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Significance

Consider walking along a busy 
street and suddenly hearing 
heavy footsteps approaching 
behind you. Deciding whether to 
move aside to avoid an 
impending collision becomes 
more evident with the sound of 
each additional footstep. This 
process requires integrating 
sensory observations over time 
and is implemented by 
transforming stimulus 
representations into decision 
variables. We explored the 
underlying neural mechanisms 
by recording parietal cortex 
activity while animals either 
performed an auditory task or 
passively listened to the identical 
sounds. While behaviorally 
relevant auditory information is 
represented when animals listen 
passively to the stimuli, it is only 
during task engagement that 
decoded parietal cortex activity 
directly reflects psychometric 
performance and behavioral 
measures of integration time.
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The process by which sensory evidence contributes to perceptual choices requires an 
understanding of its transformation into decision variables. Here, we address this issue 
by evaluating the neural representation of acoustic information in the auditory cortex-
recipient parietal cortex, while gerbils either performed a two-alternative forced-choice 
auditory discrimination task or while they passively listened to identical acoustic stimuli. 
During task engagement, stimulus identity decoding performance from simultaneously 
recorded parietal neurons significantly correlated with psychometric sensitivity. In con-
trast, decoding performance during passive listening was significantly reduced. Principal 
component and geometric analyses revealed the emergence of low-dimensional encod-
ing of linearly separable manifolds with respect to stimulus identity and decision, but 
only during task engagement. These findings confirm that the parietal cortex mediates 
a transition of acoustic representations into decision-related variables. Finally, using a 
clustering analysis, we identified three functionally distinct subpopulations of neurons 
that each encoded task-relevant information during separate temporal segments of a 
trial. Taken together, our findings demonstrate how parietal cortex neurons integrate 
and transform encoded auditory information to guide sound-driven perceptual decisions.

parietal cortex | auditory perception | decision-making | neural response manifold | geometric 
analysis

Integrating sensory information over time is one of the fundamental attributes that is 
required for accurate perceptual decisions (1, 2). This process is supported by the trans-
formation of stimulus representations into decision variables. In the case of auditory 
stimuli, prior to the formation of decision variables, the central representations of acoustic 
cues are gradually reconfigured along the auditory neuraxis. Thus, auditory neurons 
become more selective to contextually relevant acoustic features as one ascends the central 
pathway into the auditory cortex (3). Ultimately, individual acoustic components merge 
into auditory objects to guide perception (4). Similarly, primary visual cortex neurons are 
selective to the stimulus orientation (5, 6), whereas higher cortices are selective for more 
complex characteristics (7–9). A hierarchical progression of sensory information processing 
is also seen across the somatosensory ascending pathway where receptive fields grow more 
complex (10). These hierarchically transformed neural signals are ultimately decoded 
downstream of sensory cortices for stimulus-dependent decisions (4, 11–14).

Studies in both nonhuman primates and rodents suggest that the parietal cortex inte-
grates sensory inputs and transforms them into decision signals (15–19). The parietal 
cortex receives direct projections from primary or secondary sensory cortices (20, 21), has 
been causally implicated in the performance of perceptual decision-making tasks (22–25), 
and its activity typically reflects action selection (26, 27). Furthermore, parietal neurons 
gradually increase their spiking activity over time epochs that scale with the accumulation 
of sensory evidence (11, 28–31). Thus, while parietal cortex activity reflects decision 
variables, the manner in which relevant sensory stimuli are represented prior to this 
transformation remains uncertain.

To dissociate encoding of stimuli from encoding of decision, we recorded neural activity 
from the parietal cortex while gerbils performed an auditory discrimination task (25), and 
again during passive listening sessions, using the same acoustic stimuli in the absence of 
behavioral decision. While some visual studies have explored visual selectivity of parietal 
cortex neurons under passive fixation conditions (32, 33), a direct comparison between 
the decoding of visual stimuli versus decision would require that eye fixation be controlled 
during stimulus presentation. In contrast, auditory tasks can be performed without the 
need to maintain head position during a trial, permitting us to directly compare the 
sound-driven responses of parietal cortex neurons during task engagement versus their 
responses to identical stimuli during passive listening. Thus, we predicted that if parietal 
cortex activity during task performance did not reflect the transition into decision-related 
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variables, then all analyses of neural processing would be similar 
to those displayed during the passive listening condition. We 
found that during task performance, decoded parietal cortex pop-
ulation activity based on stimulus identity correlated with behav-
ioral discrimination across similar timescales. Furthermore, 
principal component analysis (PCA) performed on parietal cortex 
responses revealed neural trajectories (i.e., the change in parietal 
cortex population activity over time) that demonstrated the tem-
poral progression of low-dimensional encoding of acoustic infor-
mation that transitioned to encoding of behavioral choices. 
During passive listening sessions, decoding performance from 
parietal cortex population activity based on stimulus identity was 
poorer than decoding during task performance, but scaled with 
stimulus duration. In addition, the PCA revealed neural trajecto-
ries that differentiated between each stimulus condition, but did 
not reflect a decision variable. Thus, the parietal cortex could 
accumulate auditory evidence for the purpose of forming a deci-
sion variable during task performance. Finally, our clustering 
analysis based on neuronal response properties suggest subpop-
ulations of parietal neurons that may reflect separate temporal 
segments of individual trials during decision-making. We pro-
pose that the parietal cortex integrates and transforms bottom-up 
sensory information into decision variables during task 
performance.

Results

We trained gerbils (n = 5) to perform a single-interval, two-alter-
native forced-choice (AFC) amplitude modulation (AM) rate 
discrimination task (25). Gerbils were trained to self-initiate each 
trial by placing their nose in a cylindrical port for 100 ms. On 
each trial, a 4- or 10-Hz AM signal was presented from an over-
head speaker and animals approached the left or right food tray 
on the opposite side of the test cage. A food pellet reward was 
delivered when animals approached the left food tray following a 
4-Hz AM signal or the right food tray following a 10-Hz AM 
signal (Fig. 1A). To measure the minimum time necessary to accu-
rately perform the task, AM stimulus duration was varied across 
trials (100 to 2,000 ms), and performance was quantified as the 
proportion of correct trials. Fig. 1B shows example psychometric 
functions from two different animals. In both examples, task per-
formance improved with increasing stimulus duration and reached 
an optimum at ≥800 ms. SI Appendix, Fig. S1 displays psycho-
metric functions for all five gerbils (n = 44 sessions). Minimum 
integration time was defined as the shortest stimulus duration at 
which animals discriminated between the two AM signals at a 
performance level of 0.76, which is equivalent to the signal detec-
tion metric, d’ of 1 (34). The distribution of minimum integration 
times across all sessions is shown at the bottom of SI Appendix, 
Fig. S1. There was no significant difference between minimum 
integration times for the 4- and 10-Hz AM signals (Wilcoxon 
signed-rank test, P = 0.67; 4-Hz minimum integration time 
median: 391 m; 10-Hz minimum integration time median: 402 
ms), demonstrating animals were not biased in preferentially 
approaching the left or right food tray that were linked to the 
corresponding stimuli.

