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Abstract: Development of the kidney can be altered in response to adverse environments leading
to renal programming and increased vulnerability to the development of hypertension and kidney
disease in adulthood. By contrast, reprogramming is a strategy shifting therapeutic intervention from
adulthood to early life to reverse the programming processes. Nitric oxide (NO) is a key mediator of
renal physiology and blood pressure regulation. NO deficiency is a common mechanism underlying
renal programming, while early-life NO-targeting interventions may serve as reprogramming
strategies to prevent the development of hypertension and kidney disease. This review will first
summarize the regulation of NO in the kidney. We also address human and animal data supporting
the link between NO system and developmental programming of hypertension and kidney disease.
This will be followed by the links between NO deficiency and the common mechanisms of renal
programming, including the oxidative stress, renin–angiotensin system, nutrient-sensing signals,
and sex differences. Recent data from animal studies have suggested that interventions targeting the
NO pathway could be reprogramming strategies to prevent the development of hypertension and
kidney disease. Further clinical studies are required to bridge the gap between animal models and
clinical trials in order to develop ideal NO-targeting reprogramming strategies and to be able to have
a lifelong impact, with profound savings in the global burden of hypertension and kidney disease.

Keywords: asymmetric dimethylarginine; developmental origins of health and disease (DOHaD);
hypertension; kidney disease; nitric oxide; nutrient-sensing signal; oxidative stress; renal
programming; renin-angiotensin system; sex differences

1. Introduction

Nitric oxide (NO), a potent vasodilator, plays a crucial role in the regulation of placenta
vascular development, feto-placental vascular reactivity, embryogenesis, and fetal development during
pregnancy [1,2]. Conversely, maternal NO deficiency relates to compromised pregnancies and adverse
fetal outcomes [3,4]. Maternal adverse conditions can affect the structure and function of the fetus
that increases the risk of developing chronic diseases in later life. This concept is known as the
developmental origins of health and disease (DOHaD) [5].

Non-communicable diseases (NCDs) are the leading cause of global death [6]. Most NCDs
are considered preventable as they are caused by modifiable risk factors driven in early life [5].
Hypertension and kidney disease are recognized as major NCDs [6]. Hypertension has a bidirectional
relationship with kidney disease: on the one hand it is a major risk factor for initiation and progression
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of kidney disease and, on the other hand, it is the result of kidney disease itself. According to the
DOHaD concept, both disorders may result from early-life insults in nature [7,8]. Despite recent
advances in pharmacotherapy and lifestyle modification, there is still a global rising prevalence of
both disorders [6].

NO production is reduced in hypertension as well as in kidney disease [9,10]. Regulation of
blood pressure (BP) is a complicated process that comprises major contributions from the kidney.
The developing kidney is vulnerable to a suboptimal in utero environment. Accordingly, suboptimal
environments during critical periods of kidney development may produce long-term effects on the
kidney by so-called renal programming [11–13]. Cumulative evidence implicates the role of the
dysregulated NO system in renal programming and in the programming of hypertension [12–15].

In this review, we discuss the key themes on the impact of NO pathway in the developmental
origins of hypertension and kidney disease. We have particularly focused on the following areas:
regulation of NO in the kidney; evidence from human studies support fetal programming of
hypertension and kidney disease; insight from animal models of renal programming related to the NO
pathway; and the application of reprogramming interventions targeting the NO pathway to prevent
the programming of hypertension and kidney disease.

2. Regulation of Nitric Oxide in the Kidney

NO synthesis occurs via two distinct pathways: nitric oxide synthase (NOS)-independent and
NOS-dependent. The NOS-independent pathway involves the reduction of nitrite to NO [16].
This nitrate–nitrite–NO pathway is considered as a complementary pathway to the classical
L-arginine–NOS pathway. There are three NOSs, namely endothelial NOS (eNOS), neuronal NOS
(nNOS) and inducible NOS (iNOS), which were thought to be the major intracellular sources of
cellular NO. NO is generated from the conversion of L-arginine to L-citrulline by NOS that requires the
cofactors tetrahydrobiopterin (BH4), flavin adenine dinucleotide, and flavin mononucleotide. Under
a physiological state, mainly nNOS and eNOS are constitutively expressed in the kidney, but under
a pathological state iNOS is more likely to express [17]. L-arginine supply can be restricted via the
arginase enzyme, resulting in NO deficiency. In the depletion of L-arginine or cofactor BH4, eNOS
uncoupling leads to superoxide production [17]. On the other hand, the kidney can use L-citrulline to
make L-arginine via the argininosuccinate (AS) pathway involving AS synthetase and lyase [18].

