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Abstract

Background: It has been recognized that replicates of arrays (or spots) may be necessary for
reliably detecting differentially expressed genes in microarray experiments. However, the often-
asked question of how many replicates are required has barely been addressed in the literature.
In general, the answer depends on several factors: a given magnitude of expression change, a
desired statistical power (that is, probability) to detect it, a specified Type I error rate, and the
statistical method being used to detect the change. Here, we discuss how to calculate the number
of replicates in the context of applying a nonparametric statistical method, the normal mixture
model approach, to detect changes in gene expression. 

Results: The methodology is applied to a data set containing expression levels of 1,176 genes in
rats with and without pneumococcal middle-ear infection. We illustrate how to calculate the
power functions for 2, 4, 6 and 8 replicates. 

Conclusions: The proposed method is potentially useful in designing microarray experiments to
discover differentially expressed genes. The same idea can be applied to other statistical methods. 
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Background
Microarrays are used to measure the (relative) expression

levels of thousands of genes (or expressed sequence tags). A

comparison of gene expression in cells or tissues from two

conditions may provide useful information on important

biological processes or functions [1,2]. The challenge now is

how to detect those genuine changes from noisy data. It is

now known that simply using fold changes, as in the earlier

days, is unreliable and inefficient [3,4]. More sophisticated

statistical methods are called for. Many proposals have

appeared in the literature [3-10]. In particular, it has been

noticed that it may be necessary to design an experiment

that uses multiple arrays (or multiple spots on each array)

containing multiple measurements for each gene under each

condition. One reason is that because of a high noise-to-

signal ratio, a single array may not provide enough informa-

tion that can be reliably extracted [11]. More important,

multiple measurements from each gene make it possible to

assess the potentially different variability of genes. The

problem then seems to fall within the traditional two-sample

comparison in statistics. Two of the best known two-sample

statistical tests are the two-sample t-test and the Wilcoxon

test (or equivalently, Mann-Whitney test). The t-test is para-

metric and is based on the assumption that the gene-expres-

sion levels have normal distributions. In contrast, the

Wilcoxon test is nonparametric and is based on the ranks of

observed gene-expression levels. Although the t-test is

robust to departures from normality and the Wilcoxon test
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does not depend on the normality assumption, the problem

is that under non-normal situations the t-test may be too

conservative, and hence, as with the Wilcoxon test, may have

too low power, especially when the sample size is small,

which is the case for most microarray experiments. These

points have been verified in two case studies using real data

[8,12]. In a class of nonparametric approaches [5,9,10], a

version of the two-sample t-statistic is used but its null dis-

tribution is estimated nonparametrically, rather than

directly assumed to be a t-distribution. In addition, some

earlier studies have suggested that the variability of gene

expression may be related to the mean expression [3,4,6].

Therefore, it implies that the t-statistic being used should be

based on unequal variances for the two samples. 

An important and natural question often asked by biologists

is how many replicates are required. For microarray experi-

ments, unlike many other experimental contexts, this issue

has rarely been discussed in the literature. To our knowledge,

the only exception is the work by Black and Doerge [13],

which, however, is for the situation where parametric statisti-

cal methods are applied to detect expression changes. In this

paper, we discuss the problem when a nonparametric

method, the normal mixture model approach [10], is used to

detect differential expression. But to facilitate calculations of

sample size, the formulation is slightly changed from their

original one. Nonparametric methods of microarray data

analysis have been pioneered by Efron and Tibshirani and

co-workers [5,9]. They take advantage of the presence of

replicates and thus can impose much weaker modeling

assumptions. For instance, the parametric methods of Black

and Doerge [13] depend on the assumption on the log-normal

or gamma distribution of gene-expression levels, whereas the

mixture model approach does not have such a distributional

assumption and directly estimates distributions related to

random errors. Note that modeling the distribution of

random errors has advantages over direct modeling of

expression levels, and is a common practice in applied statis-

tics. For example, gene-expression levels may be correlated

(for example, as a result of coexpression of some genes)

whereas random errors can be more reasonably assumed to

be independent. This is similar to modeling longitudinal data

using a linear mixed-effects model [14]: the responses from

each subject (corresponding to a group of coregulated genes

here) are in general correlated, but the measurement errors

from the same subject can be considered to be independent

after incorporating a random-subject effect in the model.

