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The community of species, human institutions, and human activ-
ities at a given location have been shaped by historical conditions
(both mean and variability) at that location. Anthropogenic climate
change is now adding strong trends on top of existing natural
variability. These trends elevate the frequency of “surprises”—con-
ditions that are unexpected based on recent history. Here, we show
that the frequency of surprising ocean temperatures has increased
even faster than expected based on recent temperature trends. Us-
ing a simple model of human adaptation, we show that these sur-
prises will increasingly challenge natural modes of adaptation that
rely on historical experience. We also show that warming rates are
likely to shift natural communities toward generalist species, reduc-
ing their productivity and diversity. Our work demonstrates increas-
ing benefits for individuals and institutions from betting that trends
will continue, but this strategy represents a radical shift that will be
difficult for many to make.
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The communities of species at any point on the globe have
traits that allow them to survive and reproduce in the pre-

dominant conditions. The characteristics of nearby human com-
munities also reflect the regional climate. The adjustment of human
organizations to prevailing climate conditions has happened over
many generations. Much of this adjustment represents “reactive
adaptation,” meaning that responses are motivated and guided by
past events (1–3). In many cases, adaptation to environmental
conditions takes the form of problem solving, where change is
made to reduce the impacts of a recently observed stressor (4).
Implicit in the natural, backward-looking approach is the ex-

pectation that past conditions provide insights to future condi-
tions. We are rapidly moving into a world where this assumption
will no longer apply. We know that the climate is changing, and
there is growing certainty over the magnitude of change at both
the global and regional levels (5, 6). We know that ecosystems and
humans will adjust to these conditions, but we do not know the
rate of environmental change above which these natural processes
of adaptation will become insufficient to maintain key functions.
A corollary to the assumption that natural and human systems

have adjusted to historical conditions is that conditions that fall
outside of the range of experience have a high potential to drive
change in the system, including evolutionary adaptation (7). In
the oceans, recent marine heat waves have led to unexpected
impacts in the natural communities and the human communities
connected to them. The 2012 North Atlantic heat wave caused
the catch of lobsters in the United States and Canada to spike
a month earlier than normal, creating a market glut and collapse
in price (8). The Pacific Blob event caused a harmful algal bloom
that prompted managers to close the Dungeness crab fishery (9).
These dramatic events often motivate changes in the human system
that make it more adaptive and hopefully resilient to future
changes. For example, after 2012, the Maine lobster industry added
processing capacity and invested in marketing. These changes helped

the fishery to achieve record value in 2016 despite near-record warm
conditions (3).
Because of thermal inertia, temperature variability in the ocean

is lower than in the atmosphere, making trends more apparent and
increasing the rate at which new climates emerge (10–12). Using
ocean ecosystems as a model, we develop a theory that encom-
passes how both natural and human systems respond to climate
trends and variability. Natural systems and the human systems that
are coupled to them have traits that determine their success under
different environmental conditions. Our theory builds from the
assumption that the distribution of these traits has been shaped by
historical environmental variability to be close to optimal in the
current environment. In other words, the system has adapted to
the mean conditions and characteristic variability. Our goal is to
characterize how systems that have adapted in this way will re-
spond to trends.

Results
We begin by considering the frequency of unlikely events—
“surprises”—that have the potential to challenge both natural
and human systems. We define a temperature surprise as an
annual mean temperature that is 2 SDs above the mean, where
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the mean and SD are determined by the prior 30 y. This rolling-
mean approach embeds a simple notion of adaptation and as-
sumes that natural or human communities adjust to reflect
prevailing conditions. If the environment were stationary (con-
stant mean and variance), then the probability of encountering a
surprising temperature would be 0.023 (assuming a normal dis-
tribution). The presence of a trend increases Ps—the probability
that an agent that forms its expectations using the rolling mean
encounters a surprise (Methods).
The frequency of surprising temperatures in 65 large marine

ecosystems (LMEs) varied throughout the 20th century (Fig.
1A). Before 1940, it was rare for more than 3 LMEs to experi-
ence a surprise in the same year. A brief warming period during
the 1940s led to an increase in the number of surprised regions.
For much of the record, the number of surprised regions closely
tracks the expectations based on the probability of surprise as-
suming the trend (Ps), although 2 years, 1941 and 1942, saw an
exceptionally large number of surprised LMEs. The number of
surprised LMEs declined after 1945 and remained low through
the early 1980s. Then, as global warming accelerated, the ob-
served and expected number of surprised LMEs began to in-
crease. The number of years with many more surprises than
expected increased dramatically after 1998. That year followed
the powerful 1997/1998 El Niño. The exceptional number of
temperature surprises in 2010 and 2016 also occurred following
El Niño conditions. The number of cold surprises (Fig. 1B) has
declined during the recent warming period, and only 4 cold
surprises have occurred since 2000.
The past variability and the recent increase in surprises was