NO deficiency is also attributed to increased endogenous NOS inhibitors, asymmetric
dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) [19]. ADMA can compete
with L-arginine to reduce NOS activity, leading to a decrease of NO. ADMA can also uncouple NOS to
produce superoxide, contributing to the burden of oxidative stress [20]. Unlike ADMA, SDMA does
not directly inhibit NOS but is a competitive inhibitor of L-arginine transport. Protein-incorporated
ADMA is formed by posttranslational methylation: two methyl groups are placed on one of the
terminal nitrogen atoms of the quanidino group of arginine in proteins by a family of protein arginine
methyltransferases (PRMTs) [19]. The other derivatives, the SDMA, are where one methyl group is
placed on each of the terminal guanidino nitrogens. Proteolytic release of free ADMA and SDMA can
be moved into or out of cells via the cationic amino acid transporter family. To date, three enzymes
have been reported to metabolize ADMA: dimethylarginine dimethylaminohydrolase-1 (DDAH-1)
and -2 (DDAH-2) as well as alanine-glyoxylate aminotransferase 2 (AGXT2). Unlike DDAHs, AGXT2,
a mitochondrial aminotransferase expressed primarily in the kidney, can metabolize not only ADMA
but also SDMA [21]. The biochemical pathways related to the regulation of NO pathway are illustrated
in Figure 1. In the kidney, NO has many important functions including the regulation of renal
hemodynamics, modulation of medullary blood flow, mediation of pressure-natriuresis, blunting of
tubuloglomerular feedback, modulation of renal sympathetic neural activity and inhibition of tubular
sodium reabsorption [17].
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L-arginine by protein arginine methyltransferase isoenzyme family (PRMT). Unlike SDMA, only ADMA 
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citrulline and dimethylamine (DMA). Alanine-glyoxylate aminotransferase 2 (AGXT2) can metabolize 

ADMA as well as SDMA. On the other hand, L-citrulline can be converted to L-arginine via the 

argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). ADMA can uncouple NOS to 

produce superoxide. In the kidney, NO is responsible for many physiological functions. The arrow means 

produces, indicating result of reaction. The T-bar means inhibits.  

NO deficiency in the kidney can be caused by: (1) L-arginine deficiency, (2) decreased abundance 

and activity of NOS, (3) inactivation of NO by increased oxidative stress, and (4) increased 

endogenous NOS inhibitor ADMA. Several lines of evidence indicate that NO deficiency contributes 

to hypertension and kidney disease [9,10]. First, L-arginine, the substrate for NOS, deficiency is 

involved in human hypertension and kidney disease [22], but L-arginine supplementation has 

beneficial effects on BP control [23]. Second, renal nNOS abundance and activity fall with kidney 

injury that are correlated to decreased NO production and elevation of BP in various rat models of 

chronic kidney disease [9]. A deficiency of eNOS-derived NO within the kidney exacerbates the 

damaging effects of diabetic nephropathy in animal models [9,24]. Third are studies of oxidative 

stress in hypertension and kidney disease [10]. Oxidative stress is mainly caused by an imbalance 

between the oxidants and antioxidant defense system. Oxidative stress might reduce NO 

bioavailability by oxidizing cofactor BH4 to uncouple NOS, inhibiting DDAH activity to increase 
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hypertension and kidney disease in both humans and animals [27,28]. As aforementioned causes of 

NO deficiency exist in human trials and experimental studies, these observations support a deficiency 
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Figure 1. The regulation of the NO system in the kidney. L-arginine has multiple metabolic fates,
including metabolism by NOS, arginase, and other enzymes. ADMA is capable of competing with
L-arginine to inhibit NO production. Both ADMA and symmetric dimethylarginine (SDMA) come from
the methylated L-arginine by protein arginine methyltransferase isoenzyme family (PRMT). Unlike
SDMA, only ADMA can be metabolized by dimethylarginine dimethylaminohydrolase (DDAH)-1
and -2 to generate L-citrulline and dimethylamine (DMA). Alanine-glyoxylate aminotransferase 2
(AGXT2) can metabolize ADMA as well as SDMA. On the other hand, L-citrulline can be converted
to L-arginine via the argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). ADMA
can uncouple NOS to produce superoxide. In the kidney, NO is responsible for many physiological
functions. The arrow means produces, indicating result of reaction. The T-bar means inhibits.

