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A B S T R A C T   

Eigenvalue-Eigenvector approach as well as Levy type solution are used for electroelastic analysis 
of a doubly curved shell made of piezoelectric material based on a shear deformable model and 
piezoelasticity relations. The electroelastic governing equations are derived using virtual work 
principle. The solution is proposed for a Levy type boundary conditions with two simply- 
supported boundary conditions and two clamped ones. After derivation of the governing equa-
tions, a solution satisfying two simply supported boundary conditions is assumed to arrive a 
system of ordinary differential equations. The latest governing equations are solved using 
Eigenvalue-Eigenvector method to satisfy clamped-clamped boundary conditions. The distribu-
tion of displacements, rotations, electric potential, strain and stress is presented along the planar 
coordinate. Accuracy of the proposed solution is justified through comparison with results of 
previous papers.   

1. Introduction 

Analysis of doubly curved shells because of their general shapes and geometries is very important for designer and scientists. The 
governing equations and the corresponding results of doubly curved shells may be reduced to arrive the results of more famous and 
applicable structures such as cylindrical shells and spherical shells [1–8]. Concurrently intelligent materials are applicable in elec-
tromechanical systems to sense a deflection or stress or to perform a defined work known as sensor and actuator applications. In this 
paper, a more general solution method is developed based on Levy technique for two simple supported and two clamped boundary 
conditions. A review on the recent works of doubly curved shells, piezoelectric materials and Levy type solution method is presented 
for justification of this new work. 

Conway [9] provided a detailed analysis on the application of Levy technique for analysis of rectangular plates of variable thickness 
with arbitrary combination of boundary conditions. Askari Farsangi and Saidi [10] studied free vibration responses of a rectangular 
plate of moderately thickness sandwiched with intelligent layers based on Maxwell equations for various combination of electrical 
boundary conditions through a lower order shear deformable model. The numerical results have been discussed with changes of 
piezoelectric thickness as an important parameter. Bodaghi and Saidi [11] used a boundary layer function for buckling responses of FG 
plates made of FGMs. The governing equations were decomposed into to partial differential equations using the proposed function. The 
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numerical results were plotted for a plate with two opposite simply supported edges with changes of geometrical and material 
characteristics of the plate. Thai and Choi [12] developed a refined plate theory for dynamic analyses of the functionally graded plates 
of different boundary conditions, where the zero surface traction at top and bottom were satisfied through this development. Using the 
Levy type boundary conditions, the results were compared with those lower and higher order theories as well as classical theory for 
verification. Amin Yekani and Fallah [13] developed a couple stress based method for small scale dependent analysis in micro sizes for 
Levy type bending, dynamic and stability analyses of rectangular microplates using Fourier series and state-space method and Mindlin 
plate theory. After verification of the results through comparison with available results of literature, effect of micro scale parameter 
was studied on the responses. 

Saidi et al. [14] accounted stretching function in kinematic relations for bending responses of FG rectangular plate based on a 
higher order shear deformable model using the Levy technique. The coupled PDEs have been reduced into a lower order system using 
definition of novel analytical functions. Geometric nonlinear components were used for nonlinear vibration as well as control analysis 
of a sandwich doubly curved shell reinforced by nanocomposite sensors and actuators based on a lower order shear deformable model 
by Zhu et al. [15]. Impact of electric field was investigated on the responses of sandwich nanoshell with changes of nonlocal parameter. 
Arefi et al. [16] developed a piezoelasticity framework for dynamic analysis of a laminated sandwich cylindrical shell integrated with 
two piezoelectric sensor and actuator based on Hamilton’s principle and considering von Karman nonlinearity and Navier’s method. 
They found that an increase in in-homogeneous index of sensor and actuators leads to an increase in natural frequencies. Khorshidi 
et al. [17] developed the general formulation for dynamic response analysis of the various geometric shells integrated with piezo-
electric layers reinforced with carbon nanotubes. The responses were obtained for different geometries such as cycloidal, spherical, 
elliptical, and toro-circular shell of revolution based on Mindlin plate theory. The governing equations were solved using GDQM for 
two novel electrical boundary conditions. 