To assess parietal cortex neuron responses during task perfor-
mance, we implanted trained animals with 64 channel electrode 
arrays, and obtained wireless recordings during auditory discrim-
ination task performance. These recordings were compared with 
the neural responses recorded while animals listened passively to 
the identical acoustic stimuli (Fig. 1C). Recorded physiological 
data (Fig. 1D) were preprocessed to extract candidate waveforms 
for offline spike sorting procedures. One anatomically confirmed 

electrode track within the parietal cortex is shown in Fig. 1E. We 
recorded a total of 297 units (22.9%, 68/297 classified as sin-
gle-units) during task performance sessions and 284 units during 
passive listening sessions (22.9%, 65/284 classified as single-units). 
SI Appendix, Fig. S2 shows example poststimulus time histograms 
(PSTHs) for one unit during one task performance and one passive 
listening session. The responses of all recorded units to long (2,000 
ms) and short (300 ms) stimulus durations are shown in Fig. 1 F 
and G. Although there was a diversity of PSTH patterns during 
task performance, a fraction of parietal units displayed an initial 
decline in spike rate, followed by a gradual increase during the AM 
target stimuli. This temporal pattern of neural response was similar 
to that observed by parietal neurons during visual decision-making 
that also displayed ramping activity with increasing sensory evi-
dence (29, 35, 36). In contrast, a differential firing rate across time 
was less robust during passive listening sessions.

To determine whether parietal cortex population activity was 
sufficient to account for sound-driven task performance, we con-
structed linear classifiers using support vector machines (SVM) 
(37) (see Methods). Briefly, AM discrimination was quantified 
across our parietal cortex population with a linear population 
readout scheme. Spike count responses from recorded neurons 
were counted within 100-ms time windows across the entire trial 
durations. This temporal bin size did not change as the analysis 
time window expanded across stimulus durations. The population 
linear classifiers were trained to decode responses from a propor-
tion of trials to each individual AM rate signal (4- versus 10-Hz) 
across each stimulus duration (Fig. 2A). Cross-validated classifi-
cation performance was determined as the proportion of correctly 
classified held-out trials. Thus, decoding performance represents 
the discriminability of stimulus identity (4- versus 10-Hz AM 
rate). This population decoder analysis was applied to our dataset 
in two ways. First, decoder performance was assessed from simul-
taneously recorded single- and multiunits within each behavioral 
session (i.e., “within-session” analysis; Fig. 2B). Second, we 
assessed decoder performance for all units pooled across all behav-
ioral sessions (Fig. 2F).

For the within-session analysis, we implemented a standard 
criterion to only assess sessions with a minimum of five simulta-
neously recorded single- and/or multiunits (n = 31/44 sessions). 
Fig. 2B shows example within-session population decoder results 
from two animals during task performance. In both cases, decod-
ing performance increases with longer stimulus durations, in line 
with psychometric performance. Decoding performance and cor-
responding behavioral performance for each stimulus type (4- and 
10-Hz AM rate) across all sessions are shown in SI Appendix, 
Fig. S3A. Neural minimum integration times were calculated as 
the stimulus duration corresponding to decoding performance of 
0.76. The distributions of neural minimum integration times are 
plotted in SI Appendix, Fig. S3B. We found a significant positive 
correlation between behavior integration times and corresponding 
decoder integration times (Fig. 2C; r = 0.49, P = 0.02), and similar 
trends were observed for both trial types (SI Appendix, Fig. S3C; 
4-Hz AM: r = 0.54, P = 0.01; 10-Hz AM: r = 0.44, P = 0.05). 
This suggests parietal cortex activity reflects auditory-based 
decisions.

We next asked whether the time course of decoder performance 
aligned with behavioral integration times. Fig. 2D displays average 
± SEM decoding performance as a function of time for correct left 
(4-Hz) versus right (10-Hz) trials across all 31 recorded sessions. 
Since we were interested in the time points of decoding performance, 
this analysis was based on a 100-ms sliding window. At trial onset, 
decoding performance was near chance, and then increased to a peak 
value of ~0.80 (average ± SEM, left: 0.81 ± 0.03; right: 0.80 ± 0.03). 
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The maximum decoding performance occurred at ~350 ms of AM 
signal duration, which is nearly identical to the average behavioral 
integration time (378 ms; SI Appendix, Fig. S1). Decoding perfor-
mance decreases after this time point, suggesting that the animals 

no longer temporally integrate the sensory information and may 
begin to initiate their motor approach toward the corresponding 
food tray. To further illustrate decision-related activity across trial 
durations, we also plotted decoding performance as a function of 
time relative to response latency (SI Appendix, Fig. S3D). Decoding 
performance gradually begins to increase ~1,000 ms prior to response 
latency and decoding performance peaks ~600 ms prior to response 
latency.

Although the striking alignment of neural and behavioral per-
formance suggests that auditory information is being integrated 
within the parietal cortex, it does not provide a direct measure of 
stimulus coding. Therefore, we recorded from the same parietal 
neurons studied during task performance while animals listened 
passively to the identical 4- and 10-Hz AM stimuli (Fig. 1G and 
SI Appendix, Fig. S2B). Within-session population decoder results 
for two passive listening sessions are shown in Fig. 2E. Decoding 
performance across all sessions for each stimulus type is shown in 
SI Appendix, Fig. S3E. The distributions of neural minimum inte-
gration times during passive listening sessions are plotted in 
SI Appendix, Fig. S3F. Overall, only a fraction of passive listening 
sessions yielded minimum integration times (n = 17/29; maxi-
mum decoding performance did not reach 0.76 for the remaining 
12 sessions). For these passive listening sessions, decoding perfor-
mance scaled with increasing stimulus duration (Fig. 2E and 
SI Appendix, Fig. S3E), suggesting that the parietal cortex could 
accumulate this sensory evidence for the purpose of forming a 
decision variable.

To directly compare decoder performance during task perfor-
mance and passive listening, we examined the 19 instances where 
corresponding session types fit the criterion of five simultaneously 
recorded units. In the majority of those instances (13/19 sessions), 
integration time was better or could only be calculated during task 
performance (SI Appendix, Fig. S3G). In six cases, integration time 
diminished or could not be calculated during task performance 
(SI Appendix, Fig. S3H). Neurometric function slopes were similar 
between task performance versus passive listening sessions 
(P = 0.47; Wilcoxon signed rank test).