NO deficiency in the kidney can be caused by: (1) L-arginine deficiency, (2) decreased abundance
and activity of NOS, (3) inactivation of NO by increased oxidative stress, and (4) increased endogenous
NOS inhibitor ADMA. Several lines of evidence indicate that NO deficiency contributes to hypertension
and kidney disease [9,10]. First, L-arginine, the substrate for NOS, deficiency is involved in human
hypertension and kidney disease [22], but L-arginine supplementation has beneficial effects on BP
control [23]. Second, renal nNOS abundance and activity fall with kidney injury that are correlated
to decreased NO production and elevation of BP in various rat models of chronic kidney disease [9].
A deficiency of eNOS-derived NO within the kidney exacerbates the damaging effects of diabetic
nephropathy in animal models [9,24]. Third are studies of oxidative stress in hypertension and kidney
disease [10]. Oxidative stress is mainly caused by an imbalance between the oxidants and antioxidant
defense system. Oxidative stress might reduce NO bioavailability by oxidizing cofactor BH4 to
uncouple NOS, inhibiting DDAH activity to increase ADMA, and scavenging NO by superoxide to
form peroxynitrite [25]. Therefore, inactivation of NO by oxidative stress in the kidney may, in part,
contribute to the development of hypertension and kidney disease [10,26]. Fourth are reports that
increased plasma ADMA levels are associated with hypertension and kidney disease in both humans
and animals [27,28]. As aforementioned causes of NO deficiency exist in human trials and experimental
studies, these observations support a deficiency of NO in the kidney contributing to the pathogenesis
of hypertension and kidney disease.
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3. Developmental Programming of Hypertension and Kidney Disease: Insight Provided by
Human Study

Important support for the developmental programming of hypertension and kidney disease
came from the Dutch famine birth cohort study. Adults exposed to maternal famine developed
many disorders, including hypertension and kidney disease [29]. Second are observations that a
low nephron endowment is a common denominator underlying the vulnerability to kidney disease
and hypertension [30]. Low birthweight (LBW) and prematurity are risk factors for hypertension
and kidney disease and both are associated with low nephron number [30,31]. Preterm infants
may exhibit low nephron endowment due to a compromised pregnancy, intra-uterine growth
retardation (IUGR), inadequacy of postnatal nutrition, and treatment with nephrotoxic medication after
birth [31]. A reduced nephron number leads to a higher glomerular capillary pressure and glomerular
hyperfiltration. Over time, this process initiates a vicious cycle of rising BP and further nephron
loss. A meta-analysis of >2 million individuals reported that those with LBW had a 70% increased
risk for development of chronic kidney disease [32]. A case-control study of >1.6 million infants
demonstrated that prematurity and LBW are risk factors for congenital anomaly of kidney and urinary
tract (CAKUT) [33]. Another line of evidence comes from studies of mother-child cohorts. As reviewed
elsewhere [34], several risks affecting early-life BP of offspring in these cohorts include undernutrition,
gestational hypertension, maternal obesity, short-term breastfeeding, maternal smoking, low vitamin
D intake, and excessive postnatal weight gain. However, these cohorts cannot yet per se directly
provide cause-effect relationships between the specific early-life insults and phenotypes in later life.
Therefore, it stands to reason that much of our knowledge seems to come largely from animal models
to unveil underling mechanisms of renal programming related to hypertension and kidney disease.

4. Mechanisms of Renal Programming Related to Nitric Oxide (NO) Pathway

Although several organ systems responsible for BP regulation can be programmed in response
to early-life environmental insults, renal programming is considered crucial in the development of
hypertension and kidney disease [12,13]. Emerging evidence indicates that there may be common
mechanisms underlying renal programming which lead to the pathogenesis of hypertension and
kidney disease of developmental origins. Animal models have provided insight on several common
mechanisms, including oxidative stress, alterations of renin-angiotensin system (RAS), nutrient-sensing
signals, and sex differences [8,12–15,34]. All of these observations provide a close link between the
NO deficiency and other important mechanisms involved in programmed hypertension and kidney
disease (Figure 2). Each will be discussed in turn.