Movahedfar et al. [18] developed the MSGT based formulation for nonlinear vibration responses of FGP shell in micro scale and 
doubly curved geometry where three scale parameters were employed for a comprehensive analysis. Effect of exposed thermal and 
electrical loads was studied on the nonlinear vibration responses. Safaei et al. [19] summarized a comprehensive review study on the 
energy harvesting and its application in small scales structures and electronic devices. They expressed ability of some materials and 
structures in conversion of vibration energy to electrical energy. Nonlinear free vibration responses of a doubly curved micro shell 
made of thee phase piezoelectric material was studied based on modified strain gradient theory by Wang et al. [20]. The governing 
equations of motion were solved using Fourier series and Galerkin’s technique to investigate impact of geometrical parameters and 
applied voltage on the nonlinear responses. Kiryu et al. [21] employed two variable plate theory for free vibration investigation of a 
plate based on Levy type method for specific boundary conditions. The responses were obtained using the frequency dependent 
spectral scheme. Accuracy of the proposed theory was justified through comparison with finite element results. Chen et al. [22] 
proposed an intelligent bistable energy harvester exposed to variable potential using a spring attached to the external magnet of a 
curved beam based on finite element method using COMSOL package. Magnetic dipoles method was used for nonlinear magnetic 
modeling. Duc et al. [23] studied effect of nonlinear strain on the vibration responses of doubly curved shell of variable material 
properties integrated with piezoelectric actuators in thermoelectromechanical environment and damping loading. After derivation of 
the governing equations of motion using third order shear deformable model, Galerkin method and 4th order Runge-Kutta were used 
for numerical analysis. Some applications of nano materials and structures are observed in the recent references [24–42]. Alankaya 
and Sinan Oktem [43] employed 3rd order theory for static analysis of cross-ply doubly curved shells. They presented some numerical 
results for panel subjected to point load. Tornabene and Ceruti [44] developed GDQM for static/dynamic responses multi-layered 
doubly curved shells/panels through a shear model where the commercial packages were used for verification. Veysi et al. [45] 
concurrently invstigated effect of small scale as well as nonlinear strain on the dynamic responses based on Multiple scales method. 
Thakur et al. [46] studied higher order shear deformation analysis of a doubly curved laminated composite shell. A new displacement 
function was proposed for static and free vibration analysis of the doubly curved shell. They mentioned that used method in this paper 
is sufficient for true determination of shear stress distribution along the thickness direction. The appropriate materials and methods for 
formulation of this work may be used from references [47–50]. Application of piezoelectric materials in signal processing was 
developed by researchers [51,52]. Some application of novel structures and energy saving in new structures were developed in ref-
erences [53–57]. 

A relevant literature review is presented in this section with studying the related works on the doubly curved shells, piezoelectric 
materials and Levy-type method. The aim of this work is organization of a comprehensive methodology for electroelastic solution of a 
doubly curved piezoelectric shell with two simply-supported and two clamped-clamped boundary conditions. The governing equations 
are derived using principle of virtual work and piezoelasticity relations. After satisfying the simply-supported boundary conditions 
using trigonometric functions, the system of PDEs is reduced to a system of ODEs. The latest equations are solved using Eigenvalue- 
Eigenvector method with computations of the roots of characteristic equations and corresponding eigenvectors. The final solution will 
be obtained with satisfying the remained boundary condition at two clamped edges. 

2. Formulation 

The electroelastic formulation of a doubly curved piezoelectric shell (Fig. 1) is presented in this section based on principle of virtual 
work, piezoelasticity relations, a shear deformable model, Eigenvalue-Eigenvector method and Levy-type solution. 

Based on the principle of virtual work, the governing equations are derived using the principle of virtual work with computation of 
strain energy including piezoelectric effect and external work. The variation of strain energy is defined for a doubly curved piezo-
electric shell as Eq. (1) [48]: 
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δU =

∫

V
{σ11δε11 + σ22δε22 + σ12δε12 + σ13δε13 + σ23δε23 − D1δE1 − D2δE2 − D3δE3}dV, (1)  

In which σij are stress components, εij are strains, Di and Ei are electric displacement and field, respectively. The virtual work principle 
(Eq. (2)) is presented as following format: 

δU + δW = 0 (2)  

In which δW is variation of external work. 
The piezoelasticity relations (Eq. (3)) are derived including stress components and electric displacements. The stress components 

are derived as [48]: 