Note that the random effect will be canceled out from the

t-statistic for each gene. Our proposal here also shows an

attractive feature of the mixture model approach, as com-

pared to the other two nonparametric approaches [5,9],

because it is still unclear how the sample size/power calcula-

tion can be done in the other two approaches. 

The problem of calculating the number of replicates required

in a microarray experiment is similar to that of sample

size/power calculations in clinical trials and other experi-

ment designs; the (to-be-determined) sample size in

microarray experiments refers to the number of replicates,

whereas the number of genes is not an issue here. As usual,

we assume that the replicates are (approximately) indepen-

dent with each other, whether they are drawn from the same

individual or multiple individuals. In general, the required

sample size depends on several factors: the true magnitude

of the change of gene expression (say, d), the desired statisti-

cal power (that is, probability) (�) to detect the change, and

the specified Type I error rate (�). The problem of how to

calculate the number of replicates for any given triplet (d, �,

�) is equivalent to that of how the power � depends on the

pair (d, �) and the number of replicates, which we consider

in the paper. 

The proposed method is not restricted to any specific

microarray technology. From now on, the expression level

can refer to a summary measure of relative red-to-green-

channel intensities in a fluorescence-labeled cDNA array, a

radioactive intensity of a radiolabeled cDNA array (as used

in the example later), or a summary difference of the perfect

match (PM) and mismatch (MM) scores from an oligo-

nucleotide array. The gene-expression levels may have been

suitably preprocessed, including dimension reduction, data

normalization and data transformation [5,15-18]. 

Results and discussion
A statistical model
We consider a generic situation that, for each gene i, I = 1,2,...,N,

we have (relative) expression levels X1i,..., Xmi from m

microarrays under condition 1, and Y1i,..., Ymi from m arrays

under condition 2. We need to assume that m is an even

integer. A general statistical model is assumed for gene

expression data: 

Xji = �(1),i + �ji,        Yli = �(2),i + eli,

where �(1),i and �(2),i are the mean expression levels for gene

i under the two conditions respectively, and �ji and eli are

independent random errors with means and variances 

E(�ji) = E(eli) = 0,           Var(�ji) = �2
(1),i,           Var(eli) = �2

(2),i,

for any j = 1,..., m, l = 1,..., m and i = 1,..., N. It is assumed

that random errors �ji/�(1),i and eli/�
2
(1),i are randomly taken

respectively from one of two (not necessarily equal) distribu-

tions that are symmetric about their mean 0. Note that the

above assumption on the distributions of random errors, not

on that of gene expression levels (that is,  Xji and Yli), is often

reasonable, and similar assumptions are common in other

statistical applications. In addition, we do not assume that

the expression levels of all the genes have an equal variance,

because some previous studies [3,4,6] have found that the

variance �2
(c),i (for c = 1,2) of gene-expression levels may
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depend on the mean expression �(c),i. Also, we do not even

need to assume that �2
(1),i = �2

(2),i unless �(1),i = �(2),i. 

A goal is to detect all genes with �(1),i � �(2),i. This can be

accomplished through statistical hypothesis testing. 