We further examined decoding performance as a function of 
the number of total recorded units for task performance and pas-
sive listening sessions (Fig. 2F). A subsampling procedure was 
applied to randomly select a subpopulation of units (25 to 297 
for task performance and 25 to 284 for passive listening sessions; 
increasing increments of 25) across 500 iterations. During each 
iteration of the resampling procedure, a new subpopulation of 
units was randomly selected (without replacement) prior to the 
decoding readout procedure. For each stimulus duration, decoding 
performance for both task performance and passive listening ses-
sion types increased with the number of units, demonstrating 
evidence for population-level encoding.

Given that we could decode both stimulus identity, and the 
behavioral integration times from the neural activity, we predicted 
that the parietal cortex would transform the sensory inputs into 
low-dimensional decision variables. Low-dimensional decision 
variables are beneficial from the computational point of view as 
they would permit a downstream decoder to efficiently read out 
the decision, and use the information to implement a correspond-
ing motor action plan. Thus, we predicted that population activity 
would gradually diverge into two independent patterns that cor-
responded to the two sound-driven decision categories (e.g., 4-Hz: 
choose left and 10-Hz: choose right). To test this idea, we assessed 
the dynamics of parietal cortex population activity by applying 
PCA to the trial-averaged neural responses (Fig. 3A). This analysis 
was conducted on two of the five recorded animals as they both 
provided the large majority of recorded units (Gerbil 1 n = 

Fig.  1. Behavioral measures of auditory task performance and neural 
recordings. (A) Schematic of the single-interval, two-AFC AM rate discrimination 
task. Gerbils are required to discriminate between AM broadband noise 
presented at 4- versus 10-Hz across a range of stimulus durations (100 to 
2,000 ms). (B) Two example psychometric functions from two animals. (C) 
Chronic 64-channel electrode arrays were implanted into the left parietal 
cortex of five gerbils. (D) Raw waveform trace of neural response to AM 
signal. (E) Anatomically confirmed electrode track within the parietal cortex. 
(F) Z-scored firing rate activity of all parietal cortex neurons during task 
performance sessions (n = 297) for “Long Stimulus” duration of 2,000 ms (Top) 
and “Short Stimulus” duration of 300 ms (Bottom), sorted by time of maximum 
firing rate. (G) Same format as panel F. Z-scored firing rate activity of parietal 
cortex neurons during the passive listening session (n = 284), sorted by time 
of maximum firing rate. Note that the total stimulus time is shorter for passive 
listening because trials did not exceed a total stimulus time of 1,500 ms.
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115/297 units; Gerbil 2 n = 165/297 units). Fig. 3B depicts pop-
ulation activity in a three-dimensional (3D) principal component 
space that originated from PSTHs of recorded units from two 
animals during task performance (top three principal components, 
explained variance: Gerbil 1 = 79.7%; Gerbil 2 = 88.8%). The 
neural trajectories in this state space correspond to the population 
responses across different times for each AM rate and the stimulus 
durations. At stimulus onset, neural trajectories started at a similar 
position, but began to diverge toward the relevant decision, or 
stimulus identity, subspace (4-Hz versus 10-Hz) after ~300 ms of 
acoustic stimulation in support of our prediction. This divergence 
toward the relevant decision subspace over time is further demon-
strated when we measured the Euclidean distance between each 
pair of trajectories in the space spanned by the top three principal 
components (SI Appendix, Fig. S4A). Over time, the distance 
between the trajectories that correspond to the stimulus durations 
of opposing AM rates (4-Hz versus 10-Hz) dramatically increased 
(SI Appendix, Fig. S4A, Upper Right and Lower Left Quadrants of 
each matrix; outlined in red), while the average distance between 
the trajectories that correspond to the stimulus durations within 

each AM rate remained low (SI Appendix, Fig. S4A, Upper Left 
and Lower Right Quadrants of each matrix). In other words, the 
resulting distance matrix is block diagonal showing that trajecto-
ries corresponding to the same stimulus identity remained closer 
to each other than to the trajectories corresponding to the opposite 
stimulus identity – thereby indicating the existence of decision-rel-
evant manifolds. We define “manifold” as the collection of pop-
ulation neural responses that encode a stimulus. This block 
diagonal structure further demonstrates that these manifolds are 
independent of stimulus features that are irrelevant to the decision, 
such as stimulus duration. PCA performed on the pooled dataset 
yielded very similar results (SI Appendix, Fig. S5). Together, these 
results suggest the formation of low-dimensional decision-relevant 
manifolds and are consistent with the integration of sensory evi-
dence over time and the representation of a decision variable by 
the neural population. This low-dimensional encoding in mani-
folds did not necessarily have to be the case. The null hypothesis 
was that the parietal cortex maintains high dimensional representa-
tions from which decisions could be still decoded, but the infor-
mation would not be organized along a decision category structure. 

Fig. 2. Parietal cortex population activity reflects auditory task 
performance and contains auditory information. (A) Schematic 
of linear population readout procedure. Population linear 
classifiers were trained to decode the responses from a 
subpopulation of simultaneously recorded parietal cortex 
neurons from a proportion of trials to each AM rate signal 
(4 Hz versus 10 Hz) across each stimulus duration. Cross-
validated classification performance was determined as the 
proportion of correctly classified held-out trials that were not 
used during classifier training. This procedure was performed 
across 250 iterations with new randomly drawn sampled 
train and held-out trials for each iteration. (B) Within-session 
population decoder results (pink) and corresponding behavior 
performance (black) from two example sessions from two 
animals during task performance. Dashed horizontal lines 
are plotted at 0.76 proportion of correct trials. Minimum 
integration time was defined as the stimulus duration at 
which proportion of correct trials = 0.76, which is equivalent to 
d’ = 1 (see Methods). (C) Corresponding behavior versus neural 
integration times from the same sessions. For each session, 
behavioral integration time is taken from the psychometric 
function (e.g., Fig.  2B, black curves), and neural integration 
time is taken from the neurometric function (e.g., Fig.  2B, 
pink curves). Measurements of corresponding behavior and 
neural integration times could only be measured from 21 
sessions. For other instances, psychometric and/or neural 
decoding performance did not reach the criterion of 0.76, 
and an integration time could not be measured. Solid red line 
represents the linear regression. Pearson’s r and statistical 
significance are noted in the Top-Left corner of the figure 
panel. (D) Average ± SE within-session decoding performance 
for correct left versus right trials from all sessions (n = 31) that 
fit the criterion of five simultaneously recorded single- and/
or multi-units. (E) Within-session population decoder results 
from two example sessions from two animals during passive 
listening sessions. (F) Population decoding performance 
for task performance (pink) and passive listening (purple) 
conditions across increasing number of recorded units for 
each stimulus condition. A resampling procedure was used 
to randomly select a subpopulation of units with increasing 
increments of 25 across 500 iterations prior to applying the 
decoding readout procedure. Decoding performance for 
both session types increased with the number of units. For 
all stimulus durations except 300 ms, decoding performance 
during task performance exceeded that of passive listening 
sessions across all unit totals. For passive listening sessions, 
maximum decoding performance was found when including 
all recorded units, whereas decoding performance during task 
performance reached its peak when including ~≥80% of total 
units. Maximum decoding performance for task performance 
sessions asymptotes higher than passive listening sessions, but 
are comparable between 300 and 600 ms stimulus duration 
(SI Appendix, Fig. S3I), which is near the average behavioral 
integration time. Error bars denote average ± SEM.
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In this case, we would have seen intermingled neural trajectories 
that were not separated into the two sound-driven decision cate-
gories in a low-dimensional projection.

