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Abstract
Objective  To develop a dynamic 3D radiomics analysis method using artificial intelligence technique for automati-
cally assessing four disease stages (i.e., early, progressive, peak, and absorption stages) of COVID-19 patients on 
CT images.
Methods  The dynamic 3D radiomics analysis method was composed of three AI algorithms (the lung segmentation, lesion 
segmentation, and stage-assessing AI algorithms) that were trained and tested on 313,767 CT images from 520 COVID-19 
patients. This proposed method used 3D lung lesion that was segmented by the lung and lesion segmentation algorithms 
to extract radiomics features, and then combined with clinical metadata to assess the possible stage of COVID-19 patients 
using stage-assessing algorithm. Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and 
specificity were used to evaluate diagnostic performance.
Results  Of 520 patients, 66 patients (mean age, 57 years ± 15 [standard deviation]; 35 women), including 203 CT scans, 
were tested. The dynamic 3D radiomics analysis method used 30 features, including 27 radiomics features and 3 clinical 
features to assess the possible disease stage of COVID-19 with an accuracy of 90%. For the prediction of each stage, the 
AUC of stage 1 was 0.965 (95% CI: 0.934, 0.997), AUC of stage 2 was 0.958 (95% CI: 0.931, 0.984), AUC of stage 3 was 
0.998 (95% CI: 0.994, 1.000), and AUC of stage 4 was 0.975 (95% CI: 0.956, 0.994).
Conclusion  With high diagnostic performance, the dynamic 3D radiomics analysis using artificial intelligence could represent 
a potential tool for helping hospitals make appropriate resource allocations and follow-up of treatment response.
Key Points   
• The AI segmentation algorithms were able to accurately segment the lung and lesion of COVID-19 patients of different stages.
• The dynamic 3D radiomics analysis method successfully extracted the radiomics features from the 3D lung lesion.
• The stage-assessing AI algorithm combining with clinical metadata was able to assess the four stages with an accuracy  
   of 90%, a macro-average AUC of 0.975.
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Abbreviations
3D	� Three dimensions
AI	� Artificial intelligence
AUC​	� Area under the receiver operating character-

istic curve
CI	� Confidence interval
COVID-19	� Coronavirus disease 2019

Introduction

By February 16, 2021, there have been over 100 million 
confirmed cases of COVID-19, and 2,403,641 patients had 
died worldwide. More seriously, the disease is increasing 
at a rate of over 400,000 per day [1]. Diagnosis methods 
include respiratory sample transcription-polymerase chain 
reaction (RT-PCR) and chest imaging. RT-PCR has high 
specificity and low sensitivity, which has been reported to be 
as low as 60–70% [2]. Therefore, revised version 7 of Chi-
na’s COVID-19 Diagnosis and Treatment Protocol indicates 
that clinically suspected cases with imaging characteristics 
of pneumonia can be diagnosed as COVID-19 patients. In 
addition, chest X-rays are of little value in early diagnosis, 
whereas CT images can detect abnormalities before symp-
toms appear [3]. Therefore, chest CT examination is strongly 
recommended during the initial assessment, follow-up of 
suspected COVID-19 cases.

In clinical work, it is stressful for doctors to read thou-
sands of CT images. Artificial intelligence technology may 
be able to solve this problem. CT radiomics and artificial 

intelligence have been used to distinguish COVID-19 from 
other pneumonias [4]. Some scholars divided COVID-19 
into four stages based on the different dynamic imaging 
manifestations of chest CT images [5]. Considering the 
evolution of pulmonary lesions by course and the effective-
ness of multidirectional and multiangle image observations, 
this study first proposed an AI framework using dynamic 
3D radiomics and clinical metadata to assess the stage of 
COVID-19 patients (Fig. 1); it will help hospitals with the 
planning and management of medical resource.