A test statistic 
To test the null hypothesis H0: �(1),i = �(2),i, we use a t-type

test statistic or score 

�m

j=1 Xji/m �m

j=1 Yji/m �(1),i �(2),i
Zi = ——————— - ——————— = ——— - ——— +

�(1),i �(2),i �(1),i �(2),i

�m

j=1 �ji �n

l=1 eli
————  - ————— . (1)
m�(1),i m�(2),i

Note that the mean and variance of Zi are 

�(1),i �(2),i 2
E(Zi) = ——— - ————, Var (Zi) =  ——   ,

�(1),i �(2),i m

whereas the mean E(Zi) = 0 under H0. Hence, it can be seen

that a large absolute value of Zi, |Zi|, gives evidence against

H0. As the number of arrays (that is, m) increases, the vari-

ance of the test statistic Zi decreases. Hence, it is possible to

reject H0 (that is, detect differential expression for gene i)

with any E(Zi) � 0 if m is large enough. In other words, if the

Type I error rate and other parameters are fixed, then the

statistical power of the test will increase as m increases. This

is the key point that motivates the discussion on sample

size calculations. 

To determine the cut-off point for |Zi| to reject H0, we need

to know or estimate the distribution of Zi under H0, the null

distribution f0. In a parametric approach, based on some full

distributional assumptions for Xji and Yji, one may derive the

null distribution f0, such as in a two-sample t-test. However,

the validity of such a parametric method critically depends

on the correctness of assumed distributions, which of course

is not guaranteed. Here, we consider a nonparametric

approach: a finite normal mixture model is used to estimate

f0 nonparametrically. 

Estimating the null distribution
There may be various ways to estimate the null distribution

f0. For instance, using expression levels of some housekeep-

ing genes that are known to have non-differential expres-

sion, one can construct their Zi scores and then estimate f0

using the obtained Zi scores. In practice, however, there may

be only a small number of or no housekeeping genes in a

given experiment. Here, following the basic idea in a class of

nonparametric methods [5,9,10], we construct a null score zi

for each gene and then use these null scores to estimate f0

nonparametrically. The null score is constructed from the

same observed gene expression data as used in Zi: 

X1i - X2i + … + Xm-1,i - Xm,i Y1i - Y2i + … + Ym-1,i - Ym,i
zi = ————————————————— + ———————————————— 

m�(1),i m�(2),i

�1i - �2i + … + �m-1,i - �m,i e1i - e2i + … + em-1,i - em,i
= ——————————————— + ————————————————   . (2)

m�(1),i m�(2),i

Under the assumption that �ji and eji have symmetric distrib-

utions, then �ji and -�ji have the same distribution, and eji

and -eji have the same distribution. Thus, by comparing the

form of zi with that of Zi, we know that the distribution of zi

is exactly f0, the null distribution for Zi (under H0). Note that

under H0, �(1),i = �(2),i, and hence �(1),i = � (2),I (since we

assume that �(c),i only depends on �(c),i), then 

�1i + �2i + … + �m-1,i + �m,i e1i + e2i + … + em-1,i + em,i
Zi = ———————————————— + —————————————————  .

m�(1),i m�(2),i

Thus zi and Zi have the same distribution f0 under H0. We

use all zi values across all genes to estimate f0. 

In practice, �(c),i (for c = 1, 2) are unknown, and can be esti-

mated using the sample standard deviations (SDs) s(c),i.

Although the sample SD s(c),i is asymptotically unbiased, if m

and n are small, s(c),i may not be stable, and some modifica-

tions may be necessary. In any case, substituting �(c),i by any

suitable estimates, we can calculate the scores zi values and

Zi values, on the basis of which we can estimate f0 and f

respectively. By comparing f0 and f, we can gain insight

about genes with altered expression (that is, �(1),i � �(2),i). 

We assume that all the zi values for i = 1,..., N are a random

sample from f0; thus we can use the observed zi values to

estimate f0. Pan et al. [10] proposed estimating f0 using a

finite normal mixture model [19]. Specifically, it is assumed

that 

g0

f0 (z; �g0) = � �r	
(z; ar, Vr),
r=1

where 	(z; ar, Vr) denotes the density function of a normal

distribution N(ar, Vr) with mean ar and variance Vr, and �r

values are mixing proportions. �g0 represents all unknown

parameters {�r, ar, Vr) : r = 1,...g0} in a g0-component

mixture model. Among others, a normal mixture is essen-

tially nonparametric and flexible, and easy to use with stable

tail probabilities. 