σ11 = Q11ε11+Q12ε22 − e11E3,

σ22 = Q21ε11+Q22ε22 − e23E3,

σ23 = Q44γ23 − e42E2,

σ13 = Q55γ13 − e51E1,

σ12 = Q66γ12,

(3)  

where Qij are stiffness coefficients of piezoelectric material, and eij are piezoelectric coefficeints. For a piezoelectric medium, the 
electric displacement relations (Eq. (4)) are derived in terms of strain and electric field components as follows [48]: 

D1 = e15γ13 + k11E1,

D13 = e24γ23 + k22E2,

D3 = e31ε11 + e32ε22 + k33E3,

(4)  

where kij are dielectric coefficients of piezoelectric material. 
To complete governing equations, it is necessary to defined kinematic relations for the doubly curved shell made of piezoelectric 

material. Based on a shear deformable model, the kinematic relations (Eq. (5)) are assumed as a linear function along the thickness 
direction as: 

u1 = a1u + zφ1,

v1 = a2v + zφ2,

w1 = w,
(5)  

where u1, v1,w1 are three components of displacement along the three coordinates, u, v,w are displacements of midplanes and φ1,φ2 

are rotation components. Furthermore, a1 =
(

1 + z
R1

)
, a2 =

(
1 + z

R2

)
, where R1,R2 are two principle radii of curvature. Using the 

shear deformable model, the strain components (Eq. (6)) are derived as follows: 

Fig. 1. The piezoelectric doubly curved shell.  
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ε11 =
1

R1a1

∂u
∂α + z

1
R1a1

∂φ1

∂α +
w
R1

,

ε22 =
1

R2a2

∂v
∂β

+ z
1

R2a2

∂φ2

∂β
+

w
R2

,

ε23 = φ2 +
1

R2a2

∂w
∂β

−
v

R2
,

ε13 = φ1 +
1

R1a1

∂w
∂α −

u
R1

,

ε12 =
1

R1a1

∂v
∂α +

1
R2a2

∂u
∂β

+ z
(

1
R1a1

∂φ2

∂α +
1

R2a2

∂φ1

∂β
+

1
2

(
1
R1

−
1
R2

)(
1

R1a1

∂v
∂α −

1
R2a2

∂u
∂β

))

,

(6) 

To complete piezoelasticity relations, the electric field should be obtained so electric potential distribution Ψ̂ = 2z
h Ψ0 − Ψ(α, β)cos πz

h 
satisfy Maxwell’s equation (Eq. (7)) as follows [48]: 

E1 =
1

R1a1

∂Ψ
∂α cos

πz
h
,

E2 =
1

R2a2

∂Ψ
∂β

cos
πz
h
,

E3 = −
2
h
Ψ0 −

π
h

Ψ cos
πz
h
,

(7) 

Variation of energy (Eq. (8)) is updated as: 

δU =

∫

A

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂α

(
N11

R1

)

+
∂

∂β

(
N12

R2

)

+
N1

13

R1
−

1
2

(
1
R1

−
1
R2

)
∂

∂β

(
M21

R2

)

δu
)

+

(
∂

∂α

(
M11

R1

)

− N1
13 +

∂
∂β

(
M21

R2

))

δφ1

+

(
∂

∂β

(
N22

R1

)

+
∂

∂α

(
N12

R2

)

+
N1

23

R2
+

1
2

(
1
R1

−
1
R2

)
∂

∂α

(
M23

R1

))

δv

+

(
∂

∂β

(
N23

R2

)

+
∂

∂α

(
N13

R1

)

−
N1

11

R1
−

N1
22

R2

)

δw

+

(
∂

∂β

(
M22

R2

)

− N1
23 +

∂
∂α

(
M21

R2

))

δφ2

+

(
∂

∂α

(
D1

R1

)

+
∂

∂β

(
D2

R2

)

+ D3

)

δΨ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dA, (8) 

To complete principle of virtual work, the external work (Eq. (9)) should be computed. The external work due to uniform transverse 
loading is calculated as [48]: 

δW =

∫

A

{

− q
(

1 +
h

2R1

)(

1 +
h

2R2

)}

R1R2δwdαdβ (9) 

Finally, the governing equations (Eq. (10)) are derived as: 

δu :
∂

∂α

(
N11

R1

)

+
∂

∂β

(
N12

R2

)

+
N1

13

R1
−

1
2

(
1
R1

−
1
R2

)
∂

∂β

(
M21

R2

)