Materials and methods

Data and pre‑processing

The data used in this study consists of three parts. The first 
part for lung segmentation was obtained from two public 
datasets with manually segmented lung boundary [6, 7]. 
There are 5750 CT slices from 170 COVID-19 patients in 
this part. The second part for lesion segmentation was col-
lected from The Second Xiangya Hospital [8]; this part con-
sists of 19 patients including 1117 CT images with lesion 
region delineated by two radiologists (6 and 10 years of 
experience). The third part for staging is from Wuhan Red 
Cross Hospital; it contains 331 patients (1023 CT scans 
with clinical metadata) who underwent continuous chest 
CT examinations between January 1, 2020, and March 9, 
2020, throughout the treatment (Supplemental Material 

Fig. 1   Flowchart for the dynamic 3D radiomics analysis method 
using artificial intelligence. a Using artificial intelligence models to 
segment the lung and lesion of COVID-19 patients. b Extracting the 

dynamic 3D radiomics features of 3D lung lesion and combining with 
the clinical metadata to assess the stage of COVID-19 patients
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Fig. S1). These CT scans were labeled by two radiologists 
(14 and 31 years of experience) who were blind to the clini-
cal metadata according to the Guideline for Medical Imaging 
in Auxiliary Diagnosis of Coronavirus Disease in 2019 [9]. 
The reference standards about staging in this guideline are 

as follows: COVID-19 is divided into four stages (early, pro-
gressive, peak, and absorption stages) on CT images (Fig. 2),

(1)	 The early lung manifestations are often atypical, and 
the lesions are light, patchy, and ground-glass opacity 

Fig. 2   Four stages of COVID-
19 on CT images from four 
patients. a Transverse unen-
hanced images. b The coronal 
reconstructing images. The 
first row represents early stage, 
the second row represents 
progressive stage, the third row 
represents peak stage, and the 
last row represents absorption 
stage
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(GGO) with many limitations and scatter in the two 
middle and lower lung fields, mainly in the subpleural 
region.

(2)	 Multiple lesions are identified in the progressive stage, 
manifesting as GGO exudation, crazy-paving pattern, 
fusion, or consolidation, which are more common 
in both lung foreign zone distributions, with a small 
amount of pleural effusion.

(3)	 The peak stage (critical illness) is equivalent to the 
advanced stage of the disease, and the diffuse and gen-
eralized lung density further increased, which is called 
“white lung.” This stage of lesion development rapidly 
increases by greater than 50% in 48 h. Treatment is 
difficult, and mortality is high.

(4)	 During the absorption stage, the lesions are reduced or 
absorbed, and some cases exhibit changes in pulmonary 
interstitial fibrosis.

For the annotating procedure, we first let the two radi-
ologists make all the annotations, respectively. Then, we 
checked for the discrepancies and let the two radiolo-
gists discussed for making the final decision. For the 
data split, we randomly divided each dataset into two 
independent sets (training and testing sets) with a ratio 
of 4:1 at the patient level (Fig. S2). We want to empha-
size that all the CT images are not overlapped not only 
among these three datasets but also between the training 
set and testing set.

Regarding the data pre-processing, we used the fixed lung 
window (− 1200, 0) to adjusted all the raw CT images and 
normalized them into the range (0, 255). We did not use any 
resizing technique, and all the CT images are in the same 
size of 512 x 512 pixels.

Lung and lesion segmentation

Here, 3D radiomics features were derived from the 
segmented 3D lung lesion. First, we used the first and 
second parts of data to train two segmentation models 
based on the spatial- and channel-wise coarse-to-fine 
attention network (SCOAT-Net) [8]; the SCOAT-Net is 
a novel U-Net +  + architecture that has a channel-wise 
attention module and a spatial-wise attention module 
to attract the self-attention learning of the network, 
which serves to segment the target area at the channel 
level and pixel successfully (Fig. S3). Lung segmenta-
tion network was trained and tested on the first part of 
dataset; lesion segmentation network was trained and 
tested on the second part of dataset. Then, we used the 
trained networks to segment the lung and lesion of the 
third part of dataset. The next step was to reconstruct 
the 3D lung lesion based on the results of lung and 
lesion segmentation.