4.1. Oxidatice Stress

Oxidative stress is an imbalance between pro-oxidant molecules and antioxidant defenses, mainly
related to dysregulation of reactive oxygen species (ROS) and NO. The developing fetus is highly
vulnerable to oxidant injury due to its low antioxidant capacity [35]. Thus, early-life NO–ROS
imbalance is capable of programming adult hypertension and kidney disease [14,36]. Cumulative
evidence indicates that a variety of prenatal insults lead to renal programming and hypertension
associated with oxidative stress, including maternal undernutrition [37], maternal diabetes [38],
prenatal glucocorticoid administration [39–41], preeclampsia [42], and exposure to high-fructose
diet [43] and high-fat diet [44] in pregnancy and lactation. Importantly, among these programmed
models, the impaired L-arginine–ADMA–NO pathway is closely interrelated to oxidative stress in
determining the programming process as we reviewed elsewhere [45].

NO depletion in pregnancy induced by NG-nitro-L-arginine-methyl ester (L-NAME, an inhibitor
of NOS) caused renal programming, increased oxidative stress, and programmed hypertension in adult
offspring [46,47]. Additionally, maternal NO deficiency alters a wide range of signaling pathways
as found by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis [48]. Among
them, the mitogen-activated protein kinases (MAPK) pathway is involved in redox-sensitive signaling,
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contributing to the development of hypertension [49]. Furthermore, our previous report showed that
NO deficiency in embryonic kidneys (metanephroi) induced by ADMA impairs nephrogenesis [50].
Metanephroi grown in 2 or 10 µM ADMA were significantly smaller and contained fewer nephrons in
a dose-dependent manner [50]. Metanephroi grown in 10 µM ADMA altered a total of 1221 differential
expressed genes by next-generation RNA sequencing (NGS) analysis [51]. Among them, Avpr1a, Ephx2,
Hba2, Hba-a2, and Npy1r have been identified as differentially expressed genes in the kidney in different
programmed hypertension models [48,50–52]. Thus, results from these studies suggest a link between
NO deficiency and oxidative stress in the developmental programming of hypertension and kidney
disease. The arrow means produces, indicating result of reaction. The T-bar means inhibits.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  5 of 16 
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Figure 2. Schema outlining the potential role of NO deficiency on mediating other mechanisms
underlying renal programming to cause hypertension and kidney disease in adulthood in response to a
variety of early-life insults. Conversely, targeting the NO pathway could be a reprogramming strategy
to prevent programmed hypertension and kidney disease by early intervention.

4.2. Renin-Angiotensin System

The role of RAS in mediating kidney development and regulating BP has received considerable
attention [53,54]. Pharmacological blockade of the RAS has been clinically used as the first choice for
hypertension and renal protection. This system consists of different angiotensin peptides mediated by
distinct receptors. The classic RAS, defined as the angiotensin converting enzyme (ACE)-angiotensin
(Ang) II-angiotensin type 1 receptor (AT1R) axis, promotes vasoconstriction and sodium retention.
Conversely, the non-classical RAS composed of the ACE2-Ang-(1-7)-Mas receptor axis leads to
vasodilatation [54]. The RAS have been reported to be associated with developmental programming of
hypertension in a variety of models, including prenatal glucocorticoid administration [39–41], high-fat
diet [44], low-protein diet [55], high-sucrose diet [56], and high-fructose diet [57]. NO inhibition by
L-NAME in pregnancy caused programmed hypertension in adult offspring, which was associated
with increased mRNA of renin and ACE in offspring kidney [47]. On the other hand, blockade
of the classical RAS between 2–4 weeks of age has been reported to prevent the developmental
programming of hypertension [57–60]. These protective effects are not only directed upon the RAS,
but also through regulating the NO system. In spontaneously hypertensive rat (SHR), early therapy
with aliskiren, a renin inhibitor, has been reported to reduce ADMA, restore L-arginine-to-ADMA
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ratio, and increase renal cortical nNOS protein level to prevent the development of hypertension [61].
Similarly, early aliskiren therapy protects adult rat offspring exposed to maternal caloric restriction
against programmed hypertension via ADMA reduction [60]. Nevertheless, the detailed mechanisms
underlying the interplay between the RAS and NO pathway contributing to the programmed
hypertension and kidney disease need to be further investigated.