= 0

δφ1 :
∂

∂α

(
M11

R1

)

− N1
13 +

∂
∂β

(
M12

R2

)

= 0

δv :
∂

∂β

(
N22

R1

)

+
∂

∂α

(
N12

R2

)

+
N1

23

R2
+

1
2

(
1
R1

−
1
R2

)
∂

∂α

(
M23

R1

)

= 0

δφ2 :
∂

∂β

(
M22

R2

)

− N1
23 +

∂
∂α

(
M21

R2

)

= 0

δw :
∂

∂β

(
N23

R2

)

+
∂

∂α

(
N13

R1

)

−
N1

11

R1
−

N1
22

R2
= q

(

1 +
h

2R1

)(

1 +
h

2R2

)

δΨ :
∂

∂α

(
D1

R1

)

+
∂

∂β

(
D2

R2

)

+ D3 = 0

(10) 
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The associated boundary conditions (Eq. (11)) are derived as follows: 
(

N11

R1

)

δu +

(
N12

R2

)

δu −
1
2

(
1
R1

−
1
R2

)
M21

R2
δu = 0

(
M11

R1

)

δφ1 +

(
M12

R2

)

δφ1 = 0

(
N22

R1

)

δv +
(

N12

R2

)

δv +
1
2

(
1
R1

−
1
R2

)(
M23

R1

)

δv = 0

∂
∂β

(
M22

R2

)

δφ2 +
∂

∂α

(
M21

R2

)

δφ2 = 0

∂
∂β

(
N23

R2

)

δw +
∂

∂α

(
N13

R1

)

δw = 0

(
D1

R1

)

δΨ +

(
D2

R2

)

δΨ + D3δΨ = 0

(11) 

The resultant components (Eq. (12)) are defined as follows: 

N11 =L 1
∂u
∂α + L 2w + L 3

∂φ1

∂α + L 4
∂v
∂β

+ L 5w + L 6
∂φ2

∂β
+ L 7Ψ + N11

Ψ,N1
11

= L 8
∂u
∂α + L 9w + L 10

∂φ1

∂α + L 11
∂v
∂β

+ L 12w + L 13
∂φ2

∂β
+ L 14Ψ + N11

1Ψ,M11

= L 15
∂u
∂α + L 16w + L 17

∂φ1

∂α + L 18
∂v
∂β

+ L 19w + L 20
∂φ2

∂β
+ L 21Ψ + M11

Ψ,N22

= L 4
∂u
∂α + L 5w + L 6

∂φ1

∂α + L 22
∂v
∂β

+ L 23w + L 24
∂φ2

∂β
+ L 7Ψ + N22

Ψ,N1
22

= L 11
∂u
∂α + L 12w + L 13

∂φ1

∂α + L 25
∂v
∂β

+ L 26w + L 27
∂φ2

∂β
+ L 14Ψ + N22

1Ψ,M22

= L 18
∂u
∂α + L 19w + L 20

∂φ1

∂α + L 28
∂v
∂β

+ L 29w + L 30
∂φ2

∂β
+ L 21Ψ + M11

Ψ,N23 = L 31φ2 + L 32
∂w
∂β

− L 33v − L 34
∂Ψ
∂β

,N23
1

= L 39φ2 + L 40
∂w
∂β

− L 41v − L 42
∂Ψ
∂β

,N13 = L 35φ1 + L 36
∂w
∂α − L 37u − L 38

∂Ψ
∂α ,N13

1 = L 43φ1 + L 44
∂w
∂α − L 45u − L 46

∂Ψ
∂α ,N12

= L 47
∂v
∂α + L 48

∂u
∂β

+ L 49
∂φ2

∂α + L 50
∂φ1

∂β
+ L 51

∂v
∂α − L 52

∂u
∂β
,N21 = L 53

∂v
∂α + L 54

∂u
∂β

+ L 55
∂φ2

∂α + L 56
∂φ1

∂β
+ L 57

∂v
∂α − L 58

∂u
∂β
,M12

= L 59
∂v
∂α + L 60

∂u
∂β

+ L 61
∂φ2

∂α + L 62
∂φ1

∂β
+ L 63

∂v
∂α − L 64

∂u
∂β
,M21 = L 65

∂v
∂α + L 66

∂u
∂β

+ L 67
∂φ2

∂α + L 68
∂φ1

∂β
+ L 69

∂v
∂α − L 70

∂u
∂β
,D1

= L 71φ1 + L 72
∂w
∂α − L 73u − L 74

∂Ψ
∂α ,D2 = L 75φ2 + L 76

∂w
∂β

− L 77v − L 78
∂Ψ
∂β

,D3

= L 79
∂u
∂α + L 80w + L 81

∂φ1

∂α + L 82
∂v
∂β

+ L 83w + L 84
∂φ2

∂β
+ L 85Ψ + Dz

Ψ

(12) 

