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Abstract

Infection of host cells by Toxoplasma gondii is an active process, which is regulated by

secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized

organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhe-

sin complex secreted on the parasite surface that functions to promote infection compe-

tency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose

residues, respectively and to induce IL-12 production from splenocytes. Here we show that

rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory

cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar rec-

ognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1

and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomu-

tants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking

MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed

to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only

MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data

show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12

responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection com-

petency and murine pathogenesis.

Author summary

Toxoplasmosis is caused by the protozoan Toxoplasma gondii, belonging to the Apicom-

plexa phylum. This phylum comprises important parasites able to infect a broad diversity
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of animals, including humans. A particularity of T. gondii is its ability to invade virtually

any nucleated cell of all warm-blooded animals through an active process, which depends

on the secretion of adhesin proteins. These proteins are discharged by specialized organ-

elles localized in the parasite apical region, and termed micronemes and rhoptries. We

show in this study that two microneme proteins from T. gondii utilize their adhesion

activity to stimulate innate immunity. These microneme proteins, denoted MIC1 and

MIC4, recognize specific sugars on receptors expressed on the surface of mammalian

immune cells. This binding activates these innate immune cells to secrete cytokines,

which promotes efficient host defense mechanisms against the parasite and regulate their

pathogenesis. This activity promotes a chronic infection by controlling parasite replica-

tion during acute infection.

Introduction

Toxoplasma gondii is a coccidian parasite belonging to the phylum Apicomplexa and is the

causative agent of toxoplasmosis. This protozoan parasite infects a variety of vertebrate hosts,

including humans with about one-third of the global population being chronically infected

[1]. Toxoplasmosis can be fatal in immunocompromised individuals or when contracted con-

genitally [1], and is considered the second leading cause of death from foodborne illnesses in

the United States [2].

T. gondii invades host cells through an active process that relies on the parasite actinomyo-

sin system, concomitantly with the release of microneme proteins (MICs) and rhoptry neck

proteins (RONs) from specialized organelles in the apical pole of the parasite [3]. These pro-

teins are secreted by tachyzoites [4, 5] and form complexes composed of soluble and trans-

membrane proteins. Some of the MICs act as adhesins, interacting tightly with host cell-

membrane glycoproteins and receptors, and are involved in the formation of the moving junc-

tion [6]. This sequence of events ensures tachyzoite gliding motility, migration through host

cells, invasion and egress from infected cells [4, 7]. Among the released proteins, MIC1, MIC4,

and MIC6 form a complex that, together with other T. gondii proteins, plays a role in the adhe-

sion and invasion of host cells [8, 9], contributing to the virulence of the parasite [10, 11].

Several studies have shown that host-cell invasion by apicomplexan parasites such as T. gon-
dii involves carbohydrate recognition [12–15]. Interestingly, MIC1 and MIC4 have lectin

domains [11, 16–18] that recognize oligosaccharides with sialic acid and D-galactose in the ter-

minal position, respectively. Importantly, the parasite’s Lac+ subcomplex, consisting of MIC1

and MIC4, induces adherent spleen cells to release IL-12 [17], a cytokine critical for the protec-

tive response of the host to T. gondii infection [19]. In addition, immunization with this native

subcomplex, or with recombinant MIC1 (rMIC1) and MIC4 (rMIC4), protects mice against

experimental toxoplasmosis [20, 21]. The induction of IL-12 is typically due to detection of the

pathogen by innate immunity receptors, including members of the Toll-like receptor (TLR)

family, whose stimulation involves MyD88 activation and priming of Th1 responses, which

protects the host against T. gondii [19, 22]. It is also known that dysregulated expression of IL-

12 and IFN-γ during acute toxoplasmosis can drive a lethal immune response, in which mice

succumb to infection by severe immunopathology, the result of insufficient levels of IL-10

and/or a collapse in the regulatory CD4+Foxp3+ T cell population [23, 24].

Interestingly, regarding the innate immune receptors associated with IL-12 response during

several infections, the extracellular leucine-rich repeat domains of TLR2 and TLR4 contain

four and nine N-glycans, respectively [25]. Therefore, we hypothesized that MIC1 and MIC4

bind TLR2 and TLR4 N-glycans on antigen-presenting cells (APCs) and, through this
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interaction, trigger immune cell activation and IL-12 production. To investigate this possibil-

ity, we assayed the ability of rMIC1 and rMIC4 to bind and activate TLR2 and TLR4. Using

several strategies, we demonstrated that TLR2 and TLR4 are indeed critical targets for both

MIC1 and MIC4. These parasite and host cell structures establish lectin-carbohydrate interac-

tions that contribute to the induction of IL-12 production by innate immune cells, and we

show here that the MIC1 lectin promotes T. gondii infection competency and regulates para-

site virulence during in vivo infection.

Results

Lectin properties of recombinant MIC1 and MIC4 are consistent with those

of the native Lac+ subcomplex

The native MIC1/4 subcomplex purified from soluble T. gondii antigens has lectin properties,

so we investigated whether their recombinant counterparts retained the sugar-binding specific-

ity. The glycoarray analysis revealed the interactions of: i) the Lac+ subcomplex with glycans

containing terminal α(2–3)-sialyl and β(1–4)- or β(1–3)-galactose; ii), rMIC1 with α(2–3)-sialyl

residues linked to β-galactosides; and iii) of rMIC4 with oligosaccharides with terminal β(1–4)-

or β(1–3)-galactose (Fig 1A). The combined specificities of the individual recombinant proteins

correspond to the dual sugar specificity of the Lac+ fraction, demonstrating that the sugar-rec-

ognition properties of the recombinant proteins are consistent with those of the native ones.

Based on the sugar recognition selectivity of rMIC1 and rMIC4, we tested two oligosaccha-

rides (α(2–3)-sialyllactose and lacto-N-biose) for their ability to inhibit the interaction of the

MICs with the glycoproteins fetuin and asialofetuin [26]. Sialyllactose inhibited the binding of

rMIC1 to fetuin, and lacto-N-biose inhibited the binding of rMIC4 to asialofetuin (Fig 1B). To

ratify the carbohydrate recognition activity of rMIC1 and rMIC4, we generated point muta-

tions into the carbohydrate recognition domains (CRDs) of the rMICs to abolish their lectin

properties [11, 18, 27]. These mutated forms, i.e. rMIC1-T126A/T220A and rMIC4-K469M,

lost their capacity to bind to fetuin and asialofetuin, respectively (Fig 1B), having absorbance

as low as that in the presence of the specific sugars. Thus, our results indicate that rMIC1 and

rMIC4 maintained their lectin properties, and that the CRD function can be blocked either by

competition with specific sugars or by targeted mutations.

rMIC1 and rMIC4 trigger the activation of DCs and macrophages

We have previously demonstrated that the native Lac+ subcomplex stimulates murine adher-

ent spleen cells to produce proinflammatory cytokines [20]. We evaluated whether recombi-

nant MIC1 and MIC4 retained this property and exerted it on BMDCs and BMDMs. BMDCs

(Fig 2A–2D) and BMDMs (Fig 2E–2H) produced high levels of the proinflammatory cytokines

IL-12 (Fig 2A and 2E), TNF-α (Fig 2B and 2F), and IL-6 (Fig 2C and 2G). This was not attrib-

utable to residual LPS contamination as the recombinant protein assays were done in the pres-

ence of polymyxin B, and LPS levels were less than 0.5ng/ml [see Materials and Methods

section]. Although conventional CD4+ Th1 cells are known to be the major producers of IL-10

during murine T. gondii infection [28], we also found that rMIC1 and rMIC4 induced the pro-

duction of this cytokine by BMDCs (Fig 2D) and BMDMs (Fig 2H). We verified that the two

recombinant proteins induced the production of similar levels of IL-12, TNF-α, and IL-6 by

both BMDCs (Fig 2A–2C) and BMDMs (Fig 2E–2G). Both MICs induced the production of

similar levels of IL-10 in BMDCs (Fig 2D); however, BMDMs produced significantly higher

levels of IL-10 when stimulated with rMIC1 than when stimulated with rMIC4 (Fig 2H). These

cytokine levels were similar to those induced by the TLR4 agonist LPS. Thus, recombinant

MIC1 and MIC4 regulate host innate immune priming by interaction with TLR2 and 4
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MIC1 and MIC4 induce a proinflammatory response in innate immune cells, which is consis-

tent with the results obtained for the native Lac+ subcomplex [20].

The activation of macrophages by rMIC1 and rMIC4 depends on TLR2 and

TLR4

To investigate the mechanisms through which T. gondii MIC1 and MIC4 stimulate innate

immune cells to produce cytokines, we assessed whether these MICs can activate specific

Fig 1. Lectin activity of rMIC1 and rMIC4. (A) Glycoarray of the native MIC1/MIC4 subcomplex (Lac+) and of the recombinant forms of

MIC1 and MIC4. In total, 320 oligosaccharide probes were analysed by reading their fluorescence intensities, and the 20 best recognized

glycans are shown. The results were represented as previously reported [18]. (B) The activity and inhibition assays were performed in

microplates coated with glycoproteins with or without sialic acid, fetuin (black bars), or asialofetuin (white bars), separately. After coating,

wild type or mutated rMIC1 and rMIC4, pre-incubated with PBS or their corresponding sugars, were added to the wells. Later, bound

proteins were detected through the addition of serum from T. gondii-infected mice. Data in (B) are expressed as mean ±S.D. of triplicate wells

and significance was calculated with ANOVA followed by Bonferroni’s multiple comparisons test. �p<0.05. Data are representative of two

(B) independent experiments. Gal: galactose; GalNAc: N-acetylgalactosamine; Glc: glucose; Man: mannose; Fuc: fucose; Neu5Ac: N-
acetylneuraminic acid; wt: wild type protein; mut: protein with a mutation in the carbohydrate-recognition domain (CRD); ns: not

significant.

https://doi.org/10.1371/journal.ppat.1007871.g001
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TLRs. To this end, BMDMs from WT, MyD88-/-, TRIF-/-, TLR2-/-, TLR4-/-, or TLR2/4 DKO

mice, as well as HEK293T cells transfected with TLR2 or TLR4, were cultured in the presence

or absence of rMIC1 and rMIC4 for 48 hours. The production of IL-12 by BMDMs (Fig 3A–

3I) and IL-8 by HEK cells (Fig 3J and 3K) were used as an indicator of cell activation. IL-12

production by BMDMs from MyD88-/-, TRIF-/-, TLR2-/-, and TLR4-/- mice was lower than

that of BMDMs from WT mice (Fig 3A–3D); no IL-12 was detected in cultures of TLR2/4

DKO mice cells stimulated with either rMIC1 or rMIC4 (Fig 3E). These results show that

TLR2 and TLR4 are both relevant for the activation of macrophages induced by rMIC1 and

rMIC4. The residual cytokine production observed in macrophages from TLR2-/- or MyD88-/-

mice may be the result of activation of TLR4 (Fig 3A and 3C), and vice versa; e.g., the residual

IL-12 levels produced by macrophages from TLR4-/- mice may be the result of TLR2 activation.