In principle, decision variables should not be computed when 
animals are disengaged from a sensory task. To test this idea, we 
performed the same PCA to trial-averaged neural responses 
recorded during passive listening sessions. Fig. 3C depicts popu-
lation activity in 3D principal component space that originated 
from PSTHs of recorded units from two animals during passive 
listening (top three principal components, explained variance: 
Gerbil 1 = 82.3%; Gerbil 2 = 85.2%). In contrast to the neural 
trajectories of parietal cortex neural responses during task perfor-
mance, the neural trajectories elicited during passive listening did 
not diverge according to the two separate manifolds corresponding 
to AM rates (SI Appendix, Figs. S4A versus SI Appendix, Figs. S4 B 
and S5 B, outlined red squares). This is reflected in the difference 
in decoding performance between the two behavioral conditions 
(Fig. 2 B, E, and F). Instead, the neural trajectories elicited by 
each combination of the AM rate and stimulus duration eventually 
occupied separate positions in the principal component space. 
This is further demonstrated by the differences in Euclidean dis-
tances between each stimulus condition (SI Appendix, Figs. S4 B 
and S5 B). Combined with the finding that several passive listen-
ing sessions yielded an integration time (n = 17/29; SI Appendix, 
Fig. S3F), this suggests that, while acoustic information is encoded 

in the parietal cortex during passive listening, decision-related 
variables that are linked with behavioral integration times are not 
computed.

Previous studies have hypothesized that the brain transforms 
sensory information into linearly separable representations (38, 
39). This “untangling” of representations has been suggested to be 
a more prominent feature of higher order brain areas (38, 40). 
Thus, the segregation of neural trajectories from parietal cortex 
activity into two separate subspaces during task performance may 
represent an encoding strategy that enables linear readout of deci-
sion variables (SI Appendix, Fig. S6A). To test whether the neural 
representations of the AM rate stimuli in principal component 
space are consistent with this prediction, we employed three meas-
ures of untangling: capacity, manifold radius, and manifold dimen-
sionality (41). These three measures define the separability of 
objects based on their neural manifolds. Capacity measures how 
many different object classes can be linearly separated with high 
probability. Manifold radius and dimensionality quantify the size 
of the manifold; essentially, the variance of the points that belong 
to the manifold as well as its spread along different axes. To com-
pute these measures, we first binned the spiking activity into 80-ms 
bins and then split the trial activity into two conditions according 
to the AM rates, 4- and 10-Hz, combining across stimulus dura-
tions as well as all of the animals. Consistent with the concept of 
untangling, we found that there was an increase in capacity 

Fig. 3. Parietal cortex population dynamics during task 
performance. (A) PCA was performed on trial averaged 
neural responses from two of the five implanted 
gerbils. (B) Population activity plotted in a 3D principal 
component space that originated from PSTHs of all 
recorded units for two gerbils during task performance. 
The neural trajectories in this state space correspond 
to the population responses across different times for 
separate AM rates and stimulus durations. Dot symbols 
represent 0, 300, and 600 ms after stimulus (AM) onset. 
(C) Same as (B) except during passive listening.
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(SI Appendix, Fig. S6B) and a decrease in manifold radius and 
dimensionality after the onset of the AM stimulus (SI Appendix, 
Fig. S6 C and D). Finally, we computed the norm of the manifold 
center over time, which measures the distance of the center of the 
manifold to the origin, to understand if the object manifolds cor-
responding to each stimulus identity move over time. This measure 
gradually increased (SI Appendix, Fig. S6E), suggesting that the 
4- and 10-Hz manifolds moved away from their starting position 
over time. These trends continue through ~600 ms into the AM 
stimulus (~1,000 ms of absolute trial time) at which point all four 
measures plateau. Importantly, the time course of this change in 
neural representation is consistent with the time window over 
which the animal has to accumulate evidence and make its deci-
sion. Together, our findings suggest that the transformation of 
sensory evidence into decision variables in the parietal cortex is 
accompanied by changes in the neural representation that supports 
the separability of the stimulus manifolds.

The previous analysis of population-level encoding of auditory 
stimuli and the decision variable assumed that the recorded popu-
lation was homogeneous. Since the parietal cortex appears to 
encode both the auditory stimulus, and the decision variable, we 
predicted that this would occur in functionally distinct subpopu-
lations of neurons. Thus, to determine how these variables are 
encoded in the parietal cortex, we utilized a complementary set of 
analysis tools to ask whether their responses are found in distinct 
functional classes and, if so, whether they differentially represented 
the emergence of the decision variable. To test this, we performed 
clustering on PSTHs (42–44). Specifically, for each neuron we 
averaged over trials with the same AM stimulus rate (4- or 10-Hz) 
to obtain two conditional PSTHs spanning the 2 s after trial initi-
ation. We then concatenated these 2 PSTHs to create a high-di-
mensional feature space that represents the unique activity of each 
neuron across the two stimulus conditions. Analysis of the angles 
between these data points in feature space tested for significantly 
smaller angles than would occur in unclustered, gaussian-distrib-
uted features (PAIRS test) (42), which indicated that there were 
clusters in this dataset. We then performed k-means clustering on 
these responses, with the number of clusters chosen using the gap 
statistic that determines the statistically significant number of clus-
ters compared to unclustered, gaussian-distributed features. The 
gap statistic revealed three subpopulations of neurons in the pop-
ulation response (Fig. 4 A–D). Cluster 1 (n = 163), the largest 
cluster in the population, demonstrated activity at the onset of 
unmodulated noise (i.e., the 400 ms before the AM stimulus), and 
persisted through the trial (Fig. 4 A and B). Clusters 2 (n = 61) and 
3 (n = 73) displayed decreased activity at the beginning of a trial, 
with a ramping of activity peaking at ~1 s. Clusters 1 and 3 were 
well-represented, though cluster 2 was predominantly represented 
in only one gerbil. We confirmed that this clustering result is robust 
to different forms of preprocessing of the responses, such as down-
sampling to coarse time bins, or smoothing over multiple time bins 
(SI Appendix, Fig. S7 A–D). Clustering on the passive condition 
reveals the presence of two clusters, though the population pre-
dominantly belonged to only a single cluster (SI Appendix, Fig. S8).

