by
increasingly poitive entropies yielding ∆H 6= = 81 kJ mol−1 at the intercept (Figure 8), which
value is a little bit higher than that was obtained for the conversion alkylperoxo-iron(III)
intermediates to oxoiron(IV) through O-O bond homolysis (∆H 6= = 61.3 kJ mol−1) [30].
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3. Experimental
3.1. Materials and Methods

The ligands 1,3-bis(2′-pyridylimino)isoindolines (L1 = indH, L2 = 4Me-indH, L3 = 4Cl-
indH, L4 = 5Cl-indH,) and their complexes (1–4) were prepared according to published
procedures [31]. All manipulations were performed under a pure argon atmosphere using
standard Schlenk-type inert-gas techniques. Solvents used for the reactions were purified
by literature methods and stored under argon. The starting materials for the ligand are
commercially available and they were purchased from Sigma Aldrich. The UV-visible
spectra were recorded on an Agilent 8453 diode-array spectrophotometer using quartz cells.
IR spectra were recorded using a Thermo Nicolet Avatar 330 FT-IR instrument (Thermo
Nicolet Corporation, Madison, WI, USA), Samples were prepared in the form of KBr pellets.
Microanalyses elemental analysis was done by the Microanalytical Service of the University
of Pannonia.

3.2. Characterization of Ligands and Their Complexes

indH: FT-IR (ATR) ν = 3199 (w), 3061 (w), 1622 (s), 1606 (m), 1577 (s), 1550 (s), 1454 (s),
1427 (s), 1373 (m), 1306 (m), 1259 (s), 1217 (s), 1139 (m), 1097 (m), 1042 (m), 991 (w), 885 (w),
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875 (w), 859 (w), 839 (w), 808 (m), 792 (s), 783 (s), 769 (s), 737 (s), 708 (m), 696 (s), 689 (s),
627 (w). UV/Vis (DMF): λmax (logε) = 317 (3.09), 332 (3.18), 348 (3.21), 368 (3.28), 386 (3.34),
410 (3.11) nm.

4Me-ind: FT-IR (ATR) ν = 3209 (w), 3049 (w), 1645 (m), 1627 (s), 1591 (s), 1541 (m), 1460 (s),
1408 (w), 1364 (m), 1305 (m), 1281 (m), 1242 (s), 1186 (m), 1132 (w), 1114 (w), 1101 (m), 1036
(m), 997 (w), 929 (m), 891 (m), 848 (w), 810 (s), 779 (m), 742 (w), 694 (s), 660 (w). UV/Vis
(DMF): λmax (logε) = 316 (2.99), 332 (3.08), 348 (3.12), 366 (3.18), 387 (3.21), 411 (2.98) nm.

4Cl-ind: FT-IR (ATR) ν = 3213 (w), 1743 (w), 1637 (m), 1624 (m), 1565 (s), 1539 (m), 1448 (s),
1359 (m), 1309 (m), 1300 (m), 1281 (w), 1219 (m), 1184 (w), 1089 (m), 1040 (m), 989 (m), 895
(s), 877 (s), 804 (m), 779 (m), 735 (s), 701 (s) 687 (m), 656 (w). UV/Vis (DMF): λmax (logε) =
315 (3.16), 332 (3.27), 348 (3.29), 367 (3.31), 385 (3.35), 409 (3.12) nm.

5Cl-ind: FT-IR (ATR) ν = 3317 (w), 3228 (w), 1745 (m), 1633 (s), 1572 (s), 1470 (m), 1447 (s),
1359 (m), 1311 (m), 1256 (w), 1244 (w), 1228 (m), 1217 (m), 1184 (w), 1105 (s), 1034 (s), 1007
(m), 955 (w), 924 (w), 880 (w), 843 (s), 773 (s), 754 (m), 725 (w), 702 (s), 691 (s), 638 (m), 619
(w), 602 (m). UV/Vis (DMF): λmax (logε) = 338 (3.15), 354 (3.15), 376 (3.19), 395 (3.25), 421
(3.02) nm.

1: FT-IR (ATR) ν = 3329 (w), 1728 (w), 1654 (m), 1626 (s), 1614 (m), 1593 (w), 1554 (w), 1524
(s), 1485 (s), 1467 (m), 1433 (m), 1373 (w), 1304 (w), 1262 (w), 1207 (m), 1055 (s), 929 (w), 860
(w), 779 (s), 714 (m), 621 (m). C24H20Cl2FeN8O8 (675.22): calcd. C 42.69, H 2.99, Cl 10.15, N
16.60; found C 42.82, H 2.93, Cl 10.11, N 16.42. UV/Vis (CH3CN): λmax (logε) = 315 (3.36),
329 (3.45), 345 (3.48), 365 (3.56), 382 (3.61), 406 (3.37) nm.