Finally, the governing equations (Eq. 13a-f) are presented as: 

δu : L11u+L12φ1 + L13v + L14φ2 + L15w + L16Ψ = 0 (13a)  

δφ1 : L21u+L22φ1 + L23v + L24φ2 + L25w + L26Ψ = 0 (13b)  

δv : L31u+L32φ1 + L33v + L34φ2 + L35w + L36Ψ = 0 (13c)  

δφ2 : L41u+L42φ1 + L43v + L44φ2 + L45w + L46Ψ = 0 (13d)  

δw : L51u+L52φ1 +L53v+L54φ2 +L55w+L56Ψ= +
N11

1Ψ

R1
+

N22
1Ψ

R2
+ q

[

1+
h

2R1

][

1+
h

2R2

]

(13e)  

δΨ : L61u+L62φ1 + L63v + L64φ2 + L65w + L66Ψ = − Dz
Ψ (13f)  

In which the operators Lij (Eq. 14a-f) are defined as follows: 
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u : L11 =
L 1

R1

∂2
(..)

∂α2 +

(
χ[L 70 − L 66] + L 54 − L 58

R2

)
∂2
(..)

∂β2 −
L 45

R1
,L12 =

L 3

R1

∂2
(..)

∂α2 +

(
L 56 − χL 68

R2

)
∂2
(..)

∂β2 +
L 43

R1
,

L13 =
L 4

R1

∂2
(..)

∂α∂β
+

(
L 57 + L 53 − χ[L 65 + L 69]

R2

)
∂2
(..)

∂α∂β
,L14 =

(
L 6

R1
+

L 55 − χL 67

R2

)
∂2
(..)

∂α∂β
,

L15 =

(
L 5 + L 2 + L 44

R1

)
∂(..)
∂α ,L16 =

(
L 7 − L 46

R1

)
∂(..)
∂α

(14a)  

δφ1 : L21 =
L 15

R1

∂2
(..)

∂α2 +
(L 66 − L 70)

R2

∂2
(..)

∂β2 +L 45,L22 =
L 17

R1

∂2
(..)

∂α2 +
L 68

R2

∂2
(..)

∂β2 − L 43,L23 =

(
L 65 + L 69

R2
+

L 18

R1

)
∂2
(..)

∂α∂β
,

L24 =

(
L 20

R1
+

L 67

R2

)
∂(..)
∂α∂β

φ2,L25 =

(
L 19 + L 16

R1
− L 44

)
∂(..)
∂α ,L26 =

(
L 21

R1
+L 46

)
∂(..)
∂α

(14b)  

δv : L31 =

(
L 4

R2
+

χ[L 60 − L 64] + L 48 − L 52

R1

)
∂2
(..)

∂α∂β
,L32 =

(
L 50 + χL 62

R1
+

L 6

R2

)
∂2
(..)

∂α∂β
,

L33 =

(
L 47 + L 51 + χ[L 59 + L 63]

R1

)
∂2
(..)

∂α2 +
L 22

R2

∂2
(..)

∂β2 −
L 41

R2
,L34 =

(
L 49 + χL 61

R1

)
∂2
(..)

∂α2 +
L 24

R2

∂2
(..)

∂β2 +
L 39

R2
,

L35 =

(
L 40 + L 5 + L 23

R2

)
∂(..)
∂β

,L36 =

(
L 7 − L 42

R2

)
∂(..)
∂β

(14c)  

δφ2 : L41 =

(
L 18

R2
+

L 60 − L 64

R1

)
∂2
(..)

∂α∂β
,L42 =

(
L 62

R1
+

L 20

R2

)
∂2
(..)

∂α∂β
,L43 =

(
L 59 + L 63

R1

)
∂2
(..)

∂α2 +
L 28

R2

∂2
(..)

∂β2 +L 41,

L44 =

(
L 30

R2
+

L 61

R1

)
∂2
(..)