To evaluate the computational roles of each neural cluster and 
determine whether specific subpopulations of neurons reflect the 
integration of sensory evidence and the formation of decision var-
iables, we performed PCA on each cluster individually. Specifically, 
the PCA was fit to trial averaged neural responses across time for 
the three clusters separately for two of the five gerbils. The neural 
trajectories in this state space correspond to the population 
responses for each cluster across different times for separate AM 
rates and stimulus durations. We show the neural trajectories for 
each cluster in the space spanned by the top three principal 

components of each respective cluster (Fig. 4 E–G). The neural 
trajectories across all clusters show a separation between the two 
AM rates, but diverge at separate time points. This suggests that 
each cluster may encode different task-relevant information. For 
example, the neural trajectories in the principal component space 
of clusters 1 (Fig. 4E) and 2 (Fig. 4G) display strong divergence 
between the corresponding AM rates much sooner than the neural 
trajectories of cluster 3 (Fig. 4F). Specifically, the divergence of 
neural trajectories for clusters 1 and 2 occurs within 600 ms after 
stimulus onset, which corresponds to the behaviorally relevant inte-
gration times (SI Appendix, Fig. S1). This suggests that clusters 1 
and 2 may reflect the transformed sensory signals received from the 
auditory cortex during task performance. The neural trajectories 
for cluster 3 diverge later than ~600 ms after stimulus onset (≳1,000 
ms total trial duration), suggesting that cluster 3 may reflect the 
motor preparatory signal that is executed during the task. Overall, 
our results demonstrate that during task performance, the decision 
variable is broadly represented across the entire population of pari-
etal cortex neurons, but distinct subpopulations of neurons are 
active during different task epochs: stimulus integration and puta-
tive motor preparation or execution.

Discussion

Our central finding is that, during task performance, parietal cor-
tex neurons integrate and transform behaviorally relevant acoustic 
information to drive sound-driven perceptual choices. Decoded 
parietal cortex activity based on stimulus identity reflected psy-
chometric sensitivity during task performance and aligned with 
behavioral measures of integration time. In contrast, decoded 
neural activity from passive listening sessions was dramatically 
reduced. We further supported this finding by investigating the 
underlying neural representations that lead to our decoder per-
formance. By applying principal component and geometric anal-
yses, we found the emergence of decision-relevant, low-dimensional, 
linearly separable manifolds that reflect behavioral integration 
time during task performance. Since it was possible, a priori, that 
neural representations of parietal cortex activity would be similar 
during task performance and passive listening, this finding con-
firms that the parietal cortex mediates a transition into decision-re-
lated variables. Using a clustering analysis, we then identified three 
different neural populations that each encoded task-relevant infor-
mation during different temporal segments of the trial. Taken 
together with our previous finding that auditory cortex projections 
to the parietal cortex play a causal role in producing behavioral 
integration time (25), we propose that the parietal cortex trans-
forms auditory afferent input into low-dimensional decision var-
iables encoded at the neural population level.

Previous work shows that parietal cortex neurons are strongly 
modulated by the behavioral relevance and context of acoustic 
stimuli (45–48). Furthermore, functional interactions of simul-
taneously recorded parietal neurons are greater than that seen 
among auditory cortex neurons and also extend to longer time 
scales (18), demonstrating the transition to timescales that match 
behavioral integration time. These functional properties are clearly 
associated with anatomical connectivity between primary or sec-
ondary auditory cortices to the parietal cortex, which are strongly 
apparent across many species (21, 25, 49–52).

Our current results complement these findings by demonstrat-
ing how auditory encoded information is transformed from an 
uninformative representation during passive listening, to mean-
ingful integration times that reflect behavioral performance. 
During passive listening, decoded activity from simultaneously 
recorded parietal cortex neurons is poorer than decoded activity 
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during task performance, but scales with stimulus duration 
(Fig. 2E). Thus, evidence for encoded sensory inputs within pari-
etal cortex derives from the scaling of decoded parietal cortex 
activity with the amount of presented stimulus information. Our 
principal component analyses further demonstrate an even greater 
difference of parietal cortex activity between behavioral condi-
tions. While encoded auditory information from parietal neurons 

occupied separate positions in subspace during passive listening 
(Fig. 3C and SI Appendix, Fig. S4B), we found an emergence of 
decision-relevant, linearly separable manifolds during task perfor-
mance that corresponded to behavioral integration time (Fig. 3B 
and SI Appendix, Fig. S4A). This is specifically demonstrated by 
a clear separation of manifolds that correspond to the two AM 
rates (4- and 10-Hz), which is also reflected by two separate 

Fig.  4. Clustering of conditional PSTH responses 
reveals three distinct subpopulations of neurons in 
the parietal cortex. (A) Cluster-averaged PSTH for 4-Hz 
AM stimulus. Dashed line indicates onset of the 4- and 
10-Hz AM stimulus, and error bars denote average 
± SE. (B) Similar to (A) except for 10-Hz AM stimulus.  
(C) Population PSTH responses for 4-Hz AM stimulus. 
Responses are grouped by cluster identity (colored 
rectangles), and sorted by time of maximum firing 
rate within each cluster, for each stimulus condition. 
(D) Similar to (C) except for 10-Hz AM stimulus. (E) 
Population activity plotted in a 3D principal component 
space that originated from PSTHs of “Group 1” units 
for two gerbils during task performance. Dot symbols 
represent 0, 300, and 600 ms after stimulus (AM) onset.  
(F) Similar to (E) except for “Group 3” units. (G) Similar to 
(E) except for “Group 2” units.

http://www.pnas.org/lookup/doi/10.1073/pnas.2212120120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212120120#supplementary-materials


8 of 11   https://doi.org/10.1073/pnas.2212120120� pnas.org

decision outcomes (e.g., approach the left or right food tray). If 
parietal cortex activity during task performance did not reflect the 
transition into decision-related variables, then the neural trajec-
tories would be similar to the passive listening condition. The 
transition of sensory encoding between passive and task-engaged 
contexts suggests that sensory information transitions into a deci-
sion-making context and reflects the learned association between 
sensory categorization and motor execution. This is in contrast to 
categorical sensory representations (53), which would be true if 
parietal cortex neurons represented stimulus categories during 
passive listening conditions. Enhanced decision-relevant catego-
rization during task engagement can be found in auditory cortex 
neurons. For example, ferret auditory cortex neurons display 
greater decoding performance for behaviorally driven sounds dur-
ing task performance over passive listening, but only in the post-
stimulus silent interval (54). Therefore, it is possible this persistent 
change in auditory cortex neuronal activity is driven by descend-
ing inputs from the parietal cortex. It is worth noting that our 
recordings for the passive condition were collected from the same 
highly trained animals, so the differences in representation cannot 
be explained by the lack of association between stimulus and 
decision.