4.3. Nutrient-Sensing Signals

Nutrient-sensing signals play a crucial role in fetal metabolism and development. Imbalanced
nutrition and metabolic status during pregnancy can disturb nutrient-sensing signals, resulting in renal
programming and developmental hypertension [45,61]. Several well-known nutrient-sensing signaling
pathways exist in the kidney, including cyclic adenosine monophosphate (AMP)-activated protein
kinase (AMPK), silent information regulator transcript (SIRT), peroxisome proliferator-activated
receptors (PPARs), and PPARγ coactivator-1α (PGC-1α) [62]. The interplay between AMPK and
SIRTs, driven by maternal nutritional interventions were found to regulate PPARs and their target
genes, thereby driving a programmed process of hypertension [45,63]. Among the PPAR target
genes [64], Nos2, Nos3, Sod2, and Nrf2 are related to NO pathway and oxidative stress. AMPK, SIRT1,
and PGC-1α can also promote autophagy, a lysosome-mediated degradation process for damaged
cellular constituents [65]. Since eNOS-derived NO is capable to activate PGC-1α via AMPK to regulate
mitochondrial biogenesis [66], the interplay between NO and nutrient-sensing signals tightly controls
the mitochondrial lifecycle (mitochondrial biogenesis vs. removal by autophagy) [67].

AMPK activators and PPAR modulators have been proposed as reprogramming strategies for
programmed hypertension and kidney disease [63,68]. Using a combined maternal plus post-weaning
high-fat diet model, we found that resveratrol, an AMPK activator, prevents the two-hit induced
hypertension and increases protein levels of SIRT1, AMPK2α, and PGC-1α in the offspring kidney [69].
Also, resveratrol reduces renal ADMA concentration as well as oxidative stress damage. These results
provide evidence for the contribution of nutrient-sensing signals in renal programming and thus for
the development programming of hypertension.

4.4. Sex Differences

Sex differences in the developmental programming of kidney disease and hypertension
have been reported [13,70,71], showing that males are more vulnerable than females. Indeed,
several common mechanisms of renal programming, such as the oxidative stress [72], RAS [73]
and nutrient-sensing signal [74] have been documented a sex-specific response to environmental
insults. The renal transcriptome in response to early-life stimuli is also sex-specific [57,75,76].
Our previous report documented that maternal high-fructose diet induced sex-specific alterations of
renal transcriptome [57]. At one week of age, maternal high-fructose consumption caused greater
changes of renal transcriptome in female offspring than male offspring [57]. Our finding is in
agreement with another study showing that more genes in the placenta were affected in females
than in males under different maternal diets [77]. Whether the increased female sensitivity to maternal
diet might buffer the deleterious programming effects to protect the female fetuses, leading to a
better adaptation and less impact of programmed hypertension and kidney disease in adulthood
awaits further evaluation. It is noteworthy that NO production is better preserved in females than in
males [78]. The mechanisms responsible for these sex differences in programmed hypertension and
kidney disease are not well understood. Thus, better understanding of the impact of NO system on
sex-dependent mechanisms that underlie renal programming will aid in developing novel sex-specific
strategies to prevent programmed kidney disease and hypertension in both sexes.

4.5. Others

There are other potential mechanisms related to renal programming by which NO signaling might
act: (1) sodium transporters, (2) epigenetic regulation, and (3) gut microbiota. First, hypertension
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and kidney disease have been associated with increased expression/activity of sodium transporters
and enhanced sodium reabsorption [8,15]. NO has an inhibitory effect on the activity of several
sodium transporters [79]. Thus, it is speculated that NO deficiency may fail to counterbalance the
impaired sodium transporters induced by early-life insults, thus leading to programmed hypertension.
Next, epigenetic regulation such as histone modifications, DNA methylation, and non-coding RNAs
are involved in developmental programming [80]. Histone deacetylases have been reported to
epigenetically regulate several genes belonging to the RAS [81]. Although NO has been considered
as an epigenetic modulator, the epigenetic effects of NO on the aforementioned mechanisms have
not been pursued in animal models of development programming to any great extent. Moreover,
emerging evidence documents that the development of hypertension is correlated with gut microbiota
dysbiosis [82,83]. Of note, inhibition of NO is proposed as a potential mechanism linking dysbiosis and
hypertension [82]. Thus, additional studies are required to elucidate whether early-life gut microbiota
dysbiosis may elicit adverse effects on renal programming leading to hypertension and kidney disease
in adulthood via regulation NO pathway.