The finding that MICs fail to induce IL-12 production in DKO mice BMDMs suggests that cell

activation triggered by T. gondii MIC1 or MIC4 does not require the participation of other

Fig 2. Microneme proteins stimulate cytokine production by dendritic cells and macrophages. (A-D) Bone marrow-derived dendritic cells (BMDCs) and (E-H)

bone marrow-derived macrophages (BMDMs) from C57BL/6 mice were stimulated with rMIC1 (5 μg/mL) and rMIC4 (5 μg/mL) for 48 h. LPS (100 ng/mL) was used as

positive control. The levels of IL-12p40, TNF-α, and IL-6 were measured by ELISA. For this assay, rMIC1 and rMIC4 were passed through polymyxin B column,

followed by incubation with polymyxin B sulphate salt media preparation that was added to the culture (see Material and Methods). Data are expressed as mean ±S.D. of

triplicate wells and significance was calculated with ANOVA followed by Bonferroni’s multiple comparisons test. �p<0.05. Data are representative of three independent

experiments.

https://doi.org/10.1371/journal.ppat.1007871.g002
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Fig 3. The IL-12 production induced by rMICs is dependent on binding to TLR2 and TLR4. (A-I) Bone marrow-derived macrophages from WT, TLR2-/-, TLR4-/-,

double knockout TLR2-/-/TLR4-/-, TLR3-/-, TLR5-/-, TLR9-/-, and double knockout TLR11-/-/TLR12-/- mice, all of the C57BL/6 background, were stimulated with rMIC1

or rMIC4 (5 μg/mL) for 48 h. Pam3CSK4 (P3C) (1 μg/mL), LPS (100 ng/mL), Poly I:C (10 μg/mL), Flagellin (FLA) (1 μg/mL) and CpG (25 μg/mL) were used as positive

MIC1 and MIC4 regulate host innate immune priming by interaction with TLR2 and 4
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innate immunity receptors beyond TLR2 and TLR4. Nevertheless, because parasite compo-

nents such as DNA or profilin engage TLR9, TLR11, and TLR12 to produce IL-12 in macro-

phages [19, 22, 29], we investigated the involvement of these receptors, as well as TLR3 and

TLR5, in the response to rMIC1 or rMIC4. BMDMs from TLR3-/-, TLR5-/-, TLR9-/-, and

TLR11/12 DKO mice stimulated with rMIC1 or rMIC4 produced similar levels of IL-12 as

cells from WT (Fig 3F–3I), indicating that the activation triggered by rMIC1 or rMIC4 does

not depend on these receptors. Additionally, stimulation of HEK cells transfected with human

TLR2 (Fig 3J) or TLR4 (Fig 3K) with optimal concentrations of rMIC1 (S1A and S1C Fig) and

rMIC4 (S1B and S1D Fig) induced IL-8 production at levels that were higher than those

detected in the absence of stimuli (medium), and similar to those induced by the positive con-

trols. Finally, by means of a pull-down experiment, we demonstrated a physical interaction

between rMIC1 and TLR2 or TLR4 and between rMIC4 and TLR2 or TLR4 (Fig 3L).

Cell activation induced by rMIC1 and rMIC4 results from the interaction

of their CRDs with TLR2 and TLR4 N-glycans

We hypothesized that in order to trigger cell activation, rMIC1 and rMIC4 CRDs target oligosac-

charides of the ectodomains of TLR2 (four N-linked glycans) [25] and TLR4 (nine N-linked gly-

cans) [30]. This hypothesis was tested by stimulating BMDCs (Fig 4A) and BMDMs (Fig 4B) from

WT mice with intact rMIC1 and rMIC4 or with the mutated forms of these microneme proteins,

namely rMIC1-T126A/T220A and rMIC4-K469M, which lack carbohydrate binding activity [11,

18, 27]. IL-12 levels in culture supernatants were lower upon stimulation with rMIC1-T126A/

T220A or rMIC4-K469M, showing that WT induction of cell activation requires intact rMIC1 and

rMIC4 CRDs. The same microneme proteins were used to stimulate TLR2-transfected HEK293T

cells (Fig 4C), and similarly, lower IL-8 production was obtained in response to mutated rMIC1 or

rMIC4 compared to that seen in response to intact proteins. These observations demonstrated

that rMIC1 and rMIC4 CRDs are also necessary for inducing HEK cell activation.

We used an additional strategy to examine the ability of rMIC1 and rMIC4 to bind to TLR2

N-glycans. In this approach, HEK cells transfected with the fully N-glycosylated TLR2 ectodo-

main or with the TLR2 glycomutants [25] were stimulated with a control agonist (FSL-1) or

with rMIC1 or rMIC4. HEK cells transfected with any TLR2 form, except those expressing

totally unglycosylated TLR2 (mutant Δ1,2,3,4), were able to respond to FSL-1 (Fig 4D), a find-

ing that is consistent with the previous report that the Δ1,2,3,4 mutant is not secreted by

HEK293T cells [25]. Cells transfected with TLR2 lacking only the first or the third N-glycan

(mutant Δ1; Δ3) responded to all stimuli. The response to the rMIC1 stimulus was significantly

reduced in cells transfected with five different TLR2 mutants, lacking some combination of the

second, third, and fourth N-glycans (Fig 4D). Moreover, rMIC4 stimulated IL-8 production

was significantly reduced in cells transfected with the mutants lacking some combination of

the third and fourth N-glycans (Fig 4D).

These results indicate that T. gondii MIC1 and MIC4 use their CRDs to induce TLR2- and

TLR4-mediated cell activation. Among the TLR2 N-glycans, the rMIC1 CRD likely targets the

controls. IL-12p40 levels were measured by ELISA. (J and K) Transfected HEK293T cells expressing TLR2 were stimulated with rMIC1 (750 nM) or rMIC4 (500 nM),

and rMIC1 (200 nM) or rMIC4 (160 nM) for HEK cells expressing TLR4, for 24 h. FSL-1 (100 ng/mL) and LPS (100 ng/mL) were used as positive controls. IL-8 levels

were measured by ELISA. (L) The interaction between rMICs and TLRs was evaluated by western blot. HEK293T cells transiently expressing TLR2-FLAG and

TLR4-FLAG were lysed and incubated with His-rMIC1 (rMIC1His) or His-rMIC4 (rMIC4His). His-rMICs were subjected to Ni2+-affinity resin pull-down (lanes 6 to 9)

and analysed for TLR2 and TLR4 binding by protein blotting with antibodies specific for FLAG-tag and then for rMIC (IgY, polyclonal). For these assays, rMIC1 and

rMIC4 were passed through polymyxin B column, followed by incubation with polymyxin B sulphate salt media preparation that was added to the culture (see Material

and Methods). Data in (A-K) are expressed as mean ±S.D. of triplicate wells and significance was calculated with ANOVA followed by Bonferroni’s multiple

comparisons test. �p<0.05. Data are representative of three (A-K) and two (L) independent experiments.

https://doi.org/10.1371/journal.ppat.1007871.g003
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Fig 4. The cellular activation induced by rMICs via TLRs depends on carbohydrate recognition. (A) Bone marrow-derived macrophages and (B) bone marrow-

derived dendritic cells from C57BL/6 mice and (C) transfected HEK293T cells expressing fully glycosylated TLR2 were stimulated with rMIC1 (WT) and rMIC4

(WT) or with their mutated forms, rMIC1-T126A/T220A and rMIC4-K469M, 5 μg/mL of each, for 48 h. LPS (100 ng/mL) and FSL-1 (100 ng/mL) were used as

positive controls. IL-12p40 and IL-8 levels were measured by ELISA. (D) HEK293T cells expressing fully glycosylated TLR2 (with 4 N-glycans, WT) or glycosylation

mutants of TLR2 (Δ-1; Δ-4; Δ-1,2; Δ-3,4; Δ-2,4; Δ-1,2,3; Δ-1,2,3,4) were stimulated with rMIC1 or rMIC4. FSL-1 (100 ng/mL) was used as positive control. IL-8 levels

were measured by ELISA. The statistical analysis compared fully glycosylated TLR2 (WT) and TLR2 mutants for the N-glycosylation sites for the same stimuli. For

these assays, rMIC1, rMIC1-T126A/T220A, rMIC4 and rMIC4-K469M were passed through polymyxin B column, followed by incubation with polymyxin B

sulphate salt media preparation that was added to the culture (see Material and Methods). Data are expressed as mean ±S.D. of triplicate wells and significance was

calculated with ANOVA followed by Bonferroni’s multiple comparisons test. �p<0.05. Data are representative of three independent experiments.

https://doi.org/10.1371/journal.ppat.1007871.g004
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second, third, and fourth glycan, whereas the rMIC4 CRD targets only the third and fourth.

Additionally, our findings suggested that TLR2 and TLR4 activation is required to enhance the

production of IL-12 by APCs following rMIC stimulation.

The IL-12 production during T. gondii in vitro infection depends partially

on MIC1 and MIC4 proteins and their ability to recognize carbohydrates

on APCs surface

Because IL-12 production is induced by rMICs that engage TLR2 and TLR4 N-glycans

expressed on innate immune cells, we investigated whether such production is impaired when

APCs are infected with T. gondii lacking MIC1 and/or MIC4 proteins, as well as comple-

mented strains expressing mutant versions of these proteins that fail to bind TLR2 or TLR4

carbohydrates. We generated Δmic1 and Δmic4 strains in an RH strain expressing GFP and

Luciferase using CRISPR/Cas9 to replace the endogenous MIC gene with the drug-selectable

marker HPT (HXGPRT–hypoxanthine-xanthine-guanine phosphoribosyl transferase) (Fig 5A

and 5B). We then complemented MIC deficient parasites with mutated versions expressing an

HA-tag, thus generating the Δmic1::MIC1-T126A/T220AHA or Δmic4::MIC4-K469MHA

strains (Fig 5A) that expressed endogenous levels of MIC1 and MIC4 as confirmed by Western

Blotting (Fig 5C).

IL-12 secretion by BMDCs and BMDMs infected with WT, Δmic1, Δmic1::MIC1-T126A/

T220A, Δmic4 and Δmic4::K469M parasites was assessed at 24 hours post infection. All mutant

strains (Δmic1, Δmic1::MIC1-T126A/T220A, Δmic4 and Δmic4::K469M) induced lower IL-12

secretion by BMDCs (Fig 5D) and BMDMs (Fig 5E) compared to that induced by WT para-

sites, indicating that engagement of TLR2 and TLR4 cell surface receptors by the MIC lectin-

specific activity led to an early release of IL-12.

Using flow cytometry, we confirmed that parasites deficient in MIC1or MIC4, or mutated

in their carbohydrate recognition domain resulted in lower intracellular IL-12 production

than WT infected BMDCs (Fig 5F–5H). Interestingly, the Toxo+ BMDCs presented the same

level of intracellular IL-12, independent of the T. gondii strain infected (Fig 5F and 5H).

Whereas the Toxo- BMDCs produced less IL-12 when they were infected with knockout or

CRD-mutated T. gondii compared to WT-infected cells (Fig 5G and 5H). Taken altogether,

these results indicate that MIC1 and MIC4 induce IL-12 production in innate immune cells

during in vitro T. gondii infection. It is known that other parasite factors act as IL-12 inducers,

such as profilin, which is a TLR11 and TLR12 agonist [29, 31], or GRA7 [32], GRA15 [33], and

GRA24 [34], which directly trigger intracellular signalling pathways in a TLR-independent

manner, and these likely account for the majority of IL-12 released after 24 hours of intracellu-

lar infection.