Our principal component and geometric analyses demonstrated 
that decision variables emerge within parietal cortex activity during 
task performance. We predicted that the role of the parietal cortex 
is to transform stimulus information into a representation that can 
be easily decoded into action. While the neural manifolds that cor-
respond to 4- and 10-Hz AM rates increasingly diverge during task 
performance (Fig. 3B and SI Appendix, Fig. S5), these representa-
tions become more “untangled,” or linearly separable, over behav-
iorally relevant timescales (SI Appendix, Fig. S6). This is 
computationally desirable because it suggests that the parietal cortex 
can read out auditory information using the simplest possible 
decoder. This result is consistent with predictions from artificial 
neural network models for auditory processing (55) and is also 
consistent with previous findings that individual neurons show 
mixed selectivity for task variables (36) and may change activity 
patterns without affecting the overall ability of the population to 
encode the relevant task information (19). Finally, our result shows 
that this untangling of representations occurs not only by compres-
sion in dimensionality and size of the stimulus manifolds, but also 
by the stimulus manifolds moving away from each other.

Clustering on the temporal responses of parietal cortex neu-
rons provided finer grained detail of the encoding of the decision 
variable in the parietal cortex that were characterized with the 
other analyses. During task performance, clustering revealed 
three subpopulations of neurons, with two clusters being well 
represented. One subpopulation (“Cluster 1”) demonstrated the 
encoding of AM stimulus information, while the other dominant 
subpopulation (“Cluster 3”) displayed a gradual increase in activ-
ity that peaked much later within a trial, compared with the 
other two clusters. We interpret this late-in-trial segment is likely 
related to preparatory movement activity, motor initiation, or 
movement as the animal approaches one of the two food trays 
near the end of a trial. A third cluster (“Cluster 2”) seemed to 
share a similar phenotype with cluster 1 since its corresponding 
neural trajectories diverged relatively around the same time. 
However, when comparing PSTHs, cluster 2 neuronal responses 
were more modulated for ipsilateral (left; 4-Hz) conditions, rel-
ative to cluster 1. It is important to note that this cluster was 
only present in one gerbil. It is possible that neurons from cluster 
2 may belong to cluster 1, or alternatively, observing ipsilateral 
encoding of sensory evidence integration is simply a rare type 
of response property in the parietal cortex.

Previous studies did not find separable clusters when examining 
the mixed selectivity of parietal cortex activity (42). In that work, 
PAIRS analysis was performed on time-averaged activity across 
different sensory stimuli (auditory and visual), and found that 
responses were not separable into distinct subpopulations. Our 
results in parietal cortex responses instead used time-dependent 
response profiles that were restricted to a single stimulus modality 
to analyze potential clustering. We believe that these two results 
do not conflict, and that taken together they highlight how clus-
tering is a flexible tool to characterize a variety of encoding prop-
erties across subpopulations of neurons. To our knowledge, 
clustering on temporal responses to identify functional subpopu-
lations has only been documented in the frontal cortex (43, 44, 
56). Thus, our results here suggest that the approach may be of 
more general utility across higher cortical regions in which mul-
tiple cognitive variables are encoded.

While our study focused on the sensory input to the parietal 
cortex, it did not address the neural mechanism that causes the 
transformation of sensory representations into decision variables. 
This process is thought to require descending input from the 
prelimbic region of the frontal cortex (21, 57). The cingulate 
cortex may provide one source of task-relevant information to 
the parietal cortex as neurons can encode context-dependent sig-
nals, which can be read out by locus coeruleus activity (58). This 
provides a potential neural circuit for appropriately modulating 
parietal cortex activity during task performance, where repre-
sented encoded sensory information is integrated, grouped, and 
transformed into decision variables that can be projected to motor 
circuits (16).

Our results do not indicate whether the formation of senso-
ry-driven decisions also occurs in premotor circuits, such as those 
that strictly involve action planning, including striatal circuits 
(59). Furthermore, our results do not demonstrate whether the 
auditory temporal integration signals observed are exclusively 
computed within the parietal cortex, or reflect a computation 
performed elsewhere in the brain that are contingent on motor 
execution, such as brainstem networks (60–63). Future work 
will determine whether the transformation of sensory integrated 
signals into task-engaged decision variables occurs within sepa-
rate neural circuits and/or is dependent on the execution of 
motor actions, such as the movements associated to report the 
decisions (64).

In summary, the representation of behaviorally relevant auditory 
information occurs in the parietal cortex even when animals are 
passively listening to the stimuli. However, it is only during task 
engagement where decoded parietal cortex activity directly reflects 
psychometric performance and behavioral measures of integration 
time. Additionally, it is only during task engagement that we find 
the formation of low-dimensional manifolds that are distinct based 
on stimulus identity and ultimately, decision. We demonstrated 
this with principal component and geometric analyses, each of 
which show that sensory evidence is accumulated across a time 
frame that matches behavioral integration time (25). Thus, our 
findings provide a plausible argument for the parietal cortex’s role 
in integrating and transforming encoded auditory information 
into decision variables to guide sound-driven behavior.

Materials and Methods

Adult Mongolian gerbils (Meriones unguiculatus, n = 5, three males) were 
weaned from commercially obtained breeding pairs (Charles River). Animals were 
housed on a 12-h light/12-h dark cycle and provided with ad libitum food and 
water unless otherwise noted. All procedures were approved by the Institutional 
Animal Care and Use Committee at New York University.
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Behavior.
Behavioral apparatus. Adult gerbils were placed in a plastic test cage (0.4 × 
0.4 × 0.4 m) in a sound-attenuating booth (GretchKen Industries, Inc; inter-
nal dimensions: 1.5 × 1.5 × 2.2 m) and observed via a closed-circuit monitor. 
Acoustic stimuli were delivered from a calibrated free-field tweeter (DX25TG0504; 
Vifa) positioned 1 m above the test cage. Sound calibration measurements were 
made with a 1/4-inch free-field condenser recording microphone (Brüel and Kjaer) 
placed in the center of the cage. Stimulus, food reward delivery, and behavioral 
data acquisition were controlled by a personal computer through custom MATLAB 
scripts (written by Daniel Stolzberg: https://github.com/dstolz/epsych) and an RZ6 
multifunction processor (Tucker-Davis Technologies).