not uniform across the globe. In most regions, the difference
between the number of surprises and the number expected based
on the local trends and variances increased suddenly in 1998
(Fig. 2A). The number of these “surprising surprises” continued
increasing in the Arctic and North Atlantic. The Indian Ocean
and Pacific regions leveled off then began increasing in 2010.
Between 1999 and 2018, there were many more regions with
more surprising temperature events than expected (48 of 65;
Fig. 2B).
The formula for Ps accounts for steady changes in temperature

over a sliding reference period. Accelerating warming would lead
to an increase in the frequency of surprises above what the
simple linear theory predicts. For each LME, we compared the
warming rate and interannual variability over the period 1986 to
2000 with those from the period 2004 to 2018 (i.e., representing
conditions at the beginning and end of the recent 30-y period). A
linear model built with the difference in the warming rate and
the difference in the variability explains 35% of the variability in
the number of surprising surprises (R2 = 0.35, P < 0.001) during
the last 20 y (Fig. 2C and SI Appendix, Table S2).

At a given level of interannual variability, there is a warming
trend that gives the maximum probability of surprise. As the
characteristic variability in the environment increases, the trend
that produces the maximum also increases (Fig. 2D, gray con-
tours). The average LME now has a probability of surprise of
11% (black star), but there are many regions (blue dots) with
probabilities approaching the maximum level. The current dis-
tribution of trends and variance is similar to climate projections
(RCP8.5; Methods) for 2030 (blue square). By 2060, the increase
in the warming trends will push the average probability of sur-
prise to 0.15 (purple square) with a large portion of the LMEs
falling close to the theoretical maximum. Only a slight increase
in the average probability of surprise occurs over the subsequent
30 y (red square and ellipse).
Our analysis suggests that the frequency of surprising tem-

perature events in the oceans has increased and will continue to
rise. These events have the potential to disrupt both ecosystems
and human systems that are coupled to them. However, neither
natural nor human systems are static. Both systems will respond
to changes and have the capacity to adjust to prevailing condi-
tions. The question is how will these systems respond to the
trends that are beginning to dominate across the globe? To an-
swer this question, we developed simple models of both a natural
and human system that have adjusted to a specific level of
temperature variability and then evaluate how they respond to
a trend.
Our definition of a surprise contrasts the difference between

reality and expectations formed assuming an environment with a
constant mean and variance. Building from this concept, we
created a simple model to represent a richer array of interactions
between human expectations and environmental conditions. This
model gives the human agents a payoff when environmental
conditions fall within expectations, and conversely, they incur a
loss when surprised. We describe this model using economic terms
(investment, revenue, etc.), but the model is meant to encompass a
wider range of interactions with the environment. For example,
the investment in a particular range of conditions could represent
an economic activity such as a fisherman investing in permits, and
gear to catch fish that are abundant in a range of temperatures or
it could represent management actions such as the allocation of
fishing quota or a fishery closure that produce conservation ben-
efits under a defined range of conditions.
We begin with an economic agent who makes investments across

a range of temperatures, essentially betting on what ecosystem
conditions will occur in the next year. The agent is assumed to be
risk-neutral and can either concentrate its investments around a
central temperature and receive a large potential payoff (or large
potential loss) or it can spread its investments across a range of
temperatures but receive a reduced return. If the environment is
steady with a prescribed variance, then there is a strategy (tem-
perature range) that produces the optimal average rate of return.
Unlike species that either move or die in response to un-

favorable conditions, humans have the potential to change their
strategies. This change could either reflect past conditions (backward
looking) or it could incorporate a projection of future conditions
(forward looking). For the backward-looking strategy, agents ex-
amine the recent 30 y, estimate the mean and variance, and adjust
their investments assuming the environment will exhibit the same
mean and variance over the next 30 y. This corresponds to the
assumption that any trend is part of a natural cycle that could
reverse at any time. Agents using the forward-looking strategy
compute a linear trend from the last 30 y of data and adjust their
strategy to maximize discounted returns over the next 30 y under
the assumption that the trend continues.
The performance of the backward-looking strategy declines as

