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Background. As the most common hepatic malignancy, hepatocellular carcinoma (HCC) has a high incidence; therefore, in this
paper, the immune-related genes were sought as biomarkers in liver cancer. Methods. In this study, a differential expression
analysis of lncRNA and mRNA in -e Cancer Genome Atlas (TCGA) dataset between the HCC group and the normal control
group was performed. Enrichment analysis was used to screen immune-related differentially expressed genes. Cox regression
analysis and survival analysis were used to determine prognostic genes of HCC, whose expression was detected by molecular
experiments. Finally, important immune cells were identified by immune cell infiltration and detected by flow cytometry. Results.
Compared with the normal group, 1613 differentially expressed mRNAs (DEmRs) and 1237 differentially expressed lncRNAs
(DElncRs) were found in HCC. Among them, 143 immune-related DEmRs and 39 immune-related DElncRs were screened out.
-ese genes were mainly related toMAPK cascade, PI3K-AKTsignaling pathway, and TGF-beta.-rough Cox regression analysis
and survival analysis, MMP9, SPP1, HAGLR, LINC02202, and RP11-598F7.3 were finally determined as the potential diagnostic
biomarkers for HCC. -e gene expression was verified by RT-qPCR and western blot. In addition, CD4+memory resting Tcells
and CD8+Tcells were identified as protective factors for overall survival of HCC, and they were found highly expressed in HCC
through flow cytometry. Conclusion. -e study explored the dysregulation mechanism and potential biomarkers of immune-
related genes and further identified the influence of immune cells on the prognosis of HCC, providing a theoretical basis for the
prognosis prediction and immunotherapy in HCC patients.

1. Introduction

Hepatocellular carcinoma (HCC), a primary liver cancer
in hepatocytes, is a prevalent health problem and one of
the most common malignant tumors [1]. According to
2018 statistics, HCC ranked sixth in incidence and fourth
in mortality in the world, with about 840 000 new cases
and more than 780 000 deaths annually [2]. Although the
overall survival (OS) rate of patients with HCC has im-
proved thanks to advances in surgical techniques, i.e., the
5-year survival rate being 18%, it is still very low [3]. Most
patients with late HCC have a high rate of recurrence and
metastasis after treatment, which may be one of the
reasons for poor prognosis [4]. Poor clinical outcomes
make it imperative that our understanding of HCC and

early diagnosis and treatment approaches should be
improved.

-e occurrence of liver cancer is a complex process
involving multiple risk factors, mainly hepatitis B and C
infection, cirrhosis, excessive alcohol consumption, obesity,
fatty liver, aflatoxin, and diabetes [5]. It is well known that
hepatocellular carcinoma cells are extremely resistant to
almost all conventional chemotherapeutics; therefore, so far,
only a limited number of chemotherapeutics can be used to
treat patients with hepatocellular carcinoma [6, 7]. Even
after surgical resection or ablation, 70% of patients still have
tumor recurrence within 5 years [8]. Once the tumor
progresses to a late stage, the currently available drug
therapy can only produce a small survival benefit, which is
not cost effective [9]. In fact, most patients develop into an
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incurable late stage before discovered. -erefore, early de-
tection and prevention of the development of liver cancer is
the most effective strategy to improve the prognosis of
patients.

-e exact molecular mechanisms underlying the initi-
ation and development of HCC remain unclear; however, it
is known that the occurrence and development of liver
cancer is associated with intrahepatic tumor microenvi-
ronment (TME) [10]. -e HCC tumor microenvironment is
a dynamic system composed of tumor cells, complex cy-
tokine environment, extracellular matrix, immune cell
subsets, etc. [11]. In this complex network, many immu-
nosuppressive mechanisms, including aggregation of im-
munosuppressive cells, loss of antigen presentation, and
activation of multiple signaling pathways favor immune
tolerance and promote the progression of liver cancer
[12, 13]. Immunotherapy for hepatocellular carcinoma is
currently a research hotspot [14].