Psychophysical training and testing was implemented with a positive rein-
forcement appetitive one-interval AFC procedure, as described previously (25). 
Briefly, gerbils were placed on controlled food access and trained to discriminate 
between amplitude-modulated (AM) frozen broadband noise (25-dB roll-off at 3.5 
kHz and 20 kHz) at 4- versus 10-Hz at 100% modulation depth. Each AM stimulus 
was presented at a sound pressure level (SPL) of 66 dB and had a 200 ms onset 
ramp, followed by an unmodulated period of 200 ms that transitioned to an AM 
signal for a set duration, followed by an unmodulated period. Gerbils self-initiated 
trials by placing their nose in a cylindrical port (nose poke) for a minimum of 100 
ms that interrupted an infrared beam and triggered an acoustic stimulus. During 
acoustic stimulation, a gerbil approaches the left or right food tray and the infra-
red beam at the correct food tray is broken, a pellet dispenser (Med Associates) 
delivers one reward dustless precision pellet (20 mg; Bio-Serv). Gerbils were 
first trained to distinguish between 4- versus 10-Hz AM with a stimulus duration 
of 2,000 ms (proportion of trials correct >0.85) across two sessions, and then 
were presented with shorter durations (e.g., 1,000, 800, 600, 300, and 100 ms) 
across subsequent sessions. For each trial, the probability of a 4- or 10-Hz AM 
stimulus presentation is 50%, and its duration is a random draw. Fig. 1A displays 
the schematic of the task.

During sessions to assess perceptual sensitivity, six signal durations for each 
of the 4- and 10-Hz AM stimuli (100, 300, 600, 800, 1,000, and 2,000 ms) are 
presented. Integration time is assessed by examining how performance scales 
with stimulus duration. Proportions of correct trials across stimulus durations 
for each AM rate are fitted with psychometric functions using the open-source 
package psignifit 4 for MATLAB (65). Psychometric functions of the proportion of 
correct trials are plotted as a function of stimulus duration. Minimum integration 
time was defined as the stimulus duration at which proportion of correct trials 
= 0.76, which is equivalent to the signal detection metric, d’, equal to 1 (34).

Electrophysiology. Extracellular single- and multiunit activity was recorded from 
the left medial parietal cortex. After gerbils were trained in the behavioral task, a 
silicon probe with 64 recording sites was implanted into the left medial parietal 
cortex (Neuronexus, model Buszaki64_5x12-H64LP_30mm). We targeted the 
medial portion of the parietal cortex because of its robust auditory cortex-recip-
ient anterograde labeling (25). The probe was attached to a manual microdrive 
(Neuronexus, dDrive-XL) that allowed the electrode to be advanced and retracted. 
Probes were inserted at a 0° to 10° angle on a mediolateral axis. Typically, we 
aimed the rostral most shanks of the array to be positioned at 3.3 to 3.6 mm 
rostral and 2.5 mm lateral to lambda. The surgical implantation procedure was 
performed under isoflurane anesthesia. Animals recovered for at least 1 wk before 
being placed on controlled food access for further psychometric testing. At the 
termination of each experiment, animals were deeply anesthetized with sodium 
pentobarbital (150 mg/kg) and perfused with phosphate-buffered saline and 4% 
paraformaldehyde. Brains were extracted, postfixed, sectioned on a vibratome 
(Leica), and stained for Nissl. Brightfield images were inspected under an upright 
microscope (Revolve Echo) and compared with a gerbil brain atlas (66) to verify 
the targeted medial parietal cortex.

Physiological data were acquired telemetrically from freely moving animals 
with a wireless headstage and received (W64, Triangle Biosystems). Analog 
signals were preamplified and digitized at a 24.414-kHz sampling rate (PZ5, 
Tucker–Davis Technologies) and fed via fiber optic link to the RZ5 base station 
(Tucker–Davis Technologies) and PC for storage and postprocessing. Offline, elec-
trophysiological signals underwent a common average referencing procedure 
(67) and bandpass filtered at 300 to 5,000 Hz. Significant noisy portions of the 
signal that were induced by extreme head movements were removed by an arti-
fact rejection procedure. An open source spike package (KiloSort) (68) was used 

to extract and cluster spike waveforms. Manual inspection of spike waveforms 
was conducted in Phy (69). Well-isolated single units displayed clear separation 
in principal component space and possessed few refractory period violations 
(<10%). Units that did not meet these criteria were classified as multiunits. All 
sorted spiking data were analyzed with custom MATLAB scripts. Recordings were 
made both during task performance, and during passively listening sessions that 
occurred after task performance. All passively listening sessions were recorded 
immediately after each recorded task performance session with the nose poke 
and food trays removed from the test cage.

Neural Analyses.
Population coding. We used a previously employed linear classifier readout pro-
cedure (37) to assess AM rate discrimination across a population of parietal cortex 
neurons. Specifically, a linear classifier was trained to decode responses from a 
proportion of trials to each stimulus condition (e.g., 4 versus 10 Hz; Fig. 2A). Spike 
count responses from all recorded neurons were counted within 100-msec time 
windows across the entire trial durations and formed the population “response 
vector”. Since the number of trials was typically unequal between stimulus condi-
tions, we randomly subsampled (without replacement) a proportion of trials (i.e., 
15 trials) from each unit. An SVM procedure was used to fit a linear hyperplane 
to 80% of the data set (“training set”). Cross-validated classification performance 
was assessed on the remaining 20% across 250 iterations with a new randomly 
drawn sampled train and test sets for each iteration. Performance metrics were 
computed to determine the proportion of correctly classified and misclassified 
trials using an expanding time window (100-msec increments) across the entire 
trial duration. We constrained the analysis time window to correspond to each 
stimulus duration up to 600 msec (e.g., maximum time window did not exceed 
300 msec for stimulus duration of 300 msec). A maximum time window of 600 
msec was utilized for stimulus durations > 600 msec to control for movement-re-
lated signals that may arise when animals approach their selected food tray. This 
was particularly the case during task performance sessions. The SVM procedure 
was implemented in MATLAB using the “fitcsvm” and “predict” functions with 
the “KernelFunction” set to “linear”. This analysis was conducted for task sessions 
with ≥ 5 simultaneously recorded units and performance on easiest trial con-
ditions (e.g., 2,000 ms AM duration) ≥ 85% (n = 27/44 total sessions; median 
simultaneously recorded units = 6; interquartile range = 6.25).
Population response manifolds. PCA was performed separately for both task 
performance and passive listening session types for each animal using trial aver-
aged PSTHs. Trial averages were computed by binning the spiking data into 10-ms 
bins and using a rolling mean with a 50-ms window for each of 12 conditions (2 
stimulus AM rates × 6 Durations) with each unit contributing to the PSTH for each 
condition. The PSTHs focused on the period of decision formation and spanned 
400 to 1,400 ms after stimulus onset (0 to 1,000 ms after AM onset). For each unit, 
we concatenated the PSTH for each condition into a matrix of size N × CT, where 
C is the number of conditions (2 AM rates × 6 durations), T is the number of time 
points (10 ms resolution), and N is the number of units. Each row of the matrix was 
then z-scored, since PCA is known to be sensitive to overly active units. For the task 
performance condition, only trials where the animal made the correct choice were 
used in the analysis. Trials with only one spike in the time window of interest were 
left out from analysis. Units that had no data for one or more of the conditions were 
left out from the analysis. Finally, the analysis included all units recorded either 
simultaneously or separately. We confirmed that the same qualitative results (the 
presence of decision subspace during task performance and lack of one during 
passive listening) were obtained using simultaneously recorded units only.
Calculating distance between neural trajectories. To calculate the distance 
between every pair of trial averaged trajectories for each time point (SI Appendix, 
Fig. S4), we computed the Euclidean norm between the same time point for 
every pair of averaged trajectories in the space defined by the top three principal 
components.
Geometric Analysis. To understand how the representation of stimulus informa-
tion in the parietal cortex changes over the course of decision-making, we use the 
mean-field theoretic manifold analysis technique (38, 41, 55) to study the geomet-
ric properties of the stimulus manifolds, including their manifold capacity, radius, 
and dimensionality. Unlike SVM, these measures consider the geometric structure 
of the manifold when computing separability. To prepare the data, we counted the 
number of spikes per neuron in each 80-ms time bin for each correct trial for the 
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first 1,200 ms of each trial. Next, we define two object manifolds, corresponding 
to the 4- and 10-Hz stimulus. We subsampled 50 trials, combining across stimulus 
durations and animals, for each object manifold. Together, this formed a matrix of 
size (297 neurons × 2 object manifolds × 50 trials × 14 time points). The neural 
activations for each stimulus frequency over the 50 trials defines the manifold 
for that stimulus frequency at each time point. The mean-field theoretic manifold 
analysis technique then uses this set of activations to compute geometric properties 
of each object manifold and to evaluate their linear separability. Calculation of 
each measure was performed using the Replica Mean Field Theory Analysis python 
library (55), but we briefly describe the methodology below.