the magnitude of the trend increases (Fig. 3A). However, the
backward-looking strategy interprets very large trends as enhanced
variability, and revenue rebounds slightly. If the ecosystem has higher
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Fig. 1. Frequency of surprising ocean temperatures. (A) Number of LMEs
(annual, white; 5-y smoothed, red) with an annual temperature 2 SDs above
the mean of the previous 30 y. The shading indicates the probability of a
specific number of surprises in each year after accounting for the trend. (B)
Same but for cold events.
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interannual variability, the agent will be spreading its investments
over a wider range of temperatures and its revenue declines more
gradually as the trend increases. Conditions that produce a high
likelihood of a surprise lead to poor performance of the backward-
looking strategy. This correspondence is not unexpected given that
the definition of a surprise is so similar to the calculations that un-
derlie the backward-looking strategy.
Revenues decline with increased warming for firms using the

forward-looking strategy (Fig. 3B), but the decline is less severe.
The backward-looking strategy is only able to outperform the
forward-looking strategy if the trend is weak and/or if the in-
terannual variability is very high. As configured, the forward-
looking strategy becomes more profitable when the probability
of surprise exceeds 7%. All but 12 of the 65 LMEs have already
exceeded this threshold.
Thermal responses describe a substantial component of marine

species distributions and diversity (13), although the responses are
often nonlinear and sensitive to variance (14). Rather than at-
tempt to reproduce the dynamics of a particular ecosystem, we
developed an idealized model of a community that has adjusted to
a specific level of temperature variability. We begin with a com-
munity of species that are competing within an environment where
temperature is the constraining environmental variable. Each
species has a thermal niche defined by 2 traits, the preferred
temperature (tj) and a parameter βj that determines how quickly
its growth rate declines as conditions become less favorable—i.e.,
the niche breadth. We assume that the species have evolved to-
gether in an environment with no temperature trend and constant
variability. This assumption implies that species with the same
preferred temperature have the same long-term average growth
rates when integrated over historical variance, regardless of their

niche breadths. We created a community of species that cover a
range of preferred temperature and temperature tolerances—a
trait space. We then allowed that community to reach an equi-
librium under temperatures that vary around a stable mean.
After the adjustment period, only species with a temperature

preference close to the mean are successful in this environment
and abundance does not vary substantially with β, the tempera-
ture tolerance (Fig. 4A, community with doubling time of 1 y and
interannual variability of ɣ = 0.3°). Exposing this community to a
100-y warming trend similar to the recent global ocean average
(r = 0.02°·y−1), increases the growth rate of species with higher
thermal preferences, and the distribution of species shifts to the
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right in trait-space (Fig. 4B). However, the peak lags slightly be-
hind the actual temperature (dashed line) and the total abundance
decreases. The decline in abundance is strongest for species with
narrow temperature tolerances, while species with wider temper-
ature tolerances begin to grow sooner and persist longer than the
more specialized species. This causes the trait-space distribution to
shift up (i.e., toward generalists). Doubling the warming rate (r =
0.04°·y−1) intensifies the decline in abundance, the shift toward
generalists, and the lag between the mean temperature preference
and the mean temperature (Fig. 4C). For a given level of in-
terannual variability (ɣ; rows in Fig. 4 D and E), increasing the
warming rate increases the relative fitness of the generalist strat-
egies. This results in a decline in the total abundance of the
community. The decline in abundance with increasing warming
trend occurs at all levels of interannual variability, but higher in-
terannual variability reduces the rate of decline (Fig. 4D).
Total abundance is important, for example, as an indicator of

potential fishery yields. However, the way biomass is distributed
among species is also important. We characterized the change in
the shape of the distribution using the Shannon diversity index
(15). This is an index of how smoothly biomass is spread across the
trait space (higher values indicate similar abundances of all spe-
cies, i.e., high biodiversity). In this model ecosystem, an increasing
warming rate causes diversity to initially decline (Fig. 4E). This is a
result of the increased fitness of species with wider temperature
tolerances (the upward shift in trait-space in Fig. 4B). However, at
higher warming rates, diversity increases as species whose growth
rates and abundances are increasing overlap with species no
longer at their optima (i.e., the “tail” in Fig. 4C). For a community
with a shorter doubling time, the community translates more
smoothly in trait-space, and the shift from reduced to enhanced
diversity occurs at lower warming rates (SI Appendix, Fig. S4).
While surprising events have an impact on our modeled biological
communities, surprises, as we define them, are not driving the
overall pattern. Natural communities integrate conditions over
many years, making the absolute warming rate more important.