Long noncoding RNAs (lncRNAs) are RNA molecules
with a length more than 200 bp [15], which can regulate gene
expression and protein synthesis in many ways [16].
lncRNAs play an important role in the pathogenesis and
development of human tumors, including liver cancer [17],
by involving in the regulation of HCC proliferation, apo-
ptotic migration, tumor genesis, and metastasis [18].
lncRNAs are divided into two categories: one is to promote
cancer while the other is to inhibit the progression of tu-
mors, both of which are equally important in cancer
treatment [19].

Like other solid cancers, a large number of genetic al-
terations accumulate during the development of liver cancer.
-erefore, this study screened differentially expressed genes
of immune-related HCC by comparing with the control
group to find potential diagnostic markers. Molecular
mechanism of differentially expressed genes in hepatocel-
lular carcinoma was identified by bioinformatics.

2. Materials and Methods

2.1.DataCollectionandDifferenceAnalysis. Gene expression
profiles were collected from the 50 normal and 374 tumor
liver tissues from -e Cancer Genome Atlas (TCGA) da-
tabase, which included mRNA and lncRNA expression
profiles. -e DESeq R software package was used to nor-
malize the expression level of genes. -e differentially
expressed mRNA and differentially expressed lncRNA be-
tween the HCC and normal samples were analyzed using
DESeq R software package.-e |log2(fold change)|> 2 and P
value< 0.05 were considered significant difference.

GSE149614 was obtained from the gene expression
omnibus (GEO) database, which included gene expression
profiles of 192 single synovial fibroblasts from 10 HCC
patients and 8 no ntumor liver samples through single-cell
RNA-seq (scRNA-seq) based on GPL24676.

2.2. Recognition of Immune-Related Genes. -e immune-
related DEmRs were screened out by intersecting the im-
mune-related mRNAs in the ImmPort database with

DEmRs, and the immune-related DElncRs were screened
out by intersecting the immune-related lncRNAs in ImmLnc
database with DElncRs.

2.3. Protein-Protein Interaction (PPI) Network. -e im-
mune-related DEmRs were put into Search Tool for the
Retrieval of Interacting Genes (STRING) database (https://
string-db.org.uk/), whose interaction score > 0.7 was
screened to construct a PPI network and then visualized
using Gephi software. -e PPI network was imported into
Cytoscape software to identify hub genes of the network by
screening the degree of connectivity between genes.

2.4. Biological Function Analysis. -e aforementioned
ImmPort database was used to conduct biological process
(BP) analysis by Gene Ontology (GO) and KEGG pathway
enrichment analysis of immune-related DEmRs. -e KEGG
pathway of immune-related lncRNAs was analyzed with the
ImmLnc database. P value< 0.05 was used as the cut-off
criteria.

2.5. Clinical Significance for Hub Genes in HCC. OS analysis
was performed with survival R software package. Cox re-
gression analysis was used to identify the impact of key genes
on the prognosis of HCC patients. -e area under the re-
ceiver operating characteristic (ROC) curve was used to
assess the potential diagnostic accuracy for abnormal ex-
pression of selected genes.

2.6. Processing of the scRNA-Seq Data. For GSE149614, the
filter criteria were 300< nFeature_RNA < 3000 and percent.
-e visualization of unsupervised clustering was performed
using the t-distributed stochastic neighbor embedding
(tSNE) method. Different cell clusters were annotated by the
SingleR package.

2.7. Subjects. A total of ten HCC and ten normal whole
blood samples and liver tissue samples were obtained from
the patient admitted to the First Affiliated Hospital of
Xinjiang Medical University. Patients had signed the in-
formed consent. -is study was approved by the medical
ethics committee of the First Affiliated Hospital of Xinjiang
Medical University (No. K202010-06).