5. Reprogramming Interventions Targeting the NO Pathway to Prevent the Programming of
Hypertension and Kidney Disease

Reprogramming strategies targeting the NO pathway to reverse the programming processes that
have been employed in a variety of animal models of programmed hypertension and kidney disease,
some of which are listed in Table 1 [38,41,46,60,61,84–101]. This list is by no means complete and is
expected to grow rapidly as the field of DOHaD research flourishes. Currently, a variety of therapeutic
interventions have been reported for prevention of programmed hypertension and kidney disease,
such as supplementation of NO substrate, ADMA-lowering agents, NO donors, and enhancement of
the expression and/or activity of NOS.

In the current review, limited information is available about the use of large animals to study the
role of NO on developmental programming of hypertension and kidney disease. As shown in Table 1,
rats are the most commonly used among the small animal models. Rats grow rapidly in childhood
and reach sexual maturity after six weeks. In adulthood, one rat month is comparable to three human
years [102]. Accordingly, Table 1 lists the protective effects of interventions on hypertension and kidney
disease evaluated in rodents with different ages, which allows calculations to extract the information
that can be translated to humans of a specific age group.

Next, all of the studies listed in Table 1 used the tail cuff method for the measurement of BP. Since
conscious BP measurements by tail cuff might be influenced by stress and show discrepancies with
telemetry and indwelling catheters, additional studies are needed to validate BP measurement with
the other methods. There are numerous early-life insults inducing developmental programming of
hypertension and kidney disease, such as maternal diabetes [38,84], maternal caloric restriction [60,88],
maternal NO deficiency [46], prenatal dexamethasone exposure [41], prenatal dexamethasone plus
TCDD exposure [91], maternal high-fructose diet plus post-weaning high-salt diet [92], and prenatal
dexamethasone plus postnatal high-fat diet [93,94]. Reprogramming effects of interventions targeting
the NO pathway to prevent hypertension and kidney disease of developmental origins have been
reported ranging from 9 to 50 weeks of rat age. Each of the aforementioned interventions targeting the
NO pathway will be discussed in the following section.
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Table 1. Reprogramming strategies targeting the NO pathway to prevent hypertension and kidney
disease of developmental programming in animal models.

Interventions Animal Models Intervention
Period Species/Gender Age at Measure

(Week) Protective Effects Reference

Substrate for NOS

L-arginine
Maternal
streptozotocin-
induced diabetes

3 weeks to 24
weeks Wistar/M 24

Prevented
hypertension and
glomerular
hypertrophy

[84]

L-arginine +
antioxidants

Genetic
hypertension

2 weeks before
until 8 weeks
after birth

SHR/Mand F 9 Prevented
hypertension [85]

L-arginine +
antioxidants

Genetic
hypertension

2 weeks before
until 4 weeks
after birth

FHH/M and F 36

Prevented
hypertension,
proteinuria, and
glomerulosclerosis

[86]

L-arginine +
antioxidants

Genetic
hypertension

2 weeks before
until 8 weeks
after birth

SHR/M and F 50
Prevented
hypertension and
proteinuria

[87]

L-citrulline Maternal 50%
caloric restriction

3 weeks before
until 3 weeks
after birth

SD/M 12 Prevented kidney
damage, increased
nephron number

[88]

L-citrulline Maternal nitric
oxide deficiency

3 weeks before
until 3 weeks
after birth

SD/M 12 Prevented
hypertension

[46]

L-citrulline
Maternal
streptozotocin-
induced diabetes

3 weeks before
until 3 weeks
after birth

SD/M 12 Prevented
hypertension and
kidney damage,
increased nephron
number

[38]

L-citrulline
Prenatal
dexamethasone
exposure

3 weeks before
until 3 weeks
after birth

SD/M 12 Prevented
hypertension,
increased nephron
number

[41]

L-citrulline Genetic
hypertension

4 weeks to 12
weeks SHR/M 12 Prevented

hypertension
[89]

L-citrulline Genetic
hypertension

2 weeks before
until 6 weeks
after birth

SHR/M and F 50 Prevented
hypertension [90]

Asymmetric dimethylarginine (ADMA)-lowering agents

Resveratrol

Prenatal
dexamethasone
plus TCDD
exposure

3 weeks before
until 3 weeks
after birth

SD/M 12 Prevented
hypertension [91]