Dynamic 3D radiomics feature extraction 
and feature selection

Quantitative radiomics approaches have been applied a lot in 
medical image analysis since Aerts et al [10] used radiomics 
features to decode tumor phenotype. In this paper, we first 
extracted common radiomics (intensity features) based on 
the reconstructed 3D lesion. Then, we decomposed the 3D 
lesion into nine fixed-view slices (Fig. S4) for extracting the 
common radiomics (texture features) on each slice. And we 
added the lung volume, lesion volume, and ratio of lesion-
to-lung volume as shape features, because Zhang et al [7] 
found that the lesion ratio was a significant contributor in 
the clinical prognosis estimation for COVID-19. Therefore, 
we extracted 314 regular 3D radiomics features including 
3 shape, 14 intensity, and 297 texture features. Moreover, 
given that the radiologists would consider the lung changes 
when they assess the stage, we also added the variation val-
ues of two adjacent CT scans’ regular 3D features as the 
dynamic 3D radiomics features. Apart from the radiomics 
features, we combined with four clinical features including 
age, sex, time of onset, and time of progress. Time of onset 
(in days) represents the time after initial onset of symptoms, 
while time of progress (in days) is the time interval between 
two adjacent CT scans. The dynamic 3D features and time 
of progress were set to 0 when the patient made the first 
CT scan. Thus, we extracted a total of 632 features includ-
ing 628 radiomics features and 4 clinical features (Table S1, 
column 1).

For feature selection, we used three feature selection 
methods, i.e., Random Forest (RF-FS) [11], Relief-F [12], 
Local Learning-based Clustering Feature Selection (LLCFS) 
[13]. Each feature selection method assigned weights to these 
632 features according to the different evaluation functions 
(Table S1), and sorted these features in a descending mode. 
Then, each classifier selected the maximum n (1 ≤ n ≤ 632) 
features to calculate the classification accuracies using ten-
fold cross-validation on the training set (Fig. S5). Finally, 
for each classifier, we achieved the optimal feature selection 
method with the optimal number of features according to 
the greatest accuracy. We want to emphasize that this part 
about feature ranking and feature selection procedure was 
only implemented on the training set.

Experimental settings and evaluation metrics

We trained the lung and lesion segmentation models based 
on the Pytorch framework, and we used the common opti-
mizer (SGD) to optimize the loss function (dice coefficient 
loss) that updated the networks’ parameters that were initial-
ized by Kaiming method. Moreover, we set the number of 
epochs to 100 for stopping training, and the initial learning 
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rate was 0.01 that was multiplied by 0.1 every 10 epochs. 
We finally selected the models that were after 100 epochs of 
training as segmentation models. For the staging procedure, 
we implemented it on MATLAB software. We used FEA-
TURE SELECTION TOOLBOX V 6.2 for feature selec-
tion and MATLAB’s own machine learning classifiers for 
training staging models. The codes about segmentation and 
staging are available at https://​github.​com/​Phanz​sx/​SCOAT-​
Net and https://​github.​com/​Phanz​sx/​Assess-​the-​COVID-​19.

We applied six metrics to evaluate the segmentation and 
staging performance. The dice similarity coefficient (DSC) 
and intersection over union (IOU) were used to evaluate 
the segmentation performance. Accuracy, sensitivity, spec-
ificity, and the area under the receiver operating character-
istic curve (AUC) were used to evaluate the performance 

of the discrimination classifiers. Moreover, Student’s 
t-test was used to test the difference between independ-
ent groups; a two-sided p value < 0.05 was deemed to be 
statistically significant.