2.8. RNA Extraction and RT-qPCR. -e total RNA of the
tissue samples was extracted by trizol (TaKaRa, Dalian,
China) from the HCC and normal groups and reversely
transcribed into complementary DNA (cDNA) using the
PrimeScript RT reagent kit (TaKaRa, Dalian, China)
according to the manufacturer’s protocol. Real-time quan-
titative PCR (RT-qPCR) was performed using SYBR
GreenPCR kit (-ermo Fisher Scientific, Massachusetts,
USA).-e expression of genes was normalized with GAPDH
and calculated using 2−ΔΔCt method. -e primers of this
study are shown in Table 1.
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2.9. Western Blot. -e protein expression levels of the hub
mRNAs were verified using the western blot (WB) method.
-e liver tissue samples were lysed on ice in the presence of
RIPA buffer. -e proteins were quantified using BCA
protein assay kit (Beyotime, Shanghai, China) and separated
by SDS-PAGE and subsequently transferred to PVDF
membranes, which were incubated overnight with primary
antibodies (Abcam, Massachusetts, USA). After incubation
with secondary antibodies (Abcam, Massachusetts, USA),
protein bands were visualized using Chemi Imaging (Vilber
Lourmat, France). GAPDH was used as the internal refer-
ence protein.

2.10. Flow Cytometry. Lymphocyte separation solution
(TBD, Tianjin, China) was used to extract lymphocytes from
blood samples. Cells were surface-labeled with anti-CD4-
FITC (BD, California, USA), anti-CD8-PE antibody (BD,
California, USA), anti-CD45RO-PE (BD, California, USA),
or anti-CD38-PC5.5 (BD, California, USA) at 4 °C. -e
results of detection were analyzed using Kaluza v2.1.1
software.

2.11. Statistical Analysis. Statistical analyses were performed
using the SPSS 21.0 software (IBM, NY, USA). Measurement
data were expressed as mean± standard deviation. -e
significance of the different expressions between groups was
tested using Student’s t-test. -e correlation analysis be-
tween immuno-related RNAs and immune cells was tested
using Pearson correlation analysis. Inspection level α� 0.05
and P< 0.05 was indicative of statistical significance.

3. Results

3.1. Differentially Expressed Genes in HCC. -e flow chart of
this study is shown in Figure 1. By comparing the difference
in the TCGA database between the HCC and normal control
group, 1613 differentially expressed mRNAs and 1237 dif-
ferentially expressed lncRNAs (Figures 2(a) and 2(b)) were
obtained. 1368 upregulated genes and 245 downregulated
genes (Figure 2(c)) were found in DEmRs while 1129
upregulated genes and 108 downregulated genes were found
in DElncRs (Figure 2(d)).

3.2. Immune-Related Differentially Expressed mRNAs.
Comparing differentially expressed mRNAs with immune-
related genes in the Immport database, 143 immune-related
DEmRs (Figure 3(a)) were identified. Enrichment analysis
suggested that these genes were mainly involved in the
positive regulation of cell proliferation, inflammatory re-
sponse, and activation of MAPK biological process (BP)
(Figure 3(b)) and also enriched in KEGG signaling pathways
such as cytokine receptor interaction, PI3K-AKT signaling
pathway, and MAPK signaling pathway (Figure 3(c)). -ese
immune-related DEmRs were subjected to PPI network
analysis to identify their interaction relationship
(Figure 3(d)), and the top 10 genes with the largest degree of
connectivity in the network were screened and identified as
hub mRNAs (EGF, SST, GCG, SAA1, FOS, CALCA, MMP9,
CXCL12, FPR2, and SPP1) (Figure 3(e)). ROC curves
showed that the AUC values of EGF, GCG, SAA1, FOS,
MMP9, CXCL12, FPR2, and SPP1 were greater than 0.6
(Figure 3(f )).

3.3. Identification of Key DEmRs. Ten hub genes were an-
alyzed for the risk score, and their expression changes were
associated with the prognostic risk of HCC (Figure 4(a)).
Cox regression analysis found that EGF, GCG, MMP9, and
SPP1 were all risk factors for HCC (Figure 4(b)). Impor-
tantly, low expression of MMP9 and SPP1 significantly
improved the overall survival time of HCC (Figure 4(c)),
whose expression in HCC patients in TCGA data were high
(Figure 4(d)). -is was also confirmed by the results of RT-
qPCR and western blot experiments (Figures 4(e) and 4(f )).
Using the immunohistochemical results from -e Human
Protein Atlas database (https://www.proteinatlas.org/), it
was shown that the expression of MMP9 as well as SPP1 was
significantly higher in HCC patients than that in controls
(Figures 4(g) and 4(h)).
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Figure 1: Flow chart of this study.