Melatonin

Maternal
high-fructose diet
plus post-weaning
high-salt diet

3 weeks before
until 3 weeks
after birth

SD/M 12 Prevented
hypertension [92]

Aliskiren Maternal caloric
restriction

2 weeks to 4
weeks SD/M 12 Prevented

hypertension [60]

N-acetylcysteine

Prenatal
dexamethasone
plus postnatal
high-fat diet

3 weeks before
until 3 weeks
after birth

SD/M 16 Prevented
hypertension [93]

Dimethyl
fumarate

Prenatal
dexamethasone
plus postnatal
high-fat diet

3 weeks to 6
weeks SD/M 16 Prevented

hypertension [94]

Metformin Genetic
hypertension

4 weeks to 12
weeks SHR/M 12 Prevented

hypertension
[95]

N-acetylcysteine Genetic
hypertension

4 weeks to 12
weeks SHR/M 12 Prevented

hypertension
[96]

Melatoin Genetic
hypertension

4 weeks to 12
weeks SHR/M 12 Prevented

hypertension
[97]

Aliskiren Genetic
hypertension

4 weeks to 12
weeks SHR/M 12 Prevented

hypertension
[61]
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Table 1. Cont.

Interventions Animal Models Intervention
Period Species/Gender Age at Measure

(Week) Protective Effects Reference

NO donor

Nitrate Genetic
hypertension

4 weeks to 12
weeks SHR/M 12 Prevented

hypertension
[89]

Molsidomine Genetic
hypertension

2 weeks before
until 4 weeks
after birth

FHH/M and F 42 Prevented
hypertension [98]

Pentaerythritol
tetranitrate

Genetic
hypertension

3 weeks before
until 3 weeks
after birth

SHR/M and F 24 Prevented
hypertension [99]

Others

Short interfering
RNA targeting
PIN

Genetic
hypertension

4 weeks to 12
weeks SHR/M 12 Prevented

hypertension
[100]

Melinjo
(Gnetum
gnemon) Seed
Extract

Maternal
high-fructose diet Birth to 3 weeks Wistar/F 17 Prevented

hypertension [101]

Studies tabulated according to types of intervention, animal models and age at measure. TCDD =
2,3,7,8-tetrachlorodibenzo-p-dioxin. SD = Sprague–Dawley rat. SHR = spontaneously hypertensive rat. FHH
= Fawn-hooded hypertensive rat. M = male. F = female. PIN = protein inhibitor of neuronal nitric oxide synthase.

5.1. Substrate for Nitric Oxide Synthase (NOS)

L-arginine supplementation is widely used to generate NO in experimental studies [103].
Post-weaning supplementation with L-arginine, the substrate for NOS, has been reported to
prevent the development of hypertension in a maternal streptozotocin-induced diabetes model [84].
In genetic hypertension rat models, early supplementation of L-arginine and antioxidant starting
from prehypertensive stage can protect spontaneously hypertensive rats (SHR) and fawn-hooded
hypertensive rat (FHH) against hypertension in adulthood [85–87]. However, L-arginine is not a
good NO precursor due to its multiple metabolic fates. L-citrulline is the precursor of L-arginine.
Unlike L-arginine, it bypasses hepatic metabolism, it is not a substrate of arginase, and it does not
induce adverse effects of L-arginine [104]. Approximately 60% of de novo L-arginine synthesis
occurs in the kidney, where L-citrulline is taken up and metabolized into L-arginine by the
action of argininosuccinate synthetase and argininosuccinate lyase [105]. Thus, supplemental
L-citrulline has promise as a therapeutic intervention in many adult diseases related to NO
deficiency [104]. Maternal supplementing with L-citrulline in pregnancy and lactation protects adult
offspring against the developmental programming of hypertension induced by maternal caloric
restriction [88], NO inhibition [46], maternal diabetes [38], and prenatal dexamethasone exposure [41].
Additionally, early L-citrulline supplementation in the pre-hypertensive stage blocks the development
of hypertension in SHRs [89,90]. Therefore, a better understanding of the protective effects of substrates
for NOS underlying programmed hypertension and kidney disease is warranted.