MIC1, but not MIC4, contributes to the cytokine storm and acute death

during in vivo murine infection with T. gondii
Given the importance of MIC1 and MIC4 as lectins that engage TLR2 and TLR4 N-glycans to

induce increased levels of IL-12 release during T. gondii in vitro infection, we investigated the

biological relevance of these proteins during in vivo infection. Mice were injected with 50

tachyzoites of RH WT, Δmic1, Δmic1::MIC1-T126A/T220A, Δmic4 and Δmic4::MIC4-K469M

strains into the peritoneum of CD-1 outbred mice, a lethal dose that causes acute mortality.

The survival curve showed that parasites deficient in MIC1 (Δmic1 group) or mutated to

remove MIC1 lectin binding activity (Δmic1::MIC1-T126A/T220A group) were less virulent,

resulting in a slight, but significant (p = 0.0017) increase in mouse survival (12 days post-infec-

tion) compared to WT infected mice that all succumbed to infection by day 10 (Fig 6A). This
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Fig 5. The IL-12 production during T. gondii in vitro infection partially depends on MICs and their ability to recognize carbohydrates on APCs surface. (A)

Schematic representation of knockout and complementation constructs for MIC1 and MIC4 loci. The endogenous loci were disrupted using the hypoxanthine-

xanthine-guanine phosphoribosyl transferase (HPT)-selectable marker and CRISPR methodology. (B) PCR analysis for MIC1 and MIC4 loci of gDNA from parental

(WT RH-Δku80/Δhpt-GFP/Luc) and knockout (RH-Δku80/Δmic1-GFP/Luc and RH-Δku80/Δmic4-GFP/Luc) strains. (C) Western blot analysis of an equal loading of

whole cell lysates corresponding to 3 Δ 106 tachyzoites (1 x 108/mL) from WT, Δmic1, Δmic1::MIC1-T126A/T220A, Δmic4 and Δmic4::K469M parasites. The

membrane was probed with anti-MIC1 (IgY, 1:20,000) and anti-MIC4 (IgY, 1:8,000). (D) Bone marrow-derived dendritic cells (BMDCs) and (E) Bone marrow-
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was not the result of a difference in parasite load, which was equivalent across all T. gondii-
infected mice at Day 5 (Fig 6D and 6I). Whereas, the absence of the MIC4 gene or MIC4 lectin

activity did not change the survival curve (Fig 6E) indicating that MIC4 is less relevant than

MIC1 during in vivo infection.

Acute mortality in CD-1 mice infected with Type I T. gondii is related to the induction of a

cytokine storm, mediated by high levels of IFN-γ production. Thus, we measured systemic lev-

els of IFN-γ and IL-12 in mice infected with WT, Δmic1, Δmic1::MIC1-T126A/T220A, Δmic4
and Δmic4::MIC4-K469M strains. According to Kugler et al. (2013), the peak of systemic IL-

12p40 and IFN-γ during ME49-T. gondii infection is between days 5–6 post-infection, there-

fore, we measured these cytokines in the serum of CD-1-infected mice at day 5. Mice infected

with Δmic1 or Δmic1::MIC1-T126A/T220A strains had 3–5 fold lower systemic levels of IL-12

(Fig 6B; p = 0.016) and IFN-γ (Fig 6C; p�0.0002) than WT infected mice. In contrast, mice

infected with parasites lacking the MIC4 gene, or those expressing the mutant version of MIC4

showed no difference in IL-12 (Fig 6F) or IFN-γ (Fig 6G) compared to WT infected mice.

Hence, only MIC1 altered systemic levels of key cytokines induced during T. gondii in vivo
infection, and mice survived longer with lower systemic levels of cytokines typically associated

with acute mortality.

MIC1 wild type complemented strain restores the cytokine storm and acute

mortality kinetics during in vivo infection with T. gondii
To formally show that MIC1 alters systemic levels of pro-inflammatory cytokines associated

with acute mortality, we complemented Δmic1 parasites at the endogenous locus with a Type I

allele of MIC1 expressing an HA tag (MIC1HA). Western blotting for either MIC1 or HA

expression showed WT levels of MIC1 expression in the complemented parasites Δmic1::

MIC1HA (Fig 7A). The complemented strain restored WT virulence kinetics during in vivo
infection and all mice died acutely, in contrast to Δmic1 or Δmic1::MIC1-T126A/T220A

parasites, that had a slight, but significant delay in their acute mortality kinetics (Fig 7B;

p = 0.0082). Systemic levels of IFN-γ (Fig 7C) and parasite load (Fig 7D and 7E) from mice

infected with the complemented strain were indistinguishable from WT. To better resolve the

apparent difference in acute mortality, parasites were injected into the right footpad to moni-

tor mouse weight loss and survival kinetics [35]. Mice infected locally in the footpad with

Δmic1 survived significantly longer, or did not die (Fig 7G; p = 0.0002), and lost less weight

during acute infection (Fig 7F) than those infected with WT or Δmic1::MIC1 complemented

parasites. Further, mice infected with Δmic1::MIC1-T126A/T220A parasites that fail to bind

TLR2 and TLR4 N-glycans in vivo also lost less weight and survived significantly longer than

WT or Δmic1::MIC1 complemented parasites (Fig 7F and 7G). In conclusion, our results sug-

gest that MIC1 operates in two distinct ways; as an adhesin protein that promotes parasite

infection competency, and as a lectin that engages TLR N-glycans to induce a stronger proin-

flammatory immune response, one that is unregulated and results in acute mortality upon RH

infection of CD-1 mice.

derived macrophages (BMDMs) from C57BL/6 were infected with WT, Δmic1, Δmic1::MIC1-T126A/T220A, Δmic4 and Δmic4::K469M strains (MOI 3). LPS (100 ng/

mL) was used as positive control. Cell-culture supernatants were collected 24 hours post-infection and the IL-12p40 production was analyzed by ELISA. (F and G)

Frequency of IL-12p40+ BMDCs (CD11b+IL-12p40+) after 20–24 hours of in vitro infection with WT, Δmic1, Δmic1::MIC1-T126A/T220A, Δmic4 and Δmic4::K469M

strains (MOI 1). Brefeldin A was added to the culture for 8 hours. LPS (100 ng/mL) was used as positive control. (H) Representative dot plots showing IL-12p40

staining in T. gondii infected or non-infected (SAG1+ or SAG1-) CD11b+ cells after 20–24 hours of in vitro infection with WT, Δmic1, Δmic1::MIC1-T126A/T220A,

Δmic4 and Δmic4::K469M strains (MOI 1). Brefeldin A was added to the culture for 8 hours. LPS (100 ng/mL) was used as positive control. Data are expressed as mean

±S.D. of triplicate wells and significance was calculated with ANOVA followed by Bonferroni’s multiple comparisons test. �p<0.05. Data are representative of three (D

and E) and two (F-H) independent experiments.

https://doi.org/10.1371/journal.ppat.1007871.g005
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Discussion

In this study, we report a new function for MIC1 and MIC4, two T. gondii microneme proteins

involved in the host-parasite relationship. We show that rMIC1 and rMIC4, by interacting

directly with N-glycans of TLR2 and TLR4, trigger a noncanonical carbohydrate recognition-

dependent activation of innate immune cells. This results in IL-12 secretion and the produc-

tion of IFN-γ, a pivotal cytokine that mediates parasite clearance and the development of a

protective T cell response [19, 22], but in some cases promotes a dysregulated cytokine storm

and acute mortality, as seen during RH infection of CD-1 mice [36]. This MIC-TLR activation

event explains, at least in part, the resistance conferred by rMIC1 and rMIC4 administration

against experimental toxoplasmosis [20, 21].

T. gondii tachyzoites express microneme proteins either on their surface or secrete them in

their soluble form. These proteins may form complexes, such as those of MIC1, MIC4, and

MIC6 (MIC1/4/6), in which MIC6 is a transmembrane protein that anchors the two soluble

molecules MIC1 and MIC4 [8]. Genetic disruption of each one of these three genes does not

interfere with parasite survival [8] nor its interaction with, and attachment to, host cells [10];

however, MIC1 has been shown to play a role in invasion and contributes to virulence in mice

[10]. We previously isolated soluble MIC1/4, a lactose-binding complex from soluble T. gondii
antigens (STAg) [17], and its lectin activity was confirmed by the ability of MIC1 to bind sialic

Fig 6. MIC1 lectin activity, but not MIC4, contributes to virulence in mice during in vivo infection with T. gondii. CD-1 mice were infected intraperitoneally

with RH engineered strains of T. gondii at an infectious dose of 50 tachyzoites/mouse (n = 6). Mortality kinetics of mice infected with (A) WT, Δmic1 and Δmic1::

MIC1-T126A/T220A strains or (E) WT, Δmic4 and Δmic4::MIC4-K469M parasites. At day 5 post-infection the sera were collected for measuring systemic (B and F)

IL-12p40 and (C and G) IFN-γ. (D, H and I) Bioluminescent detection in photons/sec/cm2 shows parasite burden 5 days post-infection. Data are expressed as mean

±S.D. and significance was calculated with ANOVA followed by Bonferroni’s multiple comparisons test. �p<0.05. Data are representative of three independent

experiments, with total n = 16.

https://doi.org/10.1371/journal.ppat.1007871.g006

MIC1 and MIC4 regulate host innate immune priming by interaction with TLR2 and 4

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007871 June 21, 2019 12 / 24

https://doi.org/10.1371/journal.ppat.1007871.g006
https://doi.org/10.1371/journal.ppat.1007871


Fig 7. MIC1 wild type complemented strain restores virulence in mice during in vivo infection with T. gondii. (A) Western blot analysis of an equal loading of

whole cell lysates corresponding to 3 × 106 tachyzoites (1 x 108/mL) from WT, Δmic1, Δmic1::MIC1-T126A/T220A and Δmic1::MIC1 parasites. The membrane was

probed with anti-MIC1 (IgY, 1:20,000), anti-HA (rabbit, 1:5,000) and anti-SAG1 (rabbit, 1:10,000). (B) Mortality kinetics of CD-1 mice infected intraperitoneally with

WT, Δmic1, Δmic1::MIC1-T126A/T220A and Δmic1::MIC1 at an infectious dose of 50 tachyzoites/mouse (n = 5). (C) At day 5 post-infection the sera were collected

for measuring systemic IFN-γ. (D and E) Bioluminescent detection in photons/sec/cm2 shows parasite burden 5 days post-infection. (F and G) Body mass and

mortality kinetics of CD-1 mice infected subcutaneously with WT, Δmic1, Δmic1::MIC1-T126A/T220A and Δmic1::MIC1 using an infectious dose of 104 tachyzoites/

mouse. Data are expressed as mean ±S.D. and significance were calculated with ANOVA followed by Bonferroni’s multiple comparisons test. �p<0.05. Data are

representative of two independent experiments, total n = 10.

https://doi.org/10.1371/journal.ppat.1007871.g007

MIC1 and MIC4 regulate host innate immune priming by interaction with TLR2 and 4

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007871 June 21, 2019 13 / 24

https://doi.org/10.1371/journal.ppat.1007871.g007
https://doi.org/10.1371/journal.ppat.1007871


acid [9] and MIC4 to β-galactose [18]. We also reported that MIC1/4 stimulates adherent

splenic murine cells to produce IL-12 at levels as high as those induced by STAg [20]. Recently,

it was also demonstrated that MIC1, MIC4 and MIC6 are capable of inducing IFN-γ produc-

tion from memory T cells in mice chronically infected with T. gondii [37]. Our data herein

shows that MIC1/4 binds to and activates TLRs via a novel lectin-carbohydrate interaction,

rather than by its cognate receptor-ligand binding groove, establishing precisely how the inter-

actions of microneme protein(s) with defined glycosylated receptor(s) expressed on the host

cell surface are capable of altering innate priming of the immune system.