Table 1: -e primers for qRT-PCR.

Genes Primers

GAPDH F: 5′-TGAAGGTCGGAGTCAACGGATTT-3′
R: 5′-GCCATGGAATTTGCCATGGGTGG-3′

MMP9 F: 5′-GGGACGCAGACATCGTCATC-3′
R: 5′-TCGTCATCGTCGAAATGGGC-3′

SPP1 F: 5′-TCACCTGTCATACCAGTT-3′
R: 5′-TGGGTTG-3′

HAGLR F: 5′-GATCCCCACCTTCCCCAAAG-3′
R: 5′-TCTCCGACTGAGGTTTGCAC-3′

LINC02202 F: 5′-AACCAAGAGCGAAGCCAAGA-3′
R: 5′-GCTTGGACACAGACCCTAGC-3′

RP11-598F7.3 F: 5′-CAGGACTACCGAGCACCAGGAC-3′
R: 5′-TGACTCTCCTCAGCCAGCATCG-3′
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Figure 2: Identification of differentially expressed genes. (a) Heatmap of differentially expressed mRNAs between the HCC and control
groups. (b) Heatmap of differentially expressed lncRNAs between the HCC and control groups. (c) Volcano map of differentially expressed
mRNAs between the HCC and control groups. (d) Volcano map of differentially expressed mRNAs between the HCC and control groups.
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Figure 3: Identification of differentially expressed immune-related mRNAs. (a) -e intersection of differentially expressed mRNAs and
immune-related genes in the ImmPort database. (b)-emain biological process of immune-related DEmR enrichment. (c)-emain KEGG
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In addition, according to the results of GSE149614, we
clustered cells into 33 separate clusters (Figure 5(a)).
-rough comparing with the clinical phenotypes, we found
that different clusters matched HCC or control groups
(Figure 5(b)). Interestingly, we found that MMP9 and SPP1
were mainly expressed in cluster 12, corresponding to the
HCC group (Figures 5(c) and 5(d)). Cluster 12 was anno-
tated as macrophage (Figure 5(e)).

3.4. Immune-Related Differentially Expressed lncRNAs.
Furthermore, by comparing with the ImmLnc database, 39
immune-related DElncRs (Figure 6(a)) were identified,
which were associated with B cell, CD4+ Tcell, CD8+ Tcell,
dendritic cell, macrophage, and neutrophil correlations
and also significantly involved in the KEGG signaling
pathway related to immune inflammation, such as TGF-
beta family member, TCR signaling pathway, and inter-
leukins receptor (Figure 6(b)). -rough ROC curves of 39

DElncRs, 11 DElncRs with AUC values greater than 0.85
were identified as hub lncRNAs (Figure 6(c)). -e results of
risk score analysis showed that the expression changes of 11
DElncRs affected the prognosis of HCC (Figure 6(d)). Cox
regression analysis was performed on 11 DElncRs, and
their impact on the prognosis of HCC was demonstrated by
a nomogram (Figure 6(e)). Low expression of HAND2AS1
and FENDRR and high expression of LINC02202 and
HHIPAS1 were prognostic risk factors for HCC. In ad-
dition, HAGLR, LINC02202, and RP11-598F7.3 had a
significant impact on the survival of HCC patients
(Figure 6(f )).