Manifold capacity refers to the maximum number of object manifolds that can 
be linearly separable given a fixed number of features. If we consider P object 
manifolds and N neurons, the manifold capacity is defined as � = P∕N. Intuitively, 
when � is small, then there are few manifolds in a high-dimensional space thus 
making it very easy to find a separating hyperplane for most of the random 
dichotomy of labels. Alternatively, when � is large, there are many object man-
ifolds in a low-dimensional space and therefore, it becomes less likely that any 
dichotomy of manifolds can be linearly separable. The critical manifold capacity, 
as computed in our analysis, refers to the maximum number of object manifolds 
P that can be linearly separated given N neurons. This quantity can be estimated 
from the statistics of anchor points, representative support vectors defining the 
optimal separating hyperplane, following the methods described in ref. 41. In 
SI Appendix, Fig. S6, we report manifold capacity relative to its lower bound of 
2/M, where M is the number of samples.

Manifold dimensionality, computed from the realized anchor points, estimates 
the embedding dimension of the manifold contributing to classification. The 
dimensionality is bounded above by min(M, N). Since we have M <N, we report 
manifold dimensionality relative to M in SI Appendix, Fig. S6D.

Manifold radius is the average distance between the center of the manifold 
and its anchor points. For linear separability, we care about the size of manifolds 
relative to how far they are from each other. The manifold radius is therefore 
reported relative to the norm of the center of the manifold. We also compute the 
norm of the center of the manifold separately in SI Appendix, Fig. S6E to estimate 
how the locations of the manifolds shift over time.
Clustering. Neuronal responses were clustered using K-means on a feature 
space comprised of trial-averaged, conditional PSTHs for left-cued and right-
cued trials. PSTHs were binned into 10-ms bins, and were then smoothed over a 
500-ms moving window to reduce noise on the responses (Matlab’s smooth.m 
function). Each PSTH was then z-scored and combined into a total data matrix 
Z ∈ RN×2T , where N is the number of neurons and T = 151 is the number of 
data points for each conditional PSTH. PCA was performed on Z to reduce the 
dimensionality of population responses to obtain principal components W and 
score M, as Z = MWT. This feature space required k = 16 components to explain 
>95% of the covariance in Z. The first k columns of M (data projection onto 
the top principal components) were used as the feature space for clustering.

The gap statistic criterion was used to determine a principled choice of the best 
number of clusters (evalclusters.m in Matlab, 5,000 samples for reference distri-
bution) (70). Specifically, the chosen cluster was defined as the largest cluster size 
K, beyond which jumps in gap score Gap(K) plateaued and became insignificant,

Gap(K ) ≥ Gap(K − 1) + 2SE(K − 1).

We used the PAIRS statistic to determine if clusters were present in conditional 
PSTH responses of parietal neurons (42, 44). The dimensionality reduced fea-
ture space (i.e., the first k columns of M) were further preprocessed with a whit-
ening transform to yield zero mean and unit covariance. For each data point, 
the average angle with m = 4 of its closest neighbors, �̃data, was calculated. 
This angle distribution was compared with N = 10,000 sets of independent 
draws from a reference Gaussian distribution [N(0,I)], with the same number 
of data points and the same dimensionality as our data. These N datasets 
were aggregated into a grand distribution, giving the estimated angles �̃ref. 
The number of nearest neighbors m is conventionally chosen as the number 
of neighbors required to give a median nearest neighbor angle �∕4 for the 
reference distribution. This number is dependent on the dimensionality of 
the data, and given the high dimensionality of these responses, even m = 2 
neighbors yielded larger angles than �∕4. We chose m = 4 for the results in 
this work, but note that significant clustering was seen for a wide range of m 
values (m = [2, 6]).

PAIRS is a summary statistic of these averages nearest neighbor angles, using 
the median from the data distribution, �̃data and the median of the grand reference 
distributions �̃ref: 

PAIRS =
�̃ref − �̃data

�̃ref

.

To calculate P-values for the PAIRS statistic, reference PAIRS values were generated 
for each of the N reference data sets, and the two-sided P value (assuming a nor-
mal distribution) for the data PAIRS compared with the distribution of reference 
PAIRS values were reported. We additionally performed a Kolmogorov–Smirnov 
test on the grand reference distribution and data distribution of median nearest 
neighbor angles.
Statistics. Statistical analyses and procedures were implemented with custom-writ-
ten MATLAB scripts (The Mathworks) that incorporated the MATLAB Statistics Toolbox 
or in JMP 13.2.0 (SAS). Normally distributed data (as assessed by the Lilliefors test) 
are reported as mean ± SEM unless otherwise stated. When data were not normally 
distributed, nonparametric statistical tests were used when appropriate.

Data, Materials, and Software Availability. Data and analysis code can be 
found at https://nyu.box.com/v/Yao-Zemlianova-et-al-2022 (71). All study data 
are included in the article and/or SI Appendix.
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