5.2. Asymmetric Dimethylarginine (ADMA)-Lowering Agents

As reviewed elsewhere [14,19,106], a lot of currently used drugs have been reported
to lower ADMA levels and restore NO-ROS balance in human and experimental studies.
Telmisartan, resveratrol, melatonin, atorvastatin, N-acetylcysteine, vitamin E, salvianolic acid A,
oxymatrine, metformin, and rosuvastatin can increase the activity and/or expression of DDAHs
(ADMA-metabolizing enzymes) and thereby reduce ADMA levels [14]. On the other hand, telmisartan,
rosuvastatin, glucagon-like peptide-1 receptor agonist, and epigallocatechin-3-gallate have been
reported to reduce ADMA levels via decreased PRMT-1 (ADMA-generating enzyme) expression.
However, only few ADMA-lowering agents have been examined in the developmental programming
models to prevent hypertension and kidney disease.
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Maternal treatment with resveratrol, melatonin, or N-acetylcysteine has been reported to reduce
plasma ADMA level and protect adult offspring against programmed hypertension in different two-hit
models [91–93]. Additionally, our previous report demonstrated that early blockade of the RAS
by aliskiren offsets the effects of maternal caloric restriction-induced programmed hypertension,
which is related to the reduction of ADMA levels [60]. Moreover, early treatment with dimethyl
fumarate, a nuclear factor erythroid-derived 2-related factor 2 (Nrf2) activator prevents prenatal
dexamethasone and postnatal high-fat diet induced programmed hypertension in male offspring [94].
One of the beneficial effects of dimethyl fumarate treatment is via decreasing plasma ADMA
level. Similar to programming hypertension models, aliskiren [61], metformin [95], melatonin [96],
and N-acetylcysteine [97] have been demonstrated to block the development of hypertension in SHRs
by decreasing plasma ADMA levels.

Nevertheless, so far, a specific ADMA-lowering agent remains unreachable in clinical practice.
Since PRMTs are responsible for the generation of ADMA, and that DDAHs and AGXT2 regulate its
metabolism, the discovery of specific PRMT inhibitors, DDAHs agonists, and AGXT2 activators might
aid in developing a therapeutic approach to lower ADMA and restore NO, and thereby prevent the
development of hypertension and kidney disease for clinical translation.

5.3. NO Donors

Nitrate and nitrite are the main substrates to produce NO via the NOS-independent pathway [16].
Our previous study showed that dietary supplementation of nitrate, in amounts resembling a rich
intake of vegetables in humans, is able to prevent the development of hypertension in young SHRs [89].
Additionally, two NO donors, molsidomine and pentaerythritol tetranitrate have been reported to
prevent the development of hypertension in FFH rats and SHRs, respectively [98,99]. However, nearly
no studies to date have tested NO donors in programming models to prevent hypertension and kidney
diseease of developmental origins.

5.4. Others

Enhancement of NOS expression and/or activity is another way to increase NO production.
The N-terminus of nNOS could bind to a protein named protein inhibitor of nNOS (PIN). Binding of
PIN destabolizes nNOS dimers and inhibits nNOS activity, thereby reducing NO production [107].
We previously demonstrated that renal PIN expression is increased in pre-hypertensive and
hypertensive stages in SHRs. While inhibition of PIN expression by short interfering RNA targeting
PIN attenuates the development of hypertension in SHRs at 12 weeks of age [100]. On the other hand,
supplementaing melinjo (Gnetum gnemon) seed extract during lactation has been shown to protect
adult female offspring against maternal high-fructose diet-induced hypertension via enhancing eNOS
expression [101].

6. Conclusions

Despite recent advances in pharmacotherapies for hypertension and kidney disease, only a few
studies have targeted their potential for reprogramming. Adult hypertension and kidney disease
can originate in early life. This concept opens a new window for preventing the development
of hypertension and kidney disease via a reprogramming strategy. This review has provided an
overview on the various reprogramming strategies that are relevant to the NO pathway, including
substrates for NOS, NO donors, ADMA-lowering agents, and enhancement of NOS expression
and/or activity. Although emerging evidence from animal studies supports NO as a reprogramming
strategy for long-term protection against hypertension and developmental kidney disease, these results
await further clinical translation. In the current review, the beneficial effects of these NO-targeting
interventions are all coming from small animals. There remains a lack of data regarding large
animal models that can allow for the translation of basic science into clinical therapies. This is
of growing importance because targeting the NO pathway as a reprogramming strategy against renal
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programming is a flourishing field and will become even more important in light of the rising epidemic
of hypertension and kidney disease.
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FHH Fawn hooded hypertensive rat
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