∂α2 − L 39φ2,L45 =

(
L 29 + L 19

R2
− L 40

)
∂(..)
∂β

,L46 =

(
L 21

R2
+L 42

)
∂(..)
∂β

(14d)  

δw : L51 =

(

−
L 11

R2
−

L 8 + L 37

R1

)
∂(..)
∂α ,L52 =

(
L 35 − L 10

R1
−

L 13

R2

)
∂(..)
∂α ,L53 =

(

−
L 33 + L 25

R2
−

L 11

R1

)
∂(..)
∂β

,

L54 =

(

−
L 27

R2
−

L 13

R1
−

L 31

R2

)
∂(..)
∂β

,L55 =

(

−
L 9 + L 12

R1
−

L 12 + L 26

R2

)

+
L 36

R1

∂2
(..)

∂α2 ,

L56 =

(
L 32 − L 34

R2

)
∂2
(..)

∂β2 −
L 38

R1

∂2
(..)

∂α2 +

(

−
L 14

R2
−

L 14

R1

)

, F5 = +
N11

1Ψ

R1
+

N22
1Ψ

R2
+ q

[

1+
h

2R1

][

1+
h

2R2

]

(14e)  

δΨ : L61 =

(

−
L 73

R1
+L 79

)
∂(..)
∂α ,L62 =

(
L 71

R1
+L 81

)
∂(..)
∂α ,L63 =

(

L 82 −
L 77

R2

)
∂(..)
∂β

,L64 =

(
L 75

R2
+L 84

)
∂(..)
∂β

,

L65 =
L 72

R1

∂2
(..)

∂α2 +
L 76

R2

∂2
(..)

∂β2 +(L 80 +L 83),L66 = −
L 78

R2

∂2
(..)

∂β2 −
L 74

R1

∂2
(..)

∂α2 +L 85, F6 = − Dz
Ψ

(14f)  

3. Solution 

In this section, the solution methodology is presented for two opposite simply supported and two opposite clamped-clamped 
boundary conditions. For this purpose, the Levy type method is used. 

The required boundary conditions (Eq. (15)) are assumed as follows: 

β = 0,
L2

R2
: u = φ1 = w = Ψ = 0

α = 0,
L1

R2
: u = φ1 = v = φ2 = w = Ψ = 0

(15) 

To satisfy two opposite simply-supported boundary conditions along β direction, the solution (Eq. (16)) is assumed as [49,50]: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u

φ1

v

φ2

w

Ψ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(α)sin μnβ

Φ1(α)sin μnβ

V(α)cos μnβ

Φ2(α)cos μnβ

W(α)sin μnβ

Ψ(α)sin μnβ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)  

in which μn = nπR2/L2. The system of ordinary differential equations can be solved analytically for any boundary conditions using the 
Eigenvalue-Eigenvector method. The homogeneous solution (Eq. (17)) based on Eigenvalue-Eigenvector method is assumed as [49]: 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(α)

Φ1(α)

V(α)

Φ2(α)

W(α)

Ψ(α)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
∑

i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ũiemix

Φ̃1iemix

Ṽiemix

Φ̃2iemix

W̃iemix

Ψ̃iemix

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)  

in which mi are eigenvalues, and i is order of characteristic equations. The magnitude of eigenvalues is obtained using solution of the 
characteristic equation. 

Fig. 2. Variation of in-plane displacement u along the planar direction (α, β).  

Fig. 3. Variation of in-plane displacement v along the planar direction (α, β).  
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4. Numerical results and discussion 

After explanation of the solution procedure, the numerical results are presented in this section. The numerical results are computed 
for the following material properties: 

Q11 = 138.499 GPa.Q22 = 138.499 GPa.Q33 = 114.745 GPa  

Q12 = 77.371 GPa. Q13 = 73.643 GPa,Q23 = 73.643 GPa  

Q44 = 25.6 GPa.Q55 = 25.6 GPa.Q66 = 30.6 GPa  

e13 = e31 = − 5.2 C/m2. e23 = e32 = − 5.2 C/m2. e33 = 15.8 C/m2.e15 = 12.72 C/m2.e24 = 12.72 C/m2  

Fig. 4. Variation of transverse deflection w along the planar direction (α, β).  