To formally demonstrate the MIC1/MIC4 binding to glycosylated TLR cell surface recep-

tors we generated recombinant forms of MIC1 and MIC4, which retained their specific sialic

acid- and β-galactose-binding properties as indicated by the results of their binding to fetuin

and asialofetuin as well as the glycoarray assay. Both recombinant MIC1 and MIC4 triggered

the production of proinflammatory and anti-inflammatory cytokines in DCs and macrophages

via their specific recognition of TLR2 and TLR4 N-glycans, as well as by signaling through

MyD88 and, partially, TRIF. Importantly, our results establish how binding of rMIC1 and

rMIC4 to specific N-glycans present on TLR2 and TLR4 induces cell activation through this

novel lectin-carbohydrate interaction. The ligands for MIC1 and MIC4, α2-3-sialyllactosamine

and β1-3- or β1-4-galactosamine, respectively, are terminal N-glycan residues found on a

wide-spectrum of mammalian cell surface-associated glycoconjugates. Thus, it is possible that

additional lectin-carbohydrate interactions may exist between MIC1/4 and other cell surface

receptors beyond TLR2 and TLR4. Such interactions likely evolved to facilitate adhesion and

promote the infection competency of a wide-variety of host cells infected by T. gondii, further

underscoring how these proteins exist as important virulence factors [10] beyond immune

priming. However, it is the immunostimulatory capacity of rMIC1 and rMIC4 to target N-gly-

cans on the ectodomains of TLR2 and TLR4 that likely rationalizes how these microneme pro-

teins function as a double-edged sword during T. gondii infection. Mice infected by Type I

strains die acutely due to a failure to regulate the cytokine storm induced by high levels of IL-

12 and IFN-γ[38, 39]. In this study, T. gondii Type I strains engineered to be deficient in MIC1

or defective in binding TLR2/4 N-glycans lost less weight, survived significantly longer, and

produced less IL-12 and IFN-γ. Future studies that test whether the immunostimulatory effect

of MIC1/4 alters the pathogenesis and cyst burden of Type II strains of T. gondii should be

pursued to formally demonstrate that Type II parasites rely on MIC1/4 induction of

Th1-biased cytokines in order to limit tachyzoite proliferation and induce a life-long persistent

bradyzoite infection.

Several pathogens are known to synthesize lectins, which are most frequently reported to

interact with glycoconjugates on host cells to promote adherence, invasion, and colonization

of tissues [40–43]. Nonetheless, there are currently only a few examples of lectins from patho-

gens that recognize sugar moieties present in TLRs and induce IL-12 production by innate

immune cells. Paracoccin, a GlcNAc-binding lectin from the human pathogen Paracocci-
dioides brasiliensis, induces macrophage polarization towards the M1 phenotype [44] and the

production of inflammatory cytokines through its interaction with TLR2 N-glycans [45]. Fur-

thermore, the galactose-adherence lectin from Entamoeba histolytica activates TLR2 and

induces IL-12 production [46]. In addition, the mammalian soluble lectin SP-A, found in lung

alveoli, interacts with the TLR2 ectodomain [47]. The occurrence of cell activation and IL-12

production as a consequence of the recognition of TLR N-glycans has also been demonstrated

using plant lectins with different sugar-binding specificities [48, 49].

The binding of MIC1 and MIC4, as well as the lectins above, to TLR2 and TLR4 may be

associated with the position of the specific sugar residue present on the receptor’s N-glycan

structure. Since the N-glycan structures of TLR2 and TLR4 are still unknown, we assume that
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the targeted MIC1 and MIC4 residues, e.g. sialic acid α2-3-linked to galactose β1-3- and β1-

4-galactosamines, are appropriately placed in the receptors’ oligosaccharides to allow the rec-

ognition phenomenon and trigger the activation of innate immune responses.

Several T. gondii proteins have previously been shown to activate innate immune cells in a

TLR-dependent manner, but independent of sugar recognition. This is the case for profilin

(TgPRF), which is essential for the parasite’s gliding motility based on actin polymerization; it is

recognized by TLR11 [29] and TLR12 [31, 50]. In addition, T. gondii-derived glycosylphosphati-

dylinositol anchors activate TLR2 and TLR4 [51], and parasite RNA and DNA are ligands for

TLR7 and TLR9, respectively [19, 22, 50]. The stimulation of all of these TLRs culminate in

MyD88 activation which results in IL-12 production [19, 22]. Several other T. gondii secreted

effector proteins regulate the production of proinflammatory cytokines such as IL-12, indepen-

dent of TLRs. For example, the dense granule protein 7 (GRA7) induces MyD88-dependent

NF-kB activation, which facilitates IL-12, TNF-α, and IL-6 production [32]. MIC3 is reported

to induce TNF-α secretion and macrophage M1 polarization [52], whereas GRA15 expressed

by Type II strains activates NF-kB, promoting the release of IL-12 [33], and GRA24 triggers the

autophosphorylation of p38 MAP kinase and proinflammatory cytokine and chemokine secre-

tion [34]. In contrast, TgIST interferes with IFN-γ induction by actively inhibiting STAT1-de-

pendent proinflammatory gene expression indicating that the parasite is capable of both

activating as well as inhibiting effector arms of the host immune response to impact its patho-

genesis in vivo [53]. Thus, multiple secretory effector proteins of T. gondii, including MIC1 and

MIC4, appear to work in tandem to ultimately promote protective immunity by either inducing

or dampening the production of proinflammatory cytokines, the timing of which is central to

controlling both the parasite’s proliferation during the acute phase of infection and the induc-

tion of an effective immune response capable of establishing a chronic infection [19].

Our results regarding soluble MIC1 and MIC4 confirmed our hypothesis that these two

effector proteins induce the innate immune response against T. gondii through TLR2- and

TLR4-dependent pathways. This is consistent with previous studies that highlight the impor-

tance of TLR signaling, as well as the MyD88 adapter molecule, as essential for conferring

resistance to T. gondii infection [29, 51, 54, 55]. In addition, we show that both MIC1 and

MIC4 on the parasite surface contribute to the secretion of IL-12 by macrophages and DCs

during in vitro infection, but only MIC1 plays a significant role during in vivo infection, dem-

onstrated by its ability to promote a dysregulated induction of systemic levels of IFN-γ and a

proinflammatory cytokine storm that leads to acute mortality during murine infection.

Methods

Ethics statement

All experiments were conducted in accordance to the Brazilian Federal Law 11,794/2008 estab-

lishing procedures for the scientific use of animals, and State Law establishing the Animal Pro-

tection Code of the State of Sao Paulo. All efforts were made to minimize suffering, and the

animal experiments were approved by the Ethics Committee on Animal Experimentation

(Comissão de Ética em Experimentação Animal—CETEA) of the Ribeirao Preto Medical

School, University of Sao Paulo (protocol number 065/2012), following the guidelines of the

National Council for Control of Animal Experimentation (Conselho Nacional de Controle de
Experimentação Animal—CONCEA).

Lac+ fraction and recombinant MIC1 and MIC4

The lactose-eluted (Lac+) fraction was obtained as previously reported [17, 21]. Briefly, the

total soluble tachyzoite antigen (STAg) fraction was loaded into a lactose column (Sigma-
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Aldrich, St. Louis, MO) and equilibrated with PBS containing 0.5 M NaCl. The material

adsorbed to the resin was eluted with 0.1 M lactose in equilibrating buffer and dialyzed against

ultrapure water. The obtained fraction was denoted as Lac+ and confirmed to contain MIC1

and MIC4. For the recombinant proteins, rMIC1 and rMIC4 sequences were amplified from

cDNA of the T. gondii strain ME49 with a 6-histidine tag added on the N-terminal, cloned

into pDEST17 vector (Gateway Cloning, Thermo Fisher Scientific Inc., Grand Island, NY),

and used to transform DH5α E. coli chemically competent cells for ampicillin expression selec-

tion, as described before [21]. The plasmids with rMIC1-T126A/T220A and rMIC4-K469M

were synthesized by GenScript (New Jersey, US) using a pET28a vector, and the MIC

sequences carrying the mutations were cloned between the NdeI and BamH I sites. All plas-

mids extracted from DH5α E. coli were transformed in E. coli BL21-DE3 chemically competent

cells to produce recombinant proteins that were then purified from inclusion bodies and

refolded by gradient dialysis, as described previously for rMIC1 and rMIC4 wild type forms

[21]. Endotoxin concentrations were measured in all protein samples using the Limulus Ame-

bocyte Lysate Kit–QCL-1000 (Lonza, Basel, Switzerland). The rMIC1, rMIC1-T126A/T220A,

rMIC4 and rMIC4-K469M contained 7.2, 3.2, 3.5 and 1.1 EU endotoxin/μg of protein, respec-

tively. Endotoxin was removed by passing over two polymyxin-B columns (Affi-Prep Poly-

myxin Resin; Bio-Rad, Hercules, CA). Additionally, prior to all in vitro cell-stimulation assays,

the proteins samples were incubated with 50 μg/mL of polymyxin B sulphate salt (Sigma-

Aldrich, St. Louis, MO) for 30 min at 37˚C to remove possible residual LPS.

Glycan array

The carbohydrate-binding profile of microneme proteins was determined by Core H (Consor-

tium for Functional Glycomics, Emory University, Atlanta, GA), using a printed glycan micro-

array, as described previously [56]. Briefly, rMIC1-Fc, rMIC4-Fc, and Lac+-Fc in binding

buffer (1% BSA, 150 mM NaCl, 2 mM CaCl2, 2 mM MgCl2, 0.05% (w/v) Tween 20, and 20

mM Tris-HCl, pH 7.4) were applied onto a covalently printed glycan array and incubated for 1

hour at 25˚C, followed by incubation with Alexa Fluor 488-conjugate (Invitrogen, Thermo

Fisher Scientific Inc., Grand Island, NY). Slides were scanned, and the average signal intensity

was calculated. The common features of glycans with stronger binding are depicted in Fig 1A.

The average signal intensity detected for all of the glycans was calculated and set as the

baseline.

Sugar-inhibition assay

Ninety-six-well microplates were coated with 1 μg/well of fetuin or asialofetuin, glycoproteins

diluted in 50 μL of carbonate buffer (pH 9.6) per well, followed by overnight incubation at

4˚C. Recombinant MIC1 or MIC4 proteins (both wild type (WT) and mutated forms), previ-

ously incubated or not with their corresponding sugars, i.e. α(2–3)-sialyllactose for MIC1 and

lacto-N-biose for MIC4 (V-lab, Dextra, LA, UK), were added into coated wells and incubated

for 2 h at 25˚C. After washing with PBS, T. gondii-infected mouse serum (1:50) was used as the

source of the primary antibody. The assay was then developed with anti-mouse peroxidase-

conjugated secondary antibody, and the absorbance was measured at 450 nm in a microplate-

scanning spectrophotometer (Power Wave-X; BioTek Instruments, Inc., Winooski, VT).