A mixture model can be fitted by maximum likelihood using

the expectation-maximization (EM) algorithm [19-21]. The



number of components can be selected adaptively using the

Akaike Information Criterion (AIC) [22] or the Bayesian

Information Criterion (BIC) [23]. In using the AIC or BIC,

one first fits a series of models with various values of g0,

then picks up the g0 corresponding to the first local

minimum of AIC or BIC [24]. Some empirical studies seem

to favor the use of BIC [24]. 

Determining the cut-off point
Once we obtain an estimate of the null distribution f0, we can

determine the cut-off point of the rejection region for testing

H0. In general, as for a two-sample test, the rejection region

can be selected in the tails of f0 because, under the null

hypothesis, Zi should be close to the center of f0, whereas if

there is differential expression for gene i, Zi is likely to be in

one of the two tails of f0. The specific choice may depend on

the goal of the analysis. For example, if we are only inter-

ested in detecting upregulated genes, we can choose the

rejection region at the right-tail of f0. Our proposed method

works for any specified way of determining the rejection

region. As f0 should be symmetric about its mean 0, and

often we are interested in both up- and downregulated

genes, we propose to take the rejection region at the two tails

of f0, {z : f0(z) < C�}, where the constant C� > 0 is the cut-off

point and depends on the specified (gene-specific) Type I

error rate �. As usual, C� > 0 is chosen such that the rejec-

tion rate under H0 is exactly �: 

�= Pr (Z < -C� or Z > C� � f0)

= �
-C�

-�
f0(z)dz + �

�

C�

f0(z)dz (3)

g0

= � �r[�(-C�; ar, Vr) + 1 - �(C�; ar, Vr)]. 
r=1

where �(.; a, V) is the corresponding cumulative distribu-

tion function for 	(.; a, V). Using a numerical algorithm,

such as the bisection method [25], we can solve the above

equation to obtain C� for any given �. 

For microarray data, because we are testing H0 for each

gene, the multiple test problem arises and some control on

it is necessary. Usually we can use Bonferroni’s method.

For instance, if we want to maintain the genome-wide

Type I error rate at the usual 5% level, then the Bonferroni-

adjusted gene-specific (that is, test-specific) Type I error rate is

� = 0.05/N, where N is the total number of genes to be tested.

Once C� is determined, we can calculate the power as a func-

tion of d, the magnitude of the expression change targeted to

be detected. Note that 

�(1),i �(2),i
d = ——— - ———

�(1),i �(2),i

is the difference of the coefficients of variation under the two

conditions. If �(1),i =  �(2),i, d can be interpreted as the change

of the mean expression levels from condition 1 to condition

2. Otherwise, it can be regarded as the difference of (varia-

tion) standardized mean expression levels. Specifically, we

have the power function 

�(d,�) = Pr(Z - d < -C� or Z - d > C� � f0)

= �
d-C�

��
f0(z)dz + �

�

d+C�

f0(z)dz (4)

g0

= � �r[�(d-C�; ar, Vr) + 1 - �(d + C�; ar, Vr)]. 
r=1

Unsurprisingly, we can see that �(d, �) will increase as |d|

increases. The effects of having more replicates will reduce

the variability of f0, leading to larger �(d, �) for any given d. 

Calculation of replicate numbers
Now we describe how to calculate replicate numbers based

on some pilot data taken from earlier studies. We use zm, i to

explicitly denote the zi scores in (2) with m replicates. Based

on the data we can estimate the density function f0,m (z;�g0)

of zm,i values as a normal mixture 

g0

f0,m(z; �g0) = � �r	
(z; ar,Vr). (5)
r

From now on, we treat f0, m as known in Equation (5). 

With estimated f0,m, we want to estimate the density function

f0,mk for zmk,i, the zi scores based on mk replicates (with k >1).