In the TCGA database, it was found that HAGLR and
LINC02202 were upregulated and RP11-598F7.3 was
downregulated compared with the control group
(Figure 7(a)). -e results of RT-qPCR experiments ver-
ified that HAGLR and LINC02202 were highly expressed
in HCC while RP11-598F7.3 was lowly expressed
(Figure 7(b)).
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expressed in cluster 12. (e) -e expression of immune markers in all clusters of cells.
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3.5. Immune Cell Infiltration in HCC. To further identify the
role of immune cells in HCC, the infiltration levels of 22
immune cells were analyzed using CIBERSORT
(Figure 8(a)). Survival analysis showed that low expression
of eosinophil and neutrophil, high expression of CD4+
memory resting T cells and CD8+ T cells could significantly
improve the OS of HCC patients (Figure 8(b)). Cox re-
gression analysis suggested that CD4+ memory resting
T cells and CD8+ T cells were prognostic protective factors
for HCC (Figure 8(c)). In addition, through examining the
differences between eosinophil, neutrophil, CD4+ memory
resting T cells, and CD8+ T cells in the blood of patients in
the HCC and control groups by flow cytometry
(Figure 8(d)), the difference in the levels of CD4+memory
T cells and CD8+ T cells between the HCC and normal
groups were confirmed. -e statistical results showed that
the CD8+ T cells and CD4+memory resting T cells content
in HCC was significantly higher than that in the control
group.

Moreover, we divided HCC samples into MMP9 or
SPP1 high expression (5 samples) and low expression
groups (5 samples), respectively. -e contents of
CD8 + T cells and CD4 +memory resting T cells in the
HCC samples with high expression of SPP1 were higher
than those with low expression of SPP1 (Figure 8(e)).
However, the difference was not significant for the

contents of CD8 + T cells and CD4 +memory resting
Tcells in the HCC samples with high expression of MMP9
as they was higher than those with low expression of
MMP9. -e results of correlation analysis showed that
CD8 + T cells and CD4 +memory resting T cells were
positively correlated with MMP9, SPP1, HAGLR, and
LINC02202, while there was a negative correlation with
RP11-598F7.3 (Figure S1).

4. Discussion

-e immunotherapy is a promising but complicated treat-
ment strategy since the liver itself is also an immune organ,
which can enhance or inhibit the immune response of tu-
mors generated in vivo [20]. It was found that about 25% of
HCC were classified as “immune-specific class” according to
gene expression profiles [21]. -is study identified MMP9
and SPP1 as key DEmRs which were associated with im-
mune in HCC. -e immune cell infiltration had found that
differences in infiltration of CD4+ memory resting T cells
and CD8+ T cells may affect the prognosis of HCC. MMP9
and SPP1 were highly expressed in the macrophage of HCC
patients and had positive correction with CD4+ memory
resting Tcells and CD8+ Tcells. -ese results strengthen the
association between immune cells and immune-related
genes.
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-e immune-related genes screened were involved in a
large number of biological functions and signaling pathways
related to the occurrence and development of HCC. Cell
proliferation and apoptosis have always been the molecular
indicators for evaluating the development and progression
of hepatocellular carcinoma [22, 23]. T cell receptors can
mediate antigen-dependent tumor cytotoxicity, directly
induce cell death through membrane-bound Fas ligand, and
inhibit tumor proliferation through secretion of IFN-gamma
[24].-e PD-1/PD-L1 pathway also inhibits the survival and
growth of T cells in HCC by inhibiting T cell receptor
signaling [14]. Several components of the MAPK cascade
and PI3K-AKT signaling pathway are promising targets in
HCC [25].-e final effects of the MAPK pathway are ERK 1/
2, JNK, and p38. -e expression of ERK 1/2 and JNK is
upregulated, leading to the transcription of genes related to
cell proliferation, survival, differentiation, and migration
[26]. Induction of apoptosis, inhibition of cell proliferation,
migration, and invasion by inhibiting the PI3K-AKT
pathway is a therapeutic target for the treatment of HCC
[27, 28]. TGF-β is also a common therapeutic target for the
treatment of HCC [29] since serum TGF-β level is elevated

in HCC patients and has been a long-term biomarker for
HCC [30]. AKT signal transduction is thought to promote
tumor formation by inhibiting TGF-β-induced apoptosis,
which in turn activates Wnt/β-catenin signaling, thus fur-
ther promoting the occurrence of HCC [15]. Inflammatory
cells promote the occurrence of HCC by releasing ROS,
RNS, lipid peroxidation, and abnormal expression of cy-
totoxic cytokines [31]. -e complex interaction of different
proinflammatory factors (such as interleukin-6 or TNF-α)
with anti-inflammatory cytokines (TGF-α and TGF-β) and
their signaling pathways is involved in the occurrence and
development of liver cancer [32].