Results

Patient characteristics and laboratory findings

One thousand twenty-three scans from 331 COVID-19 
patients were included in the staging dataset. As shown in 
Table 1, the most prevalent symptoms at presentation were 
cough (225 of 331 patients [70%]) and fever (220 of 331 
patients [67%]). Table 2 shows that most laboratory results 
were often normal, and a small number were elevated. 
C-reactive protein levels, d-dimer levels, and erythrocyte 
sedimentation rates increased in all four stages and peaked 
in stage 3. In addition, lactate dehydrogenase levels and 
serum creatinine levels only increased in stage 3. And the 
time of onset for four stages were obviously different; they 
were 4.4 ± 6.1, 11.0 ± 7.1, 15.4 ± 8.3, and 26.3 ± 12.0 days, 
respectively.

Segmentation results and selected features

The segmentation performance of lung and lesion networks 
on the first and second parts of data is shown in Table S1; we 
used the trained segmentation models to segment the lung 
and lesion of the third part of data, then reconstructed the 
3D lung lesion to extract radiomics features. The segmenta-
tion and reconstruction results are shown in Fig. 3. For fea-
ture selection, we first used three feature selection methods 

Table 1   Characteristics of the patient cohort

Age 57.83 ± 15.83 (range, 21–97)

Sex Men Women
159 (48%) 172 (52%)

Fever Low-grade fever 
(37.5–
38.0 °C)

Moderate-grade 
fever (38.1–
39.0 °C)

High-grade 
fever 
(> 39.1 °C)

69 (21%) 123 (37%) 28 (9%)
Cough 225 (70%)
Expectoration 93 (28%)
Fatigue 127 (38%)
Throat pain 24 (7%)
Myalgia 43 (13%)
Chest distress 126 (38%)
Diarrhea 35 (11%)

Table 2   Laboratory findings of 
the patient cohort

White blood cell, neutrophil, and lymphocyte are in G/L for the unit; C-reactive protein and d-dimer are in 
mg/L; alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase are in U/L; blood 
urea nitrogen is in mmol/L; serum creatinine and serum uric acid are in μmol/L; erythrocyte sedimentation 
is in mm/h; Time of onset is in days

Parameter Stage 1 Stage 2 Stage 3 Stage 4

White blood cell 5.1 ± 2.4 5.5 ± 2.8 8.6 ± 3.6 5.9 ± 2.3
Neutrophil 3.5 ± 2.3 4.1 ± 3.0 7.3 ± 3.5 4.0 ± 2.2
Lymphocyte 1.2 ± 0.5 1.1 ± 0.5 0.8 ± 0.4 1.4 ± 0.5
C-reactive protein 22.5 ± 35.4 37.6 ± 43.4 96.0 ± 77.1 12.2 ± 21.7
d-Dimer 1.0 ± 1.7 2.7 ± 6.4 13.8 ± 23.9 2.9 ± 5.0
Alanine aminotransferase 22.2 ± 21.1 25.7 ± 21.5 36.0 ± 24.4 32.4 ± 26.3
Aspartate aminotransferase 27.7 ± 19.8 29.8 ± 18.7 37.7 ± 24.0 26.0 ± 12.9
Blood urea nitrogen 5.1 ± 4.1 4.7 ± 3.9 7.5 ± 6.6 4.5 ± 2.3
Serum creatinine 95.2 ± 120.2 82.9 ± 104.1 114.5 ± 201.4 73.5 ± 30.6
Serum uric acid 259.3 ± 103.8 231.3 ± 92.7 229.3 ± 122.5 261.7 ± 89.4
Erythrocyte sedimentation 18.9 ± 12.4 43.5 ± 25.1 61.3 ± 25.2 36.1 ± 22.3
Lactate dehydrogenase 168.6 ± 57.7 234.5 ± 84.1 404.6 ± 184.4 184.6 ± 50.4
Time of onset 4.4 ± 6.1 11.0 ± 7.1 15.4 ± 8.3 26.3 ± 12.0
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for assigning weights to these features based on the training  
set. The results (Table S1) showed that each method could 
rank these features differently. Moreover, we calculated the 
sum of weights of different types of features (Fig. 4) and  
found that both dynamic 3D radiomics features and clinical 
features were significant factors for stage assessment on the 
training set. We also listed each feature selection method’s 
top 30 feature items based on weights and found that some 

features (time of onset, age, intensity features) were equally 
significant (Tables S2-S4). After ranking these features, each 
classifier selected the top n (1 ≤ n ≤ 632) features to calculate 
the accuracy using tenfold cross-validation on the training 
set. Finally, as depicted in Table S5, for each classifier, we 
achieved the optimal feature selection method with optimal 
number of features. And the top 30 feature items in RF-FS  
feature selection method are listed in Table 3. We found 