If we can have an estimate of f0, mk, then we can obtain the

corresponding power function �(d, �) for mk replicates in the

same way as described earlier for m replicates. Of course, we

assume that our pilot data are drawn from only m arrays

under each of the two experimental conditions, and thus we

do not observe any zmk,i based on mk arrays. However, we

show next that it is possible to generate zmk,i values from zm,i

values. Note that we can draw random realizations of zm,i

from the estimated f0,m (see Pan et al. [10] or the example

below). Suppose zm, i
(j) values (for j = 1,2,..., k) are k indepen-

dent realizations of zm,i, then it is easy to show that 

k

zmk,i = � z
(j)

m,i
/k (6)

j=1

have the distribution f0,mk. Thus, the density function for

zmk,i values is 

g0 k k

f0,mk(z; �g0) =     � �r1
…�rk

	
(z; � arj/k, �Vrj
/k2). (7)

r1,…,rk=1 j=1 j=1

4 Genome Biology Vol 3 No 5 Pan et al.



For example, if we triple the number of replicates, the result-

ing density function is 

g0

f0,3m(z; �g0) =      �   �r1
�r2

�r3
	
(z; (ar1+ar2+ar3)/3,  (Vr1+

r1,r2,r3=1

Vr2+Vr3)/9).

The number of components of f0,mk may be too large. For

example, if the number of components is g0 = 3 for m = n = 2,

the corresponding numbers of components for m = n = 4,

m = n = 6 and m = n = 8 are, respectively, g0
2 = 9, g0

3 = 27 and

g0
4 = 81. In fact, some of these components may be very similar

or have a negligible role, hence the form of f0,mk may be simpli-

fied. In the extreme situation, as mk �, by the Central Limit

Theorem, the mixture model will reduce to a single-component

normal distribution. Hence, we propose a simulation-based

method to select a more parsimonious model for f0,mk. 

On the basis of the mixture model f0,m in Equation (5), we

can generate a random sample of zm,i
(j) values [10], from

which we can calculate zmk,i values using Equation (6). Using

zmk,i values we can fit a normal mixture model for f0,mk. As

we shall show later, we find such a fitted mixture model

often contains a smaller number of components than gk
0, as

dictated in Equation (7), leading to a simplified form of f0,mk. 

Summary of the proposed method
In summary, our proposed method of calculating the

required replicate number works in the following steps. 

Step 1. Suppose that we have pilot gene expression data Xji

and Yji from m arrays under each condition. Use formula (2)

to calculate the scores zi,m. 

Step 2. Use zi,m and the normal mixture model (5) to esti-

mate f0,m. 

Step 3. For a specified Type I error rate �, determine the cut-

off point C� for the rejection region using formula (3), in

which f0 is replaced with the estimated f0,m. 

Step 4. For any specified d, calculate the power function

�(d, �) using formula (4), in which f0 is replaced with the

estimated f0,m. 

Step 5. For any given k >1, use formula (7) or (6) to estimate

f0,mk. 

Step 6. For a specified Type I error rate �, determine the cut-

off point C� for the rejection region using formula (3), in

which f0 is replaced with the estimated f0,mk. 

Step 7. For any specified d, calculate the power function

�(d, �) using formulae (4), in which f0 is replaced with the

estimated f0,mk. 

Step 8. Repeat Steps 5 to 7 until all k >1 of interest have been

tried. 

After the power functions for many possible mk replicates

have been obtained, we can determine an appropriate

number of replicates by considering all the factors involved,

the desired power and Type I error rate, the targeted expres-

sion changes and other experimental constraints. 

An example
To understand the pathogenesis of otitis media, a study was

conducted to identify genes involved in response to pneu-

mococcal middle-ear infection and to study their roles in

otitis media. Radioactively labeled DNA microarrays were

applied to the mRNA analysis of 1,176 genes in middle-ear

mucosa of rats with and without subacute pneumococcal

middle-ear infection [26]. The data are available for the

control group and for the pneumococcal middle-ear infec-

tion group. A more detailed description of how the data

were collected and their public availability was provided in

Pan et al. [26]. For the purpose of sample size calculations

and to mimic many practical situations with only a small

number of replicates, we only use m = n = 2 arrays from

each group. We first take a natural logarithm transforma-

tion for all the observed gene-expression levels (that is,

radioactive intensities) so that the resulting distributions

are less skewed (which will reduce the number of compo-

nents of a fitted mixture model). Then, for each microarray,

we standardize the transformed gene-expression levels by

subtracting their median. 