Mice and parasites

Female C57BL/6 (WT), MyD88-/-, TRIF-/-, TLR2-/-, TLR3-/-, TLR4-/-, double knockout (DKO)

TLR2-/-/TLR4-/-, TLR5-/-, and TLR9-/- mice (all from the C57BL/6 background), 8 to 12 weeks

of age, were acquired from the University of Sao Paulo—Ribeirao Preto campus animal facility,
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Ribeirao Preto, Sao Paulo, Brazil, and housed in the animal facility of the Department of Cell

and Molecular Biology—Ribeirão Preto Medical School, under specific pathogen-free condi-

tions. The TLR11-/-/TLR12-/- DKO mice were maintained at American Association of Labora-

tory Animal Care-accredited animal facilities at NIAID/NIH. For the in vivo infections, female

CD-1 outbred mice, 6 weeks of age were acquired from Charles River Laboratories, German-

town, MD, USA.

A clonal isolate of the T. gondii RH-Δku80/Δhpt strain was used to generate the GFP/Lucif-

erase strain, which was the recipient strain to generate the single-knockout parasites. The

GFP/Luc sequence was inserted into the UPRT locus of Toxoplasma by double crossover

homologous recombination using CRISPR/Cas-based genome editing and selected for FUDR

resistance to facilitate the targeted GFP/Luc gene cassette knock-in. The MIC1 and MIC4

genes were replaced by the drug-selectable marker hpt (hxgprt—hypoxanthine-xanthine-gua-

nine phosphoribosyl transferase) flanked by LoxP sites. For all gene deletions, 30 μg of guide

RNA was transfected along with 15 μg of a repair oligo. Parasites were transfected and selected

as previously described [57, 58]. For the MIC gene complementation, the sequence was ampli-

fied from RH genomic DNA with the addition of one copy of HA-tag sequence (TACCCAT

ACGATGTTCCAGATTACGCT) before the stop codon, and cloned into pCR2.1-TOPO vec-

tor, followed by site-directed mutagenesis using the Q-5 kit (New England Biolabs) in order

to generate point mutations into MIC1 (MIC1-T126A/T220A) and MIC4 (MIC4-K469M)

sequences. For transfections, 30 μg of guide RNA was transfected along with 20 μg of linear-

ized pTOPO vector containing the MIC mutated sequences.

Strains were maintained in human foreskin fibroblast (HFF) cells grown in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated foetal bovine

serum (FBS), 0.25 mM gentamicin, 10 U/mL penicillin, and 10 μg/mL streptomycin (Gibco,

Thermo Fisher Scientific Inc., Grand Island, NY).

Bone marrow-derived dendritic cells and macrophages

Bone marrows of WT, MyD88-/-, TRIF-/-, TLR2-/-, TLR3-/-, TLR4-/-, DKO TLR2-/-/TLR4-/-,

TLR5-/-, TLR9-/-, and DKO TLR11-/-/TLR12-/- mice were harvested from femurs and hind leg

bones. Cells were washed with RPMI medium and resuspended in RPMI medium with 10%

FBS, 10 U/mL penicillin, and 10 μg/mL streptomycin (Gibco). For dendritic cell (DC) differ-

entiation, we added 10 ng/mL of recombinant murine GM-CSF (Prepotech, Rocky Hill, NJ),

and 10 ng/mL murine recombinant IL-4 (eBioscience, San Diego, CA); for macrophage differ-

entiation, 30% of L929 conditioned medium was added to RPMI medium with 10% FBS. The

cells were cultured in 100 × 20 mm dish plates (Costar; Corning Inc., Corning, NY), supple-

mented with respective conditioned media at days 3 and 6 for DCs, and at day 4 for macro-

phages. DCs were incubated for 8–9 days and macrophages for 7 days; the cells were then

harvested and plated into 24-well plates at 5 × 105 cells/well for protein stimulations or T. gon-
dii infections, followed by ELISA. Cell purity was analyzed by flow cytometry. Eighty-five per-

cent of differentiated dentritic cells were CD11b+/CD11c+, while 94% of differentiated

macrophages were CD11b+.

HEK293T cells transfection

Human embryonic kidney 293T (HEK293T) cells, originally acquired from American Tissue

Culture Collection (ATCC, Rockville, MD), were used as an expression tool [59] for TLR2 and

TLR4 [45, 60]. The cells grown in DMEM supplemented with 10% FBS (Gibco), and were

seeded at 3.5 × 105 cells/mL in 96-well plates (3.5 × 104 cells/well) 24 h before transfection.

Then, HEK293T cells were transiently transfected (70–80% confluence) with human TLR2
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plasmids as described previously [25] or with CD14, CD36, MD-2 and TLR4 [61] using Lipo-

fectamine 2000 (Invitrogen) with 60 ng of NF-κB Luc, an NF-κB reporter plasmid, and 0.5 ng

of Renilla luciferase plasmid, together with 60 ng of each gene of single and multiple glycosyla-

tion mutants and of TLR2 WT genes [25]. After 24 h of transfection, the cells were stimulated

overnight with positive controls: P3C (Pam3CSK4; EMC Microcollections, Tübingen, Ger-

many), fibroblast stimulating ligand-1 (FSL-1; EMC Microcollections), or LPS Ultrapure

(standard LPS, E. coli 0111:B4; Sigma-Aldrich); or with the negative control for cell stimulation

(the medium). Cells transfected with empty vectors, incubated either with the medium or with

agonists (FSL-1 or P3C), were also assayed; negative results were required for each system

included in the study. IL-8 was detected in the culture supernatants. The absence of Myco-

plasma contamination in the cell culture was certified by indirect fluorescence staining as

described previously [62].

Cytokine measurement

The quantification of human IL-8 and mouse IL-12p40, IL-6, TNF-α, and IL-10 in the super-

natant of the cultures was performed by ELISA, following the manufacturer’s instructions

(OptEIA set; BD Biosciences, San Jose, CA). Human and murine recombinant cytokines were

used to generate standard curves and determine cytokine concentrations. The absorbance was

read at 450 nm using the Power Wave-X spectrophotometer (BioTek Instruments).

TLR2-FLAG and TLR4-FLAG plasmids

The pcDNA4/TO-FLAG plasmid was kindly provided by Dr. Dario Simões Zamboni. The

pcDNA4-FLAG-TLR2 and pcDNA4-FLAG-TLR4 plasmids were constructed as follows. RNA

from a P388D1 cell line (ATCC, Rockville, MD) was extracted and converted to cDNA with

Maxima H Minus Reverse Transcriptase (Thermo-Fisher Scientific, Waltham, MA USA) and

oligo(dT). TLR2 and TLR4 were amplified from total cDNA from murine macrophages by

using Phusion High-Fidelity DNA Polymerase and the phosphorylated primers TLR2_F:

ATGCTACGAGCTCTTTGGCTCTTCTGG, TLR2_R: CTAGGACTTTATTGCAGTTCTCA

GATTTACCCAAAAC, TLR4_F: TGCTTAGGATCCATGATGCCTCCCTGGCTCCTG and

TLR4_R: TGCTTAGCGGCCGCTCAGGTCCAAGTTGCCGTTTCTTG. The fragments were

isolated from 1% agarose/Tris-acetate-ethylenediaminetetraacetic acid gel, purified with Gene-

JET Gel Extraction Kit (Thermo-Fisher Scientific), and inserted into the pcDNA4/TO-FLAG

vector by using the restriction enzymes sites for NotI and XbaI (Thermo-Fisher Scientific) for

TLR2, and BamHI and NotI (Thermo-Fisher Scientific) for TLR4. Ligation reactions were per-

formed by using a 3:1 insert/vector ratio with T4 DNA Ligase (Thermo-Fisher Scientific) and

transformed into chemically competent Escherichia coli DH5α cells. Proper transformants

were isolated from LB agar medium plates under ampicillin selection (100 μg/mL) and ana-

lyzed by PCR, restriction fragment analysis, and DNA sequencing. All reactions were per-

formed according to the manufacturer’s instructions.

Pull-down assay and western Blot

We used the lysate of HEK293T cells transfected (70–80% confluence) with plasmids contain-

ing TLR2-FLAG or TLR4-FLAG. After 24 h of transfection, the HEK cells were lysed with a

non-denaturing lysis buffer (20 mM Tris, pH 8.0, 137 mM NaCl, and 2 mM EDTA) supple-

mented with a protease inhibitor (Roche, Basel, Switzerland). After 10 min of incubation on

ice, the lysate was subjected to centrifugation (16,000 g, at 4˚C for 5 min). The protein content

in the supernatant was quantified by the BCA method, aliquoted, and stored at -80˚C. For the

pull-down assay, 100 μg of the lysate from TLR2-FLAG- or TLR4-FLAG-transfected HEK cells
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were incubated with 10 μg of rMIC1 or rMIC4 overnight at 4˚C. Since these proteins had a his-

tidine tag, the samples were purified on nickel-affinity resin (Ni Sepharose High Performance;

GE Healthcare, Little Chalfont, UK) after incubation for 30 min at 25˚C and centrifugation of

the fraction bound to nickel to pull down the TgMIC-His that physically interacted with

TLR-FLAG (16,000 g, 4˚C, 5 min). After washing with PBS, the samples were resuspended in

100 μL of SDS loading dye with 5 μL of 2-mercaptoethanol, heated for 5 min at 95˚C, and

25 μL of total volume was run on 10% SDS-PAGE. After transferring to a nitrocellulose mem-

brane (Millipore, Billerica, MA), immunoblotting was performed by following the manufac-

turer’s protocol. First, the membrane was incubated with anti-FLAG monoclonal antibodies

(1:2,000) (Clone G10, ab45766, Sigma-Aldrich) to detect the presence of TLR2 or TLR4. The

same membrane was then subjected to secondary probing and was developed with anti-

TgMIC1 (IgY; 1:20,000) or anti-TgMIC4 (IgY; 1:8,000) polyclonal antibodies and followed by

incubation with secondary polyclonal anti-chicken IgY-HRP (1:4,000) (A9046, Sigma-Aldrich)

to confirm the presence of rMIC1 and rMIC4.

In vitro infections

Bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages

(BMDMs) were infected with WT (Δku80/Δhpt), Δmic1, Δmic1::MIC1-T126A/T220A, Δmic4
and Δmic4::K469M strains (Type I, RH background) recovered from T25 flasks with HFF cell

cultures. The T25 flasks were washed with RPMI medium to completely remove parasites, and

the collected material was centrifuged for 5 min at 50 g to remove HFF cell debris. The result-

ing pellet was discarded, and the supernatant containing the parasites was centrifuged for 10

min at 1,000 g and resuspended in RPMI medium for counting and concentration adjust-

ments. BMDCs and BMDMs were dispensed in 24-well plates at 5 × 105 cells/well (in RPMI

medium supplemented with 10% FBS), followed by infection with 3 parasites per cell (multi-

plicity of infection, MOI 3). Then, the plate was centrifuged for 3 min at 200 g to synchronize

the contact between cells and parasites and incubated at 37˚C. The supernatants were collected

at 24 hous after infection for quantification of IL-12p40.