Fig. 3   The lung-lesion segmentation results by the proposed artificial intelligence models and the corresponding 3D lung-lesion reconstruction 
results
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that the top two feature items were time of onset (Table 2)  
and ratio of lesion-to-lung volume (Fig. 5). The ratios of 
lesion-to-lung volume at the four stages were 2.2% ± 3.6%, 
14.8% ± 14.1%, 46.0% ± 16.5%, and 7.8% ± 9.5%, respectiv
ely.

Stage assessing for COVID‑19

We used the selected features of two adjacent CT scans as 
input to train our staging models on the training set, and then 
used the trained model to evaluate the staging performance 
on the testing set. The four-way classification results are 
shown in Table 4. Moreover, given that KNN classifier did 
not perform well in terms of the accuracy metric, we only 
applied RF and SVM classifiers for the detailed analysis. 
More specifically, we calculated the accuracy, sensitivity, 
and specificity for four two-way classifications (i.e., stage 
1/stages 2–3-4, stage 2/stages 1–3-4, stage 3/stages 1–2-4, 
stage 4/stages 1–2-3) on the testing set; we also calculated 

the confusion matrices, ROC curves on the testing set. The 
results are shown in Table 5 and Fig. 6.

Both Table 5 and Fig. 6 show that these two machine 
learning classifiers achieved comparable performances in 
terms of accuracy, specificity, and AUC metrics. However, 
RF and SVM classifiers performed differently in terms of 
sensitivity. More specifically, RF classifier outperformed 
SVM classifier for the absorption stage, and SVM classifier 
outperformed RF classifier for the early stage. Moreover, 
we found that these two classifiers could both achieve 100% 
sensitivity for the peak stage, but would both misclassify 
the early, progressive stages into the absorption stage; this 
is probably because the image manifestations of early, pro-
gressive stages are similar to the image manifestations of 
absorption stage without considering the lung changes over 
time. Furthermore, these misclassified CT scans probably 
have something to do with the lesion segmentation perfor-
mance given that our lesion segmentation model could only 
achieve DSC of 0.885.

Fig. 4   The weighs of various 
features in the three feature 
selection methods. Dynamic 
3D radiomics features consists 
of texture, shape, intensity fea-
tures, clinical features consists 
of age, sex, day (time of onset, 
time of progress). a The RF fea-
ture selection method (RF-FS). 
b The Relief-F feature selection 
method. c The LLCFS feature 
selection method
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Based on the above results, the diagnostic efficiencies 
were respectable for all the classifiers. More specifically, 
RF classifier was the most effective in terms of the total 
accuracy (90%). And SVM classifier yielded the best sen-
sitivity compared with RF classifier when diagnosing the 
early stage.

Discussion

In this study, the characteristics of COVID-19 were analyzed 
from the clinical symptoms, laboratory examination, and 
dynamic 3D radiomics features of the patients, and the 30 key 
features including clinical metadata, and dynamic 3D radiomics 
features were selected to assess the stage of COVID-19 patients.