Fig. 5. Variation of rotation component φα along the planar direction (α, β).  
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k11 = 1.306 × 10− 8F/m.k22 = 1.306 × 10− 8F/m.k33 = 1.151 × 10− 8F/m  

in which the material properties are belong to PZT-4. Before presentation of the full numerical results, a comparative study is needed 
for verification and validation of the solution procedure. 

Figs. 2 and 3 show changes of two in-plane displacements u,v along the planar direction (α, β). The results are obtained for two 
simply supported and two clamped boundary conditions. It is observed that maximum displacement u is occurred at middle of the 
doubly curved shell while the maximum is occurred at middle of both ends β = 0,1. 

Fig. 4 shows variation of transverse deflection w along the planar direction (α, β). It is deduced that the maximum transverse 
deflection is occurred at middle of the shell. It is concluded that the transverse deflection is a dominant component between all 
deformation components with significant value. 

Figs. 5 and 6 show variation of two rotation components along the planar coordinate. It is observed that the maximum first rotation 
component is occurred at the location between mid-length and two ends of the shell while the second rotation component is occurred 
at middle of the shell edges. 

Fig. 6. Variation of rotation component φβ along the planar direction (α, β).  

Fig. 7. Variation of in-plane normal strain εαα along the planar direction (α, β).  
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Figs. 7 and 8 show variation of in-plane normal strains εαα, εββ along the planar direction (α,β). It is observed that the maximum 
normal strain εαα is occurred at near the clamed edges because of abrupt changes of the shape of the shell. Furthermore, the maximum 
normal strain εββ is occurred at center of the shell. 

Shown in Fig. 9 is variation of in-plane shear strain γαβ along the planar direction (α,β). It is observed that the maximum in-plane 
shear strain γαβ is occurred at four corners of the shell. 

Shown in Figs. 10 and 11 are depiction of the out of plane shear strain components γαz, γβz along the x and y directions. It is 
concluded that the maximum shearing strain γαz is occurred at middle of clamped edges. One can conclude that occurring the sig-
nificant value of out of plane shear strain is because of presence of clamped edge and abrupt changes of the shell. Furthermore the 
maximum shearing strain γβz is occurred at middle of simply supported edges. 

Shown in Figs. 12 and 13 are variation of in-plane normal stresses σαα, σββ along the planar direction (α,β). It is observed that the 
maximum normal stresses σαα, σββ are occurred at nearing the clamped edges. It is concluded that the clamped boundary conditions 
lead to significant and abrupt changes of deformation and strain and consequently significant stress. 

Fig. 8. Variation of in-plane normal strain εββ along the planar direction (α, β).  

Fig. 9. Variation of in-plane shear strain γαβ along the planar direction (α, β).  
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5. Conclusion 

Electroelastic analysis of a doubly curved shell made of piezoelectric material was studied in this paper based on a shear deformable 
kinematic model, piezoelasticity relations and Levy-type method. The governing equations were derived based on virtual work 
principle with computation of strain energy and external work. The Levy-type boundary condition is considered for the doubly curved 
shell with two simply supported and two clamped-clamped boundary conditions. Eigenvalue-Eigenvector method is used for the so-
lution of assumed boundary conditions. The numerical results including displacements, strain and stress components along the planar 
coordinates are presented. The main results of this work are expressed as: 

Investigating changes of in-plane displacements indicates that maximum displacement u is occurred at middle of the doubly curved 
shell while the maximum v is occurred at middle of both ends β = 0,1. Furthermore, it is observed that the maximum first rotation 
component is occurred at the location between mid-length and two ends of the shell. 

Investigating changes of out of plane shear strain components γαz, γβz indicates that the maximum shearing strain γαz is occurred at 
middle of clamped edges. Furthermore the maximum shearing strain γβz is occurred at middle of simply supported edges. 

Changes of in-plane normal stresses indicates that the maximum normal stresses and strains σαα , εαα, σββ, εββ are occurred at nearing 

Fig. 10. Variation of out of plane shear strain γαz along the planar direction (α, β).  

Fig. 11. Variation of out of plane shear strain γβz along the planar direction (α, β).  
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the clamped edges. Furthermore, the maximum in-plane shear stress σxy is occurred at both corners of clamed edges. The maximum 
shear stresses are occurred at middle of simply supported edges. Furthermore, the maximum in-plane shear strain γαβ is occurred at 
four corners of the shell. 
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