Discussion
According to our analysis, marine ecosystems are experiencing
more frequent surprises, even accounting for recent warming

trends. Our model of natural communities suggests that this will
result in a decline in the abundance of species occupying a similar
trophic niche; however, the decline will be less strongly felt by fast-
reproducing species. This creates the potential for decoupling be-
tween different components of the food web. For example, some
gelatinous zooplankton can double their abundance in a few days.
While the species composition in a region will change, the fast-
reproducing component of the ecosystem is more likely to maintain
high biomass levels than slower-reproducing species such as fish. If
they are trophically coupled, reducing the slower-growing preda-
tors will further increase the abundance of the faster-growing prey.
Adding additional processes such as immigration and dispersal
could alter these effects, potentially providing a way for the dy-
namics in the slow-reproducing community to get closer to those in
the faster community.
Although this model was not designed to replicate a particular

community, the responses of the idealized communities to
warming have parallels to changes in coral reef ecosystems.
Corals with the narrowest thermal range also tend to have higher
growth rates, similar to the specialist–generalist trade-off em-
bedded in our neutral model. Warming and associated bleaching
events are causing a shift to slower-growing species with wider
thermal tolerances as well as lower structural complexity (16,
17). The long-term warming in the tropics is contributing to a
decline in coral cover (18, 19), consistent with our prediction of
reduced abundance. The shifts toward lower coral cover and less
complex reefs have important ramifications for the ecosystem
services reefs provide (20), including fisheries (21, 22) and
shoreline protection (23, 24).
For the human system, the lesson is clear: Historical experi-

ence is becoming less relevant. To be successful, human institu-
tions including businesses, communities, management agencies,
and governments will need to adopt strategies that look forward
rather than backward. For example, when the Gulf of Maine ex-
perienced a rapid increase in temperature, the backward-facing
fishery management process was not able to act quickly enough to
reduce fishing on cod and avoid a collapse of the fishery (25).
Scientists have developed a range of forecast products that

could support forward-looking decisions. Climate models pro-
vide a long-term view and express contingencies related to global
carbon emissions (26). Seasonal and multiyear forecasts are be-
coming more established (27), although the timescale at which
these are reliable changes from region to region (28). Our results
strongly suggest that betting on the status quo will be an in-
creasingly risky strategy. Financial tools such as insurance or
derivatives can provide a way for individuals or companies to
buffer loses (29).
While we have the tools to shift to forward-looking decision

making, it is not clear how quickly or even whether we will make
this shift. Humans are naturally resistant to change and institu-
tions tend to be conservative (30, 31). Shifting to a forward-
looking strategy is risky, and it is reasonable for managers, pol-
iticians, and CEOs to expect that they will be punished more
severely for the failure of a new strategy than poor performance
of a traditional one (32). Broad societal acceptance of the re-
alities of climate change trends and the reliability of climate
projections is a critical prerequisite to forward-looking adaptive
action. However, experience is the most valuable teacher. It will
likely take more experience with extreme events before people
decide to stop being surprised by them.

Methods
Ocean Temperature Data. We used sea surface temperature (SST) data from
version 4 of the Extended Reconstruction Sea Surface Temperature (ERSST)
dataset of the National Oceanic and Atmospheric Administration (NOAA)
(33). This dataset consists of monthly mean SST at 2°-by-2° resolution from
1854 to present. Data through the end of 2018 were included in this analysis.
We produced SST anomalies relative to the 1982 to 2011 average. We then
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averaged the monthly anomalies over each year to produce annual SST
anomalies.

We further partitioned the data into the standard LMEs defined by NOAA
(34) (SI Appendix, Table S1 and Fig. S1) and computed the average tem-
perature for each LME. Note that we did not include the Southern Ocean in
our analysis due to missing data before 1950.

To examine future temperature variability and trends, we computed
annual averages over the 65 LMEs for 27 models in the CMIP5 climate model
integration using RCP 8.5 (35). Our analysis of the climate model output
focuses on the variance and the trend. These statistics do not depend on the
mean of the data (it is removed in the calculation), so there is no need to
correct the mean bias in the climate model output.