Because of the small m = 2, the sample SDs may not be

stable. One way is to add a small constant as suggested by

Efron et al. [5]. Here we follow the idea of Lin et al. [27] and

use a loess smoother [28] to nonparametrically model the

sample SDs in terms of the mean expression levels

(Figure 1). Then we plug in the smoothed SD to calculate z2,i.

Note that an alternative use of SD or its modification in cal-

culating z2,i values will not change the basic idea and the fol-

lowing steps in sample size calculations. 

We fitted three mixture models for f0,2 with g0 ranging from

1 to 3. Table 1 summarizes the model-fitting results. g0 = 1

was selected as both AIC and BIC achieve their minima

there. So the fitted f0 is a normal distribution, N(-0.0013,

0.1278). However, for the purposes of general illustration,

we choose g0 = 2 as the fitted model: 

f0,2(z) = 0.76	(z; -0.0415, 1.3117)+0.24	 (z; 0.0700, 2.6970).

Figure 2a presents the histogram of zi values and the fitted f0

with g0 = 1 and 2. There is not much difference between the

two fitted f0,2, both of which fit the data well. In particular,

f0,2 does not look like a t-distribution with small degrees of

freedom, as predicted from the t-test. 
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A realization of z2,i can be simulated in the following two

steps. First, we draw a random number pi from {1, 2} with

probability 0.76 and 0.24 respectively. Second, if the drawn

pi = 1, zi is randomly drawn from a normal distribution

	(z; -0.0415, 1.3117); otherwise, it is drawn from

	(z; 0.0700, 2.6970). From the generated z2,i values, follow-

ing expression (6) we generated three simulated data sets:

z2k,i values, I = 1,..., 1,176 for k = 2, 3 and 4. Then a normal

mixture model was fitted to each data set. From Table 1, it

can be seen that a single-component normal distribution

was selected in each case. In Figure 2, each of the fitted

normal distributions, N(-0.0494, 0.8226), N(-0.0644,

0.5383) and N(-0.0438, 0.4206), is compared with its theo-

retically derived mixture model in Equation (7); they are all

very close. Here we see that using simulated data to fit a

mixture model results in a much-simplified model. For

example, for k = 4, it is a fitted single-component model

versus a 24 = 16-component model in Equation (7). Note

that, as predicted, all the means of the fitted models are all

essentially 0, and their variances decrease as k increases. 

If we want to have only one expected false-positive result

from testing each of 1,176 non-differentially expressed

genes, the gene-specific (or test-specific) Type I error rate is

� = 1/1176 = 0.09%. Using formula (3) and fitted-mixture

model f0,2k, the cut-off points C� are determined. Then the

power functions �(d, �) are drawn in Figure 3, which may

help make a decision on the required number of replicates.

For instance, if we want to detect an expression change d = 3

with probability at least 80% and with � =0.09%, then six

replicates are needed. Also, with just two replicates, the

power to detect a change as high as 4 is very low, smaller

than 30%. Note that the choice of d may depend on some

prior knowledge. For instance, based on the pilot data, we

6 Genome Biology Vol 3 No 5 Pan et al.

Table 1

AIC and BIC for fitted mixture models with various number of components g0

Two replicates Four replicates Six replicates Eight replicates

g0 AIC BIC AIC BIC AIC BIC AIC BIC

1 3928.10 3938.24 3111.75 3121.89 2612.98 2623.12 2322.85 2332.99

2 3928.54 3953.89 3116.40 3141.75 2617.65 2643.00 2327.03 2352.38

3 3932.67 3973.23 3122.20 3162.76 2622.61 2663.17 2331.92 2372.48

Figure 1
Sample standard deviations of expression levels and their loess smoothers as a function of the average expression levels for the two conditions
respectively.