We found that patients often had cough (225 of 331 
patients [70%]) and fever (220 of 331 patients [67%]) symp-
toms; this result was the same as that of another meta-analy-
sis [14]. Recently, results of a UK cohort study revealed that 

ten symptoms, including cough and fever, were associated 
with COVID-19 infection [15]. Many studies have found that 
C-reactive protein levels, d-dimer levels, and erythrocyte 
sedimentation rate increase [14]. However, other detailed 
studies have not been performed to assess how these labo-
ratory indicators evolve with disease. Our study revealed 
this pattern over time. In addition, the role of C-reactive 
protein levels in prognosis has been studied. The C-reac-
tive protein level could be used as an independent factor 
to predict the outcome of COVID-19. Higher levels were 
more likely to be associated with complications [16]. Some 
scholars have noted that lactate dehydrogenase, which is a 
metabolic marker, is an independent risk factor for severe 
COVID-19 patients [17]. An increase or decrease in lactate 
dehydrogenase levels was indicative of radiographic pro-
gress or improvement, which was consistent with our results 
[18]. An increase in serum creatinine in the severe stage was 
also reported in another study [19], indicating acute kidney 
injury [20].

Table 3   The top 30 feature 
items in the Random Forest 
Feature Selection Method 
(RF-FS)

Rank Kind of feature Feature detail Weight

1 Clinical feature Time of onset 0.4657
2 Dynamic 3D feature Ratio of lesion-to-lung volume 0.0748
3 Dynamic 3D feature Texture_view8: autocorrelation 0.0131
4 Clinical feature Time of progress 0.0129
5 Regular 3D features Texture_view5: run percentage 0.0122
6 Clinical feature Age 0.0088
7 Regular 3D feature Texture_view7: run percentage 0.0088
8 Regular 3D feature Intensity: median 0.0078
9 Regular 3D feature Intensity: entropy 0.0076
10 Regular 3D feature Intensity: skewness 0.0074
11 Regular 3D feature Intensity: uniformity 0.0066
12 Regular 3D feature Texture_view8: informational measure of correlation 2 0.0065
13 Regular 3D feature Lung_area 0.0058
14 Regular 3D feature Texture_view4: cluster prominence 0.0058
15 Regular 3D feature Texture_view4: maximum probability 0.0053
16 Regular 3D feature Intensity: standard deviation 0.0052
17 Regular 3D feature Texture_view7: inverse difference moment normalized 0.0052
18 Regular 3D feature Intensity: mean absolute deviation 0.0049
19 Regular 3D feature Texture_view4: energy 0.0049
20 Regular 3D feature Intensity: variance 0.0048
21 Regular 3D feature Texture_view3: cluster prominence 0.0048
22 Regular 3D feature Texture_view4: variance 0.0046
23 Regular 3D feature Texture_view4: difference entropy 0.0045
24 Regular 3D feature Texture_view4: contrast 0.0044
25 Regular 3D feature Texture_view5: run length non-uniformity 0.0042
26 Regular 3D feature Texture_view9: run length non-uniformity 0.0042
27 Regular 3D feature Texture_view8: run length non-uniformity 0.0041
28 Regular 3D feature Texture_view9: cluster prominence 0.0040
29 Regular 3D feature Texture_view7: run length non-uniformity 0.0038
30 Regular 3D feature Texture_view8: contrast 0.0035
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To date, there has been no application of dynamic 3D 
radiomics technology for COVID-19 analysis. Conventional 
radiomics techniques were based on 2D medical images 
for feature extraction. Three-dimensional feature extraction 
is not common. Dynamic analysis in researches typically 
refers to the changes of drug metabolism characteristics 
after injection of enhanced drugs [21]. Our study not only 
provided detailed feature analysis, including shape, texture, 
and intensity in 3D space, but also considered the influence 