Ocean Temperature Surprises.Wedefine a surprise as an event with conditions
that exceed expectations based on recent history. While we will focus on
annual temperatures, this definition can be applied broadly to other physical,
chemical, biological, ecological, and socioeconomic conditions. T(j), the
temperature in year j is a “surprise” if T(j) is greater than a critical tem-
perature Ts. We define Ts as the solution to the following:

ZðTs, ½Tðj−nÞ, Tðj−n+ 1Þ, . . . , Tðj− 1Þ�Þ= ð1–pÞ, [1]

where Z is the cumulative probability distribution of T estimated using the n
prior years of data and p is a probability threshold. Note that if T(j) qualifies
as a surprise, then it will reduce the chance of the next year being surprising
as it will increase the mean and variance of the distribution estimated in the
next year.

To determine whether the frequency of surprises is itself surprising, we
developed a simple statistical model of surprising events. We assume that
mean conditions increase linearly over the reference period at rate r. Fur-
thermore, we assume that the temperature in a given year is normally dis-
tributed about the mean conditions with a constant variance of (ɣ2). It is
straightforward to show that the mean over the reference period is rn/2. We
used a Monte Carlo procedure to explore how the interannual variance,
trend, and time series length interact to determine the variance over the
entire reference period (σ2). We found that the following equation:

σ2 =
2n− 1
2n

ɣ2 + 1
12

�
n2 +n− 7

�
r2, [2]

accurately captures the relationship among these variables. Using the cu-
mulative normal distribution Φ(T j rn/2, ɣ) in place of Z above, the probability
of a surprising event (Ps) is 1 − Φ(Ts, r(n + 1), ɣ). We calculated the statistics t0,
σ, r, and ɣ for rolling 30-y periods for each ERSST cell and each LME region in
the ERSST and CMIP5 data. We then computed Ps for each year using the
statistics from the previous 30 y.

Environmental Model. Globally, temperature (T) is the most important in-
dicator of environmental conditions. Thus, we couch our economic and
ecological modeling below in terms of temperature, although the frame-
works are general. For the experiments for each model, we envision an
ecosystem with a historical mean temperature of T0 and interannual SD ɣ.
We assume that the economic or ecological conditions have equilibrated to
this environment. Then, we introduce a warming trend r. For simplicity, we
did not consider autocorrelation in the forcing time series.

To simulate this environment, we drew normally distributed random
variables from a distribution with mean = T0 and SD = ɣ during an initial
equilibration period. We then impose a trend by adding r j to the mean,
where j is the time after the trend begins. Trends ranged from 0 to 0.1 °C y−1.
Temperature variability ranged from 0.1 to 1 °C.

Economic Model. We imagine an economic agent that makes a series of in-
vestments that align with a particular temperature. The revenue received in
a year depends on the temperature (Tj) and howmuch has been invested. We
model the investment return as a function:

R
�
Tj
��tj , βj

�
=N

�
Tj
��tj , βj

�
–N

�
tj + 2βj

��tj , βj
�
, [3]

where N(•) is the normal distribution function. The function is controlled by
2 parameters, a central temperature tj and a parameter βj that governs the
spread of temperatures where returns are possible. As βj increases, the width
of the area where positive returns are possible increases in exchange for a
decrease in the maximum payoff. Note that R(t) is a normal distribution
function shifted downward so that it is positive in the range tj ± 2βj.

We allow the agent to change its investments (adjust tj, βj) from year to
year, based on information about the environment. However, we impose a

cost for changing strategies, based on the difference between the new and
old distributions:

C
�
tj , βj , tk , βk

�
= c

Z∞

−∞

�
N
�
T
��tj , βj

�
−NðT jtk , βkÞ

�2
dT

= c
Z∞

−∞

�
N2

j +N2
k − 2NjNk

�
dT ,

[4]

where c is a positive number.
In each year, we imagine that the agent can look at the previousM years of

temperature data and adjust tj and βj. Let N(Tj Test, ɣest) (normal distribution
with mean = Test, and SD = ɣest) be the estimate made by the agent of the
likely distribution of temperatures in the year in question. With this func-
tion, we can define the expected returns (dropping subscripts):

Eðt, β, T , ɣÞ=
Z∞

−∞

Rðsjt, βÞNðsjT , ɣÞds

=
Z∞

−∞

Nðsjt, βÞNðsjT , ɣÞdT −
Z∞

−∞

Nðt + 2βjt, βÞNðsjT , ɣÞdT

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π
�
β2 + ɣ2

�q e−ðt−TÞ
2=ð2ðβ2+ɣ2ÞÞ − 1ffiffiffiffiffiffiffiffiffiffi

2πβ2
p e−2.