X
0 2 4 6 8 10

0.
0

0.
05

0.
15

0.
25

Y
0 2 4 6 8

0.
0

0.
05

0.
15

S
D

S
D

0.
25



can estimate the d values for some selected genes (with the

sample means and sample SDs substituting the true means

and SDs in the formula for d), from which one can determine

a range of d values of interest. 

Figures 4-6 give the results for testing N = 1,000, 5,000 and

10,000 genes, respectively, while controlling the genome-wide

Type I error rate at the usual 5% level. It can be seen that as

N increases, we also need a larger number of arrays to

maintain the power of the statistical test when other para-

meters are fixed. For instance, for N = 10,000 (Figure 6),

even eight replicates cannot detect a change as large as

d = 3 with 80% power, but six replicates can detect a

change d = 4 with 80% power. 
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Figure 2
Histograms and estimated distribution density functions. (a-d) Two, four, six and eight replicates (z2 - z8), respectively. In (a), the solid and dotted lines
are the fitted one- and two-component mixtures. In (b-d), the solid and dotted lines are the fitted and the theoretically derived mixtures.
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Conclusions
We have described a method for calculating the number of

replicates in microarray experiments. This method is

designed for the situation where the mixture approach is

going to be taken to analyze the data. Note that any method

for sample size/power calculations has to depend on a spe-

cific statistical test to be used in data analysis; this explains

why there is a huge literature on the topic for clinical trials.

However, because of the close relation between the mixture

approach and the other two recently proposed nonparamet-

ric approaches - the empirical Bayes method [5] and the sta-

tistical analysis of microarray (SAM) method [9] - our

proposed method can be also applied to provide some useful

guideline for designing microarray experiments even when

one of the latter two approaches (or other approaches) is

planned to be used for data analysis in a later stage. For

instance, even though the null distribution f0 is estimated

using the null scores zi in our proposal, there may be alterna-

tive ways of estimating f0, such as using an alternative non-

parametric method (for example, kernel or local likelihood),

rather than the finite normal mixture model, to estimate f0,

or using the test statistics, Zi, of a large number of house-

keeping genes to estimate f0. Some modifications to the test

statistic Zi and the null statistic zi are also possible, especially

when we consider differential gene expression across more

than two conditions. These are all interesting topics we are

investigating now. 

In most sample size/power calculations, some pilot data are

needed to provide reasonable estimates of some parameters

needed for subsequent calculations. An alternative is to

obtain reasonable estimates from other similar studies in the

literature. However, because of the rapid development of

microarray technology, the latter is not likely and we expect a

researcher will have to do his or her own pilot study. This was

the situation we considered in the example. A particular chal-

lenge is how to obtain good estimates of the variances of gene

expression levels from a small number of replicates. In our

example, we considered a nonparametric method to smooth

sample variances. Some alternative smoothing methods have

also appeared in the literature. But it is not clear which one is

the most desirable. This is a topic for future study. 

The proposed method is straightforward to statisticians and

can be implemented in many existing statistical packages.

Our sample S-Plus program and data are available at [29]. 
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Figure 3
Power �(d, �) as a function of the magnitude of expression changes d
and the number of replicates, with the gene-specific Type I error rate
� = 0.09% for the middle-ear data.
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Figure 4
Power �(d, �) as a function of the magnitude of expression changes d
and the number of replicates, with the gene-specific Type I error rate
� = 0.05/1,000 for the middle-ear data.
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Figure 5
Power �(d, �) as a function of the magnitude of expression changes d
and the number of replicates, with the gene-specific Type I error rate
� = 0.05/5,000 for the middle-ear data.
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Figure 6
Power �(d, �) as a function of the magnitude of expression changes d
and the number of replicates, with the gene-specific Type I error rate
� = 0.05/10,000 for the middle ear-data. 
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