2: FT-IR (ATR) ν = 3456 (w), 1734 (w), 1665 (m), 1654 (s), 1605 (s), 1551 (m), 1520 (s), 1493
(s), 1477 (m), 1367 (w), 1313 (w), 1279 (m), 1244 (w), 1215 (w), 1049 (s), 941 (w), 827 (w), 777
(w), 752 (w), 710 (m), 621 (m). C26H27Cl2FeN8O8 (706.29): calcd. C 44.21, H 3.85, Cl 10.04,
N 15.87; found C 43.99, H 3.64, Cl 9.58, N 15.79. UV/Vis (CH3CN): λmax (logε) = 315 (3.48),
328 (3.58), 345 (3.62), 365 (3.71), 383 (3.76), 406 (3.50) nm.

3: FT-IR (ATR) ν = 3366 (w), 3217 (w), 1773 (w), 1724 (w), 1670(m), 1628 (m), 1564 (m), 1543
(m), 1516 (s), 1483 (m), 1460 (s), 1362 (w), 1306 (w), 1228 (w), 1205 (m), 1090 (s), 1051 (s),
910 (m), 867 (w), 823 (w), 744 (s), 710 (s), 621 (m). C24H21Cl4FeN8O8 (747.13): calcd.
C 38.58, H 2.83, Cl 18.98, N 15.00; found C 38.25, H 2.95, Cl 18.63, N 15.52. UV/Vis (CH3CN):
λmax (logε) = 328 (3.10), 344 (3.09), 363 (3.04), 383 (2.99), 406 (2.71) nm.

4: FT-IR (ATR) ν = 3323 (w), 3228 (w), 1773 (w), 1717 (w), 1651(w), 1628 (m), 1612 (m), 1546
(m), 1521 (s), 1477 (s), 1458 (s), 1391 (w), 1366 (m), 1335 (w), 1298 (w), 1261 (w), 1236 (m),
1205 (m), 1096 (s), 1076 (s), 922 (m), 851 (w), 835 (m), 781 (w), 752 (m), 711 (s), 650 (w), 621
(m). C24H21Cl4FeN8O8 (747.13): calcd. C 38.58, H 2.83, Cl 18.98, N 15.00; found C 38.81, H
3.04, Cl 18.63, N 15.39. UV/Vis (CH3CN): λmax (logε) = 335 (2.64), 353 (2.59), 373 (2.47), 395
(2.36), 418 (2.04) nm.

3.3. Cyclic Voltammetry

Cyclic voltammetry experiments were performed on a Radiometer Analytical PGZ-301
potentiostat with a conventional three-electrode configuration, consisting of a glassy carbon
working electrode (ID = 3 mm), a platinum wire auxiliary electrode, and Ag/AgCl reference
electrode. Potentials are referenced to the Fc/Fc+ redox couple. Ferrocene was added as
an internal standard at the end of the experiments. Procedure for the cyclic voltammetry
experiment: 0.05 mmol of 1–4 was dissolved in 10 mL dry acetonitrile, containing 349.1 mg
(1 mmol) of tetrabutylammonium-perchlorate, which served as supporting electrolyte. The
solution was bubbled with argon to remove dissolved gas residuals and to ensure inert
atmosphere during measurements. The working electrode was wet polished on 0.5 µm
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alumina slurry or emery paper grade 500, after each measurement. Cyclic voltammograms
were recorded with a scan rate of 100 mV s−1.

3.4. Generation of Diiron-Peroxo Complexes (5–8)

Precursor complexes (1–4) were dissolved in 1.5 mL acetonitrile and added 4 equiva-
lent H2O2, in different temperature (0, 5, 10 15 ◦C) and the reactions were followed with
UV-Vis spectroscopy at 680 nm, the cuvette length was 1 cm.

3.5. Diiron-Peroxo-Mediated Disproportionaton of H2O2

Reactions were carried out by mixing the substrate (H2O2) with the in situ generated
complex 5–8 (1 mM) in 1.5 mL acetonitrile in different temperature (0, 5, 10 15 ◦C) and the
reactions were followed with UV-Vis spectroscopy at 680 nm, the cuvette length was 1 cm.
To ensure the reliability of the measurements, 2–3 parallel measurements were performed.

Catalytic reactions were carried out at 20 ◦C in a 30 cm3 reactor containing stirring bar
under air. In a typical experiment the complex was dissolved dissolved in 20 cm3 CH3CN,
and the flask was closed with a rubber septum. H2O2 was injected by syringe through the
septum. The reactor was connected to a graduated burette filled with oil, and the evolved
dioxygen was measured volumetrically at time intervals of 2 s.

4. Conclusions

In summary, the results of the reaction kinetics and CV measurements are shown in
Table 4. Based on these data the following reaction mechanism, including the diiron-peroxo
complex formation, and its reaction with H2O2, was proposed (Scheme 3). We obtained
clear evidence for the role of the peroxo-intermediate in diiron catalase mimics. We also
found that the higher the redox potentials of the FeIII/FeII redox couple, the higher the
catalase-like activity, and the complexes with electron-deficient metal sites are significantly
more reactive. It can be explained by their electrophilic character. The results obtained may
contribute to the elucidation of the mechanism of both dimanganase and diiron-containing
catalase enzymes.
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