In vivo infections and Luciferase assay

Six-week-old female CD-1 outbred mice were infected by intraperitoneal injection with 50

tachyzoites of RH engineered strains diluted in 500 μl of phosphate-buffered saline. The mice

were weighed daily and survival was evaluated.

Bioluminescent detection of firefly luciferase activity was performed at day 5 post-infection

using an IVIS BLI system from Xenogen to monitor parasite burden. Mice were injected with

3 milligrams (200 μl) of D-luciferin (PerkinElmer) substrate, and after 5 minutes the mice

were imaged for 300 seconds to detect the photons emitted.

Statistical analysis

The data were plotted and analysed using GraphPad Prism 7.0 software (GraphPad, La Jolla,

CA). Statistical significance of the obtained results was calculated using analysis of variance

(One-way ANOVA) followed by Bonferroni’s multiple comparisons test. Differences were

considered significant when the P value was <0.05.

Supporting information

S1 Fig. Effect of different concentrations of rMIC1 and rMIC4 on the transfected HEK

cells. HEK293T cells expressing (A and B) TLR2 or (C and D) TLR4 were stimulated with
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increasing concentrations of (A and C) rMIC1 and (B and D) rMIC4 for 24 h. FSL-1 (100 ng/

mL) LPS (100 ng/mL) were used as positive controls. IL-8 levels were measured by ELISA.

Data are expressed as mean ±S.D. of triplicate wells and significance was calculated with

ANOVA. �p<0.05. Data are representative of two independent experiments.

(TIFF)

Acknowledgments

We are grateful to Dr. Tiago Wilson Patriarca Mineo (Universidade Federal de Uberlândia—

MG) for kindly provided us the wild type Toxoplasma gondii (RH); to Dr. Larissa Dias Cunha

and Dr. Dario Simões Zamboni (Universidade de São Paulo—SP) for help with double knock-

out TLR2/TLR4 mice generation and for kindly provide the pcDNA4/TO-FLAG plasmid; to

Izaı́ra Tincani Brandão and Ana Paula Masson for technical assistance with endotoxin mea-

surements; to Patricia Vendrusculo, Sandra Thomaz and Sara Hieny for all technical support

essential for this study.

Author Contributions

Conceptualization: Aline Sardinha-Silva, Maria Cristina Roque-Barreira.

Data curation: Aline Sardinha-Silva.

Formal analysis: Aline Sardinha-Silva, Diego L. Costa.

Funding acquisition: Aline Sardinha-Silva, Michael E. Grigg, Maria Cristina Roque-Barreira.

Investigation: Aline Sardinha-Silva.
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nandes, Dominique Soldati-Favre, Michael E. Grigg.

Project administration: Aline Sardinha-Silva, Michael E. Grigg, Maria Cristina Roque-

Barreira.

Resources: Damien Jacot, Nicholas J. Gay, Alan Sher, Dragana Jankovic, Dominique Soldati-

Favre, Michael E. Grigg, Maria Cristina Roque-Barreira.

Supervision: Michael E. Grigg, Maria Cristina Roque-Barreira.

Validation: Aline Sardinha-Silva.

Visualization: Aline Sardinha-Silva, Diego L. Costa.

Writing – original draft: Aline Sardinha-Silva.

Writing – review & editing: Aline Sardinha-Silva, Alan Sher, Dragana Jankovic, Dominique

Soldati-Favre, Michael E. Grigg, Maria Cristina Roque-Barreira.

References
1. Dubey JP. Toxoplasmosis of animals and humans. 2nd ed. Boca Raton, FL, USA: CRC Press; 2009.

336 p.

2. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness

acquired in the United States—major pathogens. Emerging infectious diseases. 2011; 17(1):7–15.

Epub 2011/01/05. https://doi.org/10.3201/eid1701.P11101 PMID: 21192848; PubMed Central PMCID:

PMC3375761.

MIC1 and MIC4 regulate host innate immune priming by interaction with TLR2 and 4

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007871 June 21, 2019 20 / 24

https://doi.org/10.3201/eid1701.P11101
http://www.ncbi.nlm.nih.gov/pubmed/21192848
https://doi.org/10.1371/journal.ppat.1007871


3. Carruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma

gondii accompanies invasion of human fibroblasts. European journal of cell biology. 1997; 73(2):114–

23. Epub 1997/06/01. PMID: 9208224.

4. Carruthers VB, Giddings OK, Sibley LD. Secretion of micronemal proteins is associated with toxo-

plasma invasion of host cells. Cellular microbiology. 1999; 1(3):225–35. Epub 2001/02/24. PMID:

11207555.

5. Lovett JL, Sibley LD. Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells.

Journal of cell science. 2003; 116(Pt 14):3009–16. Epub 2003/06/05. https://doi.org/10.1242/jcs.00596

PMID: 12783987.

6. Tomley FM, Soldati DS. Mix and match modules: structure and function of microneme proteins in api-

complexan parasites. Trends in parasitology. 2001; 17(2):81–8. Epub 2001/03/03. PMID: 11228014.

7. Carruthers VB, Tomley FM. Microneme proteins in apicomplexans. Sub-cellular biochemistry. 2008;

47:33–45. Epub 2008/06/03. PMID: 18512339; PubMed Central PMCID: PMC2847500.

8. Reiss M, Viebig N, Brecht S, Fourmaux MN, Soete M, Di Cristina M, et al. Identification and characteri-

zation of an escorter for two secretory adhesins in Toxoplasma gondii. The Journal of cell biology. 2001;

152(3):563–78. Epub 2001/02/07. https://doi.org/10.1083/jcb.152.3.563 PMID: 11157983; PubMed

Central PMCID: PMC2196004.

9. Friedrich N, Santos JM, Liu Y, Palma AS, Leon E, Saouros S, et al. Members of a novel protein family

containing microneme adhesive repeat domains act as sialic acid-binding lectins during host cell inva-

sion by apicomplexan parasites. The Journal of biological chemistry. 2010; 285(3):2064–76. Epub

2009/11/11. https://doi.org/10.1074/jbc.M109.060988 PMID: 19901027; PubMed Central PMCID:

PMC2804363.

10. Cerede O, Dubremetz JF, Soete M, Deslee D, Vial H, Bout D, et al. Synergistic role of micronemal pro-

teins in Toxoplasma gondii virulence. The Journal of experimental medicine. 2005; 201(3):453–63.

Epub 2005/02/03. https://doi.org/10.1084/jem.20041672 PMID: 15684324; PubMed Central PMCID:

PMC2213027.

11. Blumenschein TM, Friedrich N, Childs RA, Saouros S, Carpenter EP, Campanero-Rhodes MA, et al.

Atomic resolution insight into host cell recognition by Toxoplasma gondii. The EMBO journal. 2007; 26

(11):2808–20. Epub 2007/05/12. https://doi.org/10.1038/sj.emboj.7601704 PMID: 17491595; PubMed

Central PMCID: PMC1888667.

12. Monteiro VG, Soares CP, de Souza W. Host cell surface sialic acid residues are involved on the process

of penetration of Toxoplasma gondii into mammalian cells. FEMS microbiology letters. 1998; 164

(2):323–7. Epub 1998/07/31. https://doi.org/10.1111/j.1574-6968.1998.tb13105.x PMID: 9682481.

13. Ortega-Barria E, Boothroyd JC. A Toxoplasma lectin-like activity specific for sulfated polysaccharides is

involved in host cell infection. The Journal of biological chemistry. 1999; 274(3):1267–76. Epub 1999/

01/09. https://doi.org/10.1074/jbc.274.3.1267 PMID: 9880495.

14. Carruthers VB, Hakansson S, Giddings OK, Sibley LD. Toxoplasma gondii uses sulfated proteoglycans

for substrate and host cell attachment. Infection and immunity. 2000; 68(7):4005–11. Epub 2000/06/17.

https://doi.org/10.1128/iai.68.7.4005-4011.2000 PMID: 10858215; PubMed Central PMCID:

PMC101681.

15. Paing MM, Tolia NH. Multimeric assembly of host-pathogen adhesion complexes involved in apicom-

plexan invasion. PLoS pathogens. 2014; 10(6):e1004120. Epub 2014/06/20. https://doi.org/10.1371/

journal.ppat.1004120 PMID: 24945143; PubMed Central PMCID: PMC4055764.

16. Brecht S, Carruthers VB, Ferguson DJ, Giddings OK, Wang G, Jakle U, et al. The toxoplasma microne-

mal protein MIC4 is an adhesin composed of six conserved apple domains. The Journal of biological

chemistry. 2001; 276(6):4119–27. Epub 2000/10/29. https://doi.org/10.1074/jbc.M008294200 PMID:

11053441.

17. Lourenco EV, Pereira SR, Faca VM, Coelho-Castelo AA, Mineo JR, Roque-Barreira MC, et al. Toxo-

plasma gondii micronemal protein MIC1 is a lactose-binding lectin. Glycobiology. 2001; 11(7):541–7.

Epub 2001/07/12. https://doi.org/10.1093/glycob/11.7.541 PMID: 11447133.

18. Marchant J, Cowper B, Liu Y, Lai L, Pinzan C, Marq JB, et al. Galactose recognition by the apicom-

plexan parasite Toxoplasma gondii. The Journal of biological chemistry. 2012; 287(20):16720–33.

Epub 2012/03/09. https://doi.org/10.1074/jbc.M111.325928 PMID: 22399295; PubMed Central PMCID:

PMC3351351.

19. Yarovinsky F. Toll-like receptors and their role in host resistance to Toxoplasma gondii. Immunology let-

ters. 2008; 119(1–2):17–21. Epub 2008/07/12. https://doi.org/10.1016/j.imlet.2008.05.007 PMID:

18617274.

20. Lourenco EV, Bernardes ES, Silva NM, Mineo JR, Panunto-Castelo A, Roque-Barreira MC. Immuniza-

tion with MIC1 and MIC4 induces protective immunity against Toxoplasma gondii. Microbes and

MIC1 and MIC4 regulate host innate immune priming by interaction with TLR2 and 4

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007871 June 21, 2019 21 / 24

http://www.ncbi.nlm.nih.gov/pubmed/9208224
http://www.ncbi.nlm.nih.gov/pubmed/11207555
https://doi.org/10.1242/jcs.00596
http://www.ncbi.nlm.nih.gov/pubmed/12783987
http://www.ncbi.nlm.nih.gov/pubmed/11228014
http://www.ncbi.nlm.nih.gov/pubmed/18512339
https://doi.org/10.1083/jcb.152.3.563
http://www.ncbi.nlm.nih.gov/pubmed/11157983
https://doi.org/10.1074/jbc.M109.060988
http://www.ncbi.nlm.nih.gov/pubmed/19901027
https://doi.org/10.1084/jem.20041672
http://www.ncbi.nlm.nih.gov/pubmed/15684324
https://doi.org/10.1038/sj.emboj.7601704
http://www.ncbi.nlm.nih.gov/pubmed/17491595
https://doi.org/10.1111/j.1574-6968.1998.tb13105.x
http://www.ncbi.nlm.nih.gov/pubmed/9682481
https://doi.org/10.1074/jbc.274.3.1267
http://www.ncbi.nlm.nih.gov/pubmed/9880495
https://doi.org/10.1128/iai.68.7.4005-4011.2000
http://www.ncbi.nlm.nih.gov/pubmed/10858215
https://doi.org/10.1371/journal.ppat.1004120
https://doi.org/10.1371/journal.ppat.1004120
http://www.ncbi.nlm.nih.gov/pubmed/24945143
https://doi.org/10.1074/jbc.M008294200
http://www.ncbi.nlm.nih.gov/pubmed/11053441
https://doi.org/10.1093/glycob/11.7.541
http://www.ncbi.nlm.nih.gov/pubmed/11447133
https://doi.org/10.1074/jbc.M111.325928
http://www.ncbi.nlm.nih.gov/pubmed/22399295
https://doi.org/10.1016/j.imlet.2008.05.007
http://www.ncbi.nlm.nih.gov/pubmed/18617274
https://doi.org/10.1371/journal.ppat.1007871


infection / Institut Pasteur. 2006; 8(5):1244–51. Epub 2006/04/18. https://doi.org/10.1016/j.micinf.2005.