Multivariate analysis confirmed that the expression of
matrix metalloproteinase 9 (MMP9) was an independent
predictor of OS in hepatocellular carcinoma [33], which is
consistent with our results. A large number of studies have
confirmed that the high expression of MMP9 in HCC
promotes the proliferation, migration, and invasion of HCC
cells [34, 35]. MMP9 is particularly important for tumor
invasion and metastasis in that it can degrade ColIV [36].
Secreted phosphoprotein 1 (SPP1) has been shown to be
upregulated in HCC patients with a poor prognosis [37].
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Osteopontin (OPN; gene SPP1) is also associated with
cirrhosis cancer risk [38]. It has been recognized as a po-
tential marker of early recurrence and poor prognosis as well
as a metastasis-related gene of HCC [39].

Differential expression of HAGLR was upregulated in
HCC [40, 41]. Mounting evidence suggests that high ex-
pression of HAGLR is related to clinicopathological features
such as tumor size, lymph node metastasis, differentiation,
TNM stage, and prognosis [42, 43]. LINC02202 can regulate
the expression of PIK3R1 and FOXO1 genes in PI3K sig-
naling pathway [44]. RP11-598F7.3 was found to be con-
nected withWilms tumor in the tumor stage and histological
grade [45]. -ere are few studies on the direct relationship
between LINC02202, RP11-598F7.3, and HCC, but our
results suggested that LINC02202 and RP11-598F7.3 were
prognostic risk factors for HCC.

Furthermore, the study found that CD4+ memory
resting T cells and CD8+ T cells were protective factors for
HCC. -e CD8+ T lymphocytes and CD4+ memory T cells
significantly increased in HCC [46]. In the elimination phase
of HCC, emerging cancer cells can be recognized and killed
by many immune cells, such as CD8+ and CD4+ Tcells [47].
CD4+ T lymphocytes have been reported to inhibit the
development of liver cancer and mediate tumor regression
[48]. An increase in the percentage of cytotoxic CD4+ Tcells
was associated with a strong prognosis in both disease-free
survival and OS [49]. CD8+ T cells are an important subset
of T cells with antitumor activity mediated by the release of
cytotoxic molecules, whose role in determining clinical ef-
ficacy in many cancers is obvious [50]. Moreover, CD4+
memory resting Tcells and CD8+ Tcells were all increased in
HCC with high expression of the SPP1 group. Zheng et al.
found that high expression of SPP1 may be involved in
regulating the polarization of macrophages toward M2
phenotype and reducing CD8+T cells [51]. -ere also is a
study showing that SPP1 may contribute to tumor pro-
gression by promoting immune cell infiltration [52]. Further
expanded samples for clinical studies and basic experiments
are also needed to validate our results.

-erefore, the role of immune-relatedmolecular therapy in
HCC patients is indisputable, and the results of this study may
provide a new direction for the diagnosis and treatment of
HCC. However, this study also has some limitations. Our
analytical data came from public databases, and the sample size
used for experimental validation of the important results of this
study was small. Subsequent cell culture and animal models are
also needed to further investigate the underlying mechanisms
of HCC. In addition, the application potential of the key
markers identified in the study needs further validation.

5. Conclusion

In this study,MMP9, SPP1, HAGLR, LINC02202, and RP11-
598F7.3 are considered as potential diagnostic biomarkers
for hepatocellular carcinoma, and CD4+ memory resting
T cells and CD8+ T cells are believed to be involved in HCC
immune control. -ese results are expected to provide a new
perspective for the molecular level interventional research
and treatment of liver cancer.
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