of course on the disease of COVID-19, which is a very 
innovative research approach. We made such great efforts 
because the characteristics of the lesion, age, sex, and time 
course of disease are important factors for the diagnosis and 
prognosis of COVID-19, which have been reported in many 
studies [22–24]. In the analysis of lesion characteristics, 
our study suggested that texture and intensity features were 
the most important factors, which was the same as other 
studies [25]. In that study, it extracted image features in the 
2D space, and the texture features played the greatest role 
in determining whether it was an early ground-glass opac-
ity, but the AUC was only 0.67. Our study took nine view 
slices that were extracted in the 3D space, which was the 
reason why the final ROC achieved a better effect. In our 
study, the onset time of four stages were different, which 
was similar to the findings of Pan et al [5], but the onset 
time of stages 2, 3, and 4 in our study was a little greater 
than the findings of Pan et al. Our study was based on 1023 
scans of 331 patients, and the differences in the number 
of patients might account for the difference of outcome. 
The ratio of lesion-to-lung volume represented the degree 
of lung involvement. Zhang et al also analyzed the cor-
relation between this feature and the clinical parameters 
of COVID-19 [7]. Autocorrelation of texture_view8 was a 
feature of the grey level cooccurrence matrix. The autocor-
relation coefficient of the eighth view reflected the changes 
of image manifestations from the sagittal alignment of the 
lung from anterior-to-posterior with an elevation of 45°; it 
played an important role in distinguishing different stages. 
This finding was consistent with our clinical observation: 
lesions often involved the lower lobe dorsal segment of both 
lungs [14].

The COVID-19 is becoming a major challenge to medi-
cal resources as a large number of diagnosed patients 

Fig.5   a Relationships between the stages of COVID-19 and the time 
of onset (in days). b Relationships between the stages of COVID-19 
and ratio of lesion-to-lung volume

Table 4   The optimal feature selection method and feature quantity 
in terms of accuracy for the three machine learning classifiers on the 
training and testing sets

Acc represents accuracy

Classifier Feature selec-
tion method

Feature 
quantity

Training Acc Testing Acc

RF RF-FS 30 1.0000 0.9018
SVM RF-FS 17 0.8672 0.8769
KNN RF-FS 176 1.0000 0.8079

Table 5   Performance metrics of RF and SVM classifiers on the test-
ing set

Classifier Metrics Stage 1 Stage 2 Stage 3 Stage 4

RF Accuracy
(95% CI)

96%
(92–98%)

92%
(88–95%)

98%
(94–99%)

95%
(91–97%)

Sensitivity
(95% CI)

70%
(47–87%)

78%
(63–89%)

100%
(83–

100%)

97%
(93–99%)

Specificity
(95% CI)

99%
(97–

100%)

96%
(92–99%)

97%
(94–99%)

91%
(83–96%)

SVM Accuracy
(95% CI)

96%
(92–98%)

91%
(86–95%)

96%
(92–98%)

93%
(88–96%)

Sensitivity
(95% CI)

87%
(66–97%)

78%
(63–89%)

100%
(83–

100%)

90%
(82–94%)

Specificity
(95% CI)

97%
(93–98%)

95%
(90–98%)

96%
(92–98%)

97%
(90–99%)
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continue to be hospitalized. Computer-aided diagnosis 
(CAD) system is an effective tool to make an automatic 
and rapid diagnosis. Even with the limited training data-
sets, our dynamic 3D radiomics analysis method using 
artificial intelligence could provide a potential tool to 
help hospitals quickly triage patients at admission using 
only CT images and basic clinical metadata. Moreover, our 
AI system can enhance the clinical follow-up of disease 
development and treatment response for the COVID-19 
patients. There were also some limitations in our study, 
such as the lack of application of the model in external 

validation datasets and the lack of further study in CT 
images of patients with concurrent lung tumors. Moreover, 
our study has a potential limitation because both labels and 
predictors depend on the imaging data, which will produce 
incorporation bias (PROBAST criteria 3.3 and 3.5) [26]. 
The next step will be to collect more data for external 
validation, and look for a new methodology (e.g., time of 
onset as label) that ensures the labels are independent of 
predictors. Furthermore, we also plan to improve the per-
formance of our lesion segmentation model for extracting 
more accurate radiomics features.

Fig. 6   Normalized confusion matrices and ROC curves of four-way classifications. In the ROC curves, the red dot curve denotes the macro-
average area under the curve (AUC). a RF classifier. b SVM classifier
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