11.013 PMID: 16616574.

21. Pinzan CF, Sardinha-Silva A, Almeida F, Lai L, Lopes CD, Lourenco EV, et al. Vaccination with Recom-

binant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice. PloS one.

2015; 10(11):e0143087. Epub 2015/11/18. https://doi.org/10.1371/journal.pone.0143087 PMID:

26575028; PubMed Central PMCID: PMC4648487.

22. Yarovinsky F. Innate immunity to Toxoplasma gondii infection. Nature reviews Immunology. 2014; 14

(2):109–21. Epub 2014/01/25. https://doi.org/10.1038/nri3598 PMID: 24457485.

23. Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kuhn R, et al. In the absence of

endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response

dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha.

J Immunol. 1996; 157(2):798–805. Epub 1996/07/15. PMID: 8752931.

24. Oldenhove G, Bouladoux N, Wohlfert EA, Hall JA, Chou D, Dos Santos L, et al. Decrease of Foxp3+

Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity. 2009; 31

(5):772–86. https://doi.org/10.1016/j.immuni.2009.10.001 PMID: 19896394; PubMed Central PMCID:

PMC2814877.

25. Weber AN, Morse MA, Gay NJ. Four N-linked glycosylation sites in human toll-like receptor 2 cooperate

to direct efficient biosynthesis and secretion. The Journal of biological chemistry. 2004; 279(33):34589–

94. Epub 2004/06/03. https://doi.org/10.1074/jbc.M403830200 PMID: 15173186.

26. Santos A, Carvalho FC, Roque-Barreira MC, Zorzetto-Fernandes AL, Gimenez-Romero D, Monzo I,

et al. Evidence for Conformational Mechanism on the Binding of TgMIC4 with beta-Galactose-Contain-

ing Carbohydrate Ligand. Langmuir: the ACS journal of surfaces and colloids. 2015; 31(44):12111–9.

Epub 2015/10/22. https://doi.org/10.1021/acs.langmuir.5b03141 PMID: 26488670.

27. Hager KM, Carruthers VB. MARveling at parasite invasion. Trends in parasitology. 2008; 24(2):51–4.

Epub 2008/01/22. https://doi.org/10.1016/j.pt.2007.10.008 PMID: 18203663; PubMed Central PMCID:

PMC2662992.

28. Jankovic D, Kullberg MC, Feng CG, Goldszmid RS, Collazo CM, Wilson M, et al. Conventional T-bet(+)

Foxp3(-) Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan

infection. The Journal of experimental medicine. 2007; 204(2):273–83. Epub 2007/02/07. https://doi.

org/10.1084/jem.20062175 PMID: 17283209; PubMed Central PMCID: PMC2118735.

29. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, et al. TLR11 activation

of dendritic cells by a protozoan profilin-like protein. Science. 2005; 308(5728):1626–9. Epub 2005/04/

30. https://doi.org/10.1126/science.1109893 PMID: 15860593.

30. da Silva Correia J, Ulevitch RJ. MD-2 and TLR4 N-linked glycosylations are important for a functional

lipopolysaccharide receptor. The Journal of biological chemistry. 2002; 277(3):1845–54. Epub 2001/11/

14. https://doi.org/10.1074/jbc.M109910200 PMID: 11706042.

31. Koblansky AA, Jankovic D, Oh H, Hieny S, Sungnak W, Mathur R, et al. Recognition of profilin by Toll-

like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity. 2013; 38(1):119–30.

Epub 2012/12/19. https://doi.org/10.1016/j.immuni.2012.09.016 PMID: 23246311; PubMed Central

PMCID: PMC3601573.

32. Yang CS, Yuk JM, Lee YH, Jo EK. Toxoplasma gondii GRA7-Induced TRAF6 Activation Contributes to

Host Protective Immunity. Infection and immunity. 2015; 84(1):339–50. Epub 2015/11/11. https://doi.

org/10.1128/IAI.00734-15 PMID: 26553469; PubMed Central PMCID: PMC4693986.

33. Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KD, et al. Strain-specific activation of the NF-

kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. The Journal of experi-

mental medicine. 2011; 208(1):195–212. Epub 2011/01/05. https://doi.org/10.1084/jem.20100717

PMID: 21199955; PubMed Central PMCID: PMC3023140.

34. Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, et al. A Toxo-

plasma dense granule protein, GRA24, modulates the early immune response to infection by promoting

a direct and sustained host p38 MAPK activation. The Journal of experimental medicine. 2013; 210

(10):2071–86. Epub 2013/09/18. https://doi.org/10.1084/jem.20130103 PMID: 24043761; PubMed

Central PMCID: PMC3782045.

35. Ma JS, Sasai M, Ohshima J, Lee Y, Bando H, Takeda K, et al. Selective and strain-specific NFAT4 acti-

vation by the Toxoplasma gondii polymorphic dense granule protein GRA6. The Journal of experimental

medicine. 2014; 211(10):2013–32. Epub 2014/09/17. https://doi.org/10.1084/jem.20131272 PMID:

25225460; PubMed Central PMCID: PMC4172224.

36. Hunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nature

reviews Microbiology. 2012; 10(11):766–78. Epub 2012/10/17. https://doi.org/10.1038/nrmicro2858

PMID: 23070557; PubMed Central PMCID: PMC3689224.

MIC1 and MIC4 regulate host innate immune priming by interaction with TLR2 and 4

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007871 June 21, 2019 22 / 24

https://doi.org/10.1016/j.micinf.2005.11.013
https://doi.org/10.1016/j.micinf.2005.11.013
http://www.ncbi.nlm.nih.gov/pubmed/16616574
https://doi.org/10.1371/journal.pone.0143087
http://www.ncbi.nlm.nih.gov/pubmed/26575028
https://doi.org/10.1038/nri3598
http://www.ncbi.nlm.nih.gov/pubmed/24457485
http://www.ncbi.nlm.nih.gov/pubmed/8752931
https://doi.org/10.1016/j.immuni.2009.10.001
http://www.ncbi.nlm.nih.gov/pubmed/19896394
https://doi.org/10.1074/jbc.M403830200
http://www.ncbi.nlm.nih.gov/pubmed/15173186
https://doi.org/10.1021/acs.langmuir.5b03141
http://www.ncbi.nlm.nih.gov/pubmed/26488670
https://doi.org/10.1016/j.pt.2007.10.008
http://www.ncbi.nlm.nih.gov/pubmed/18203663
https://doi.org/10.1084/jem.20062175
https://doi.org/10.1084/jem.20062175
http://www.ncbi.nlm.nih.gov/pubmed/17283209
https://doi.org/10.1126/science.1109893
http://www.ncbi.nlm.nih.gov/pubmed/15860593
https://doi.org/10.1074/jbc.M109910200
http://www.ncbi.nlm.nih.gov/pubmed/11706042
https://doi.org/10.1016/j.immuni.2012.09.016
http://www.ncbi.nlm.nih.gov/pubmed/23246311
https://doi.org/10.1128/IAI.00734-15
https://doi.org/10.1128/IAI.00734-15
http://www.ncbi.nlm.nih.gov/pubmed/26553469
https://doi.org/10.1084/jem.20100717
http://www.ncbi.nlm.nih.gov/pubmed/21199955
https://doi.org/10.1084/jem.20130103
http://www.ncbi.nlm.nih.gov/pubmed/24043761
https://doi.org/10.1084/jem.20131272
http://www.ncbi.nlm.nih.gov/pubmed/25225460
https://doi.org/10.1038/nrmicro2858
http://www.ncbi.nlm.nih.gov/pubmed/23070557
https://doi.org/10.1371/journal.ppat.1007871


37. Saraav I, Wang Q, Brown KM, Sibley LD. Secretory Microneme Proteins Induce T-Cell Recall

Responses in Mice Chronically Infected with Toxoplasma gondii. mSphere. 2019; 4(1). Epub 2019/03/

01. https://doi.org/10.1128/mSphere.00711-18 PMID: 30814319; PubMed Central PMCID:

PMC6393730.

38. Gavrilescu LC, Denkers EY. IFN-gamma overproduction and high level apoptosis are associated with

high but not low virulence Toxoplasma gondii infection. J Immunol. 2001; 167(2):902–9. Epub 2001/07/

07. https://doi.org/10.4049/jimmunol.167.2.902 PMID: 11441097.

39. Mordue DG, Monroy F, La Regina M, Dinarello CA, Sibley LD. Acute toxoplasmosis leads to lethal over-

production of Th1 cytokines. J Immunol. 2001; 167(8):4574–84. Epub 2001/10/10. https://doi.org/10.

4049/jimmunol.167.8.4574 PMID: 11591786.

40. Takabatake N, Okamura M, Yokoyama N, Ikehara Y, Akimitsu N, Arimitsu N, et al. Glycophorin A-

knockout mice, which lost sialoglycoproteins from the red blood cell membrane, are resistant to lethal

infection of Babesia rodhaini. Veterinary parasitology. 2007; 148(2):93–101. Epub 2007/07/27. https://

doi.org/10.1016/j.vetpar.2007.06.011 PMID: 17651898.

41. Persson KE, McCallum FJ, Reiling L, Lister NA, Stubbs J, Cowman AF, et al. Variation in use of erythro-

cyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies.

The Journal of clinical investigation. 2008; 118(1):342–51. Epub 2007/12/08. https://doi.org/10.1172/

JCI32138 PMID: 18064303; PubMed Central PMCID: PMC2117763.

42. Favila MA, Geraci NS, Jayakumar A, Hickerson S, Mostrom J, Turco SJ, et al. Differential Impact of

LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells.

PLoS neglected tropical diseases. 2015; 9(12):e0004238. Epub 2015/12/03. https://doi.org/10.1371/

journal.pntd.0004238 PMID: 26630499; PubMed Central PMCID: PMC4667916.

43. Nogueira PM, Assis RR, Torrecilhas AC, Saraiva EM, Pessoa NL, Campos MA, et al. Lipophosphogly-

cans from Leishmania amazonensis Strains Display Immunomodulatory Properties via TLR4 and Do

Not Affect Sand Fly Infection. PLoS neglected tropical diseases. 2016; 10(8):e0004848. Epub 2016/08/

11. https://doi.org/10.1371/journal.pntd.0004848 PMID: 27508930; PubMed Central PMCID:

PMC4980043.