[5]

Given an agent’s perception of the environmental conditions (Test, est) and its
current investments (tj−1, βj−1), its optimal investment strategy is defined by
the values of tj and βj that maximize the discounted returns over the next M
years:

XM
k=1

ð1−dÞ−k
�
E
�
tj , βj , Tj+k , ɣj+k

�
−C

�
tj , βj ,Tj+k , ɣj+k

��
. [6]

The solution to [6] depends critically on how the agent evaluates the state of
the environment and estimates future conditions. We allow the agent to access
the vector of temperatures from the N previous years: T = [Tj−N, Tj−N+1,. . ., Tj−1].
The algorithm to estimate the environment forms a strategy. We consider 2
strategies. The natural or backward-looking strategy computes the mean
and variance from T and assumes that these conditions will persist. The al-
ternative strategy is to use linear regression to estimate the temperature
trend and interannual variance as in [2]. Under this forward-looking strat-
egy, agents assume that the trend will persist and optimize accordingly.

We evaluated the performance of the different adaptation strategies
under different environmental and economic conditions. The economic
conditions are specified by the cost of switching (c), and we tested costs of 0,
1, 10, and 100. The environmental conditions were specified by the trend
and the interannual variance as described above. We then applied the
natural or trend algorithm with n = 30.

For each simulation (36), we randomly generated a time series of 130 y.
Agents were given 30 y of temperature data. They applied their algorithm
to evaluate the state of the environment. They then inferred the investment
strategy that would maximize the perceived value of their investments un-
der their perception of the future environment. Agents optimized their in-
vestments using a discount rate of d = 0.03 and a time horizon of M = 30 y.
We compared strategies by the sum of their net revenue over the 100
simulated years.

Ecosystem Model. We imagine a community of species that are competing
within an environment where temperature is the only environmental con-
ditions. A species is defined by 2 traits, the preferred temperature (t) and a
parameter β that determines how quickly its fitness declines as conditions
become less favorable. In an environment with variance ɣ2, the population
growth rate of species j is as follows:

Gj

�
T
��tj , βj

�
=g

�
βj , ɣ

�
N
�
T
��tj , βj

�
, [7]

where

gðβ, ɣÞ= lnð2Þ
D

0
@ Z∞

−∞

NðT j0, βÞNðT j0, ÞdT
1
A

−1

, [8]

and where D is the time for the population to double at the preferred
temperature. The function g ensures that species with the same t have the
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same fitness (expected value of G in the environment) even if they have
different values of β.

We represent interactions among the species using a modified logistic
equation (37):

dSj
dt

=GjðTÞSj − μS1+ϕj S1−ϕtot , [9]

where Sj is the abundance of species j and Stot is the total abundance of all
species. The parameter ϕ controls the degree to which the species interact. If
ϕ = 1, then Stot is eliminated [9], becomes the standard logistic equation, and
each species will approach the same carrying capacity of G*/μ (where G* is
the time-averaged growth rate). If ϕ = 0, then the species are tightly linked,
and the species with the fastest growth rate will outcompete the others.
Because G* is the same for all species, competitive exclusion is prevented in
the long term in an environment with constant mean and variance.

The parameters tj and βj define a particular strategy. Species with small βj
specialize at a narrow range of temperatures, while generalists have large βj
and are moderately successful across a wider range of temperatures (al-
though because of g, both have the same long-run fitness in a steady en-
vironment). We explored how the fitness of these different strategies
changes as an ecosystem experiences a warming trend (36). First, we defined
300 species by crossing 20 evenly spaced values of t between −2 and 12 and
15 values of β between 0.1 and 0.75. We initialized the community with
the density of each species set to 0.001. We then specified the dynamics of
the community. This is set by the population doubling time (D) and the

coexistence parameter ϕ. We tested D = 0.5, 1, 2, and 4 y, and ϕ = 0.25, 0.5,
0.75, or 1.

For each community, we selected a value of inherent variability (ɣ) and
integrated [9] for 500 y. This allowed the population to reach a quasi-steady
state. Then, we exposed the community to a steady warming trend, in-
tegrating over the next 100 y. We compared the total abundance and di-
versity over the last 20 y of the spin-up period and the last 20 y of the
warming period. We used the Shannon index:

H=−
Xn
j=1

S’j log S’j , [10]

as our index of diversity where Sjʹ is the abundance of species j expressed as a
proportion.
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