44. Freitas MS, Oliveira AF, da Silva TA, Fernandes FF, Goncales RA, Almeida F, et al. Paracoccin

Induces M1 Polarization of Macrophages via Interaction with TLR4. Frontiers in microbiology. 2016;

7:1003. Epub 2016/07/28. https://doi.org/10.3389/fmicb.2016.01003 PMID: 27458431; PubMed Cen-

tral PMCID: PMC4932198.

45. Alegre-Maller AC, Mendonca FC, da Silva TA, Oliveira AF, Freitas MS, Hanna ES, et al. Therapeutic

administration of recombinant Paracoccin confers protection against paracoccidioides brasiliensis

infection: involvement of TLRs. PLoS neglected tropical diseases. 2014; 8(12):e3317. Epub 2014/12/

05. https://doi.org/10.1371/journal.pntd.0003317 PMID: 25474158; PubMed Central PMCID:

PMC4256291.

46. Campbell D, Mann BJ, Chadee K. A subunit vaccine candidate region of the Entamoeba histolytica

galactose-adherence lectin promotes interleukin-12 gene transcription and protein production in human

macrophages. European journal of immunology. 2000; 30(2):423–30. Epub 2000/02/12. https://doi.org/

10.1002/1521-4141(200002)30:2<423::AID-IMMU423>3.0.CO;2-0 PMID: 10671197.

47. Murakami S, Iwaki D, Mitsuzawa H, Sano H, Takahashi H, Voelker DR, et al. Surfactant protein A inhib-

its peptidoglycan-induced tumor necrosis factor-alpha secretion in U937 cells and alveolar macro-

phages by direct interaction with toll-like receptor 2. The Journal of biological chemistry. 2002; 277

(9):6830–7. Epub 2001/11/29. https://doi.org/10.1074/jbc.M106671200 PMID: 11724772.

48. Unitt J, Hornigold D. Plant lectins are novel Toll-like receptor agonists. Biochemical pharmacology.

2011; 81(11):1324–8. Epub 2011/03/23. https://doi.org/10.1016/j.bcp.2011.03.010 PMID: 21420389.

49. Souza MA, Carvalho FC, Ruas LP, Ricci-Azevedo R, Roque-Barreira MC. The immunomodulatory

effect of plant lectins: a review with emphasis on ArtinM properties. Glycoconjugate journal. 2013; 30

(7):641–57. Epub 2013/01/10. https://doi.org/10.1007/s10719-012-9464-4 PMID: 23299509; PubMed

Central PMCID: PMC3769584.

50. Andrade WA, Souza Mdo C, Ramos-Martinez E, Nagpal K, Dutra MS, Melo MB, et al. Combined action

of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxo-

plasma gondii in mice. Cell host & microbe. 2013; 13(1):42–53. Epub 2013/01/08. https://doi.org/10.

1016/j.chom.2012.12.003 PMID: 23290966; PubMed Central PMCID: PMC3552114.

51. Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende MG, et al. Activation of

TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii. J Immunol. 2007;

179(2):1129–37. Epub 2007/07/10. https://doi.org/10.4049/jimmunol.179.2.1129 PMID: 17617606.

52. Qiu J, Wang L, Zhang R, Ge K, Guo H, Liu X, et al. Identification of a TNF-alpha inducer MIC3 originat-

ing from the microneme of non-cystogenic, virulent Toxoplasma gondii. Scientific reports. 2016;

6:39407. Epub 2016/12/22. https://doi.org/10.1038/srep39407 PMID: 28000706; PubMed Central

PMCID: PMC5175157.

MIC1 and MIC4 regulate host innate immune priming by interaction with TLR2 and 4

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007871 June 21, 2019 23 / 24

https://doi.org/10.1128/mSphere.00711-18
http://www.ncbi.nlm.nih.gov/pubmed/30814319
https://doi.org/10.4049/jimmunol.167.2.902
http://www.ncbi.nlm.nih.gov/pubmed/11441097
https://doi.org/10.4049/jimmunol.167.8.4574
https://doi.org/10.4049/jimmunol.167.8.4574
http://www.ncbi.nlm.nih.gov/pubmed/11591786
https://doi.org/10.1016/j.vetpar.2007.06.011
https://doi.org/10.1016/j.vetpar.2007.06.011
http://www.ncbi.nlm.nih.gov/pubmed/17651898
https://doi.org/10.1172/JCI32138
https://doi.org/10.1172/JCI32138
http://www.ncbi.nlm.nih.gov/pubmed/18064303
https://doi.org/10.1371/journal.pntd.0004238
https://doi.org/10.1371/journal.pntd.0004238
http://www.ncbi.nlm.nih.gov/pubmed/26630499
https://doi.org/10.1371/journal.pntd.0004848
http://www.ncbi.nlm.nih.gov/pubmed/27508930
https://doi.org/10.3389/fmicb.2016.01003
http://www.ncbi.nlm.nih.gov/pubmed/27458431
https://doi.org/10.1371/journal.pntd.0003317
http://www.ncbi.nlm.nih.gov/pubmed/25474158
https://doi.org/10.1002/1521-4141(200002)30:2<423::AID-IMMU423>3.0.CO;2-0
https://doi.org/10.1002/1521-4141(200002)30:2<423::AID-IMMU423>3.0.CO;2-0
http://www.ncbi.nlm.nih.gov/pubmed/10671197
https://doi.org/10.1074/jbc.M106671200
http://www.ncbi.nlm.nih.gov/pubmed/11724772
https://doi.org/10.1016/j.bcp.2011.03.010
http://www.ncbi.nlm.nih.gov/pubmed/21420389
https://doi.org/10.1007/s10719-012-9464-4
http://www.ncbi.nlm.nih.gov/pubmed/23299509
https://doi.org/10.1016/j.chom.2012.12.003
https://doi.org/10.1016/j.chom.2012.12.003
http://www.ncbi.nlm.nih.gov/pubmed/23290966
https://doi.org/10.4049/jimmunol.179.2.1129
http://www.ncbi.nlm.nih.gov/pubmed/17617606
https://doi.org/10.1038/srep39407
http://www.ncbi.nlm.nih.gov/pubmed/28000706
https://doi.org/10.1371/journal.ppat.1007871


53. Gay G, Braun L, Brenier-Pinchart MP, Vollaire J, Josserand V, Bertini RL, et al. Toxoplasma gondii

TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-

gamma-mediated host defenses. The Journal of experimental medicine. 2016; 213(9):1779–98. Epub

2016/08/10. https://doi.org/10.1084/jem.20160340 PMID: 27503074; PubMed Central PMCID:

PMC4995087.

54. Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, Denkers EY, et al. Cutting edge: MyD88 is

required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production

by dendritic cells. J Immunol. 2002; 168(12):5997–6001. Epub 2002/06/11. https://doi.org/10.4049/

jimmunol.168.12.5997 PMID: 12055206.

55. Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, et al. Toxoplasma profilin is essential

for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell host &

microbe. 2008; 3(2):77–87. Epub 2008/03/04. https://doi.org/10.1016/j.chom.2008.01.001 PMID:

18312842.

56. von Gunten S, Smith DF, Cummings RD, Riedel S, Miescher S, Schaub A, et al. Intravenous immuno-

globulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 sub-

class. The Journal of allergy and clinical immunology. 2009; 123(6):1268–76 e15. Epub 2009/05/16.

https://doi.org/10.1016/j.jaci.2009.03.013 PMID: 19443021; PubMed Central PMCID: PMC2777748.

57. Soldati D, Boothroyd JC. Transient transfection and expression in the obligate intracellular parasite

Toxoplasma gondii. Science. 1993; 260(5106):349–52. Epub 1993/04/16. https://doi.org/10.1126/

science.8469986 PMID: 8469986.

58. Kim K, Soldati D, Boothroyd JC. Gene replacement in Toxoplasma gondii with chloramphenicol acetyl-

transferase as selectable marker. Science. 1993; 262(5135):911–4. Epub 1993/11/05. https://doi.org/

10.1126/science.8235614 PMID: 8235614.

59. Aricescu AR, Owens RJ. Expression of recombinant glycoproteins in mammalian cells: towards an inte-

grative approach to structural biology. Curr Opin Struct Biol. 2013; 23(3):345–56. https://doi.org/10.

1016/j.sbi.2013.04.003 PMID: 23623336; PubMed Central PMCID: PMC4757734.

60. Mariano VS, Zorzetto-Fernandes AL, da Silva TA, Ruas LP, Nohara LL, Almeida IC, et al. Recognition

of TLR2 N-glycans: critical role in ArtinM immunomodulatory activity. PLoS One. 2014; 9(6):e98512.

https://doi.org/10.1371/journal.pone.0098512 PMID: 24892697; PubMed Central PMCID:

PMC4043963.

61. Carneiro AB, Iaciura BM, Nohara LL, Lopes CD, Veas EM, Mariano VS, et al. Lysophosphatidylcholine

triggers TLR2- and TLR4-mediated signaling pathways but counteracts LPS-induced NO synthesis in

peritoneal macrophages by inhibiting NF-kappaB translocation and MAPK/ERK phosphorylation. PLoS

One. 2013; 8(9):e76233. https://doi.org/10.1371/journal.pone.0076233 PMID: 24312681; PubMed

Central PMCID: PMC3848743.

62. Young L, Sung J, Stacey G, Masters JR. Detection of Mycoplasma in cell cultures. Nat Protoc. 2010; 5

(5):929–34. https://doi.org/10.1038/nprot.2010.43 PMID: 20431538.

MIC1 and MIC4 regulate host innate immune priming by interaction with TLR2 and 4

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007871 June 21, 2019 24 / 24

https://doi.org/10.1084/jem.20160340
http://www.ncbi.nlm.nih.gov/pubmed/27503074
https://doi.org/10.4049/jimmunol.168.12.5997
https://doi.org/10.4049/jimmunol.168.12.5997
http://www.ncbi.nlm.nih.gov/pubmed/12055206
https://doi.org/10.1016/j.chom.2008.01.001
http://www.ncbi.nlm.nih.gov/pubmed/18312842
https://doi.org/10.1016/j.jaci.2009.03.013
http://www.ncbi.nlm.nih.gov/pubmed/19443021
https://doi.org/10.1126/science.8469986
https://doi.org/10.1126/science.8469986
http://www.ncbi.nlm.nih.gov/pubmed/8469986
https://doi.org/10.1126/science.8235614
https://doi.org/10.1126/science.8235614
http://www.ncbi.nlm.nih.gov/pubmed/8235614
https://doi.org/10.1016/j.sbi.2013.04.003
https://doi.org/10.1016/j.sbi.2013.04.003
http://www.ncbi.nlm.nih.gov/pubmed/23623336
https://doi.org/10.1371/journal.pone.0098512
http://www.ncbi.nlm.nih.gov/pubmed/24892697
https://doi.org/10.1371/journal.pone.0076233
http://www.ncbi.nlm.nih.gov/pubmed/24312681
https://doi.org/10.1038/nprot.2010.43
http://www.ncbi.nlm.nih.gov/pubmed/20431538
https://doi.org/10.1371/journal.ppat.1007871

