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Abstract: The ability of individuals to engage in physical activity is a critical component of overall
health and quality of life. However, there is a natural decline in physical activity associated with the
aging process. Establishing normative trends of physical activity in aging populations is essential to
developing public health guidelines and informing clinical perspectives regarding individuals’ levels
of physical activity. Beyond overall quantity of physical activity, patterns regarding the timing of
activity provide additional insights into latent health status. Wearable accelerometers, paired with
statistical methods from functional data analysis, provide the means to estimate diurnal patterns in
physical activity. To date, these methods have been only applied to study aging trends in populations
based in the United States. Here, we apply curve registration and functional regression to 24 h
activity profiles for 88,793 men (N = 39,255) and women (N = 49,538) ages 42–78 from the UK Biobank
accelerometer study to understand how physical activity patterns vary across ages and by gender.
Our analysis finds that daily patterns in both the volume of physical activity and probability of
being active change with age, and that there are marked gender differences in these trends. This
work represents the largest-ever population analyzed using tools of this kind, and suggest that aging
trends in physical activity are reproducible in different populations across countries.

Keywords: accelerometers; aging; UK Biobank; functional regression; curve registration

1. Introduction

Physically active individuals have a longer life expectancy and increased health
span [1–3]. Because physical activity (PA) levels are modifiable for most adults, PA is an
attractive target for interventions aimed at improving the quality of life in older adults.
In addition, features of PA are known to be highly correlated with prevalence of various
health conditions [4] and risk of mortality [5–9]. Taken together, these observations suggest
the power of monitoring PA in a free-living environment to both inform the epidemiology
of healthy aging and facilitate safe, independent, home living for aging individuals if incor-
porated into, for example, a clinical monitoring program through individuals’ primary care
provider. Historically, PA has been most often measured using self-report questionnaires,
which are prone to substantial biases [10]. Wearable accelerometers provide a convenient,
non-invasive, objective alternative for measuring PA, and have become widely adopted
in health studies such as the Baltimore Longitudinal Study on Aging (BLSA) [11], the
National Health and Nutrition Survey (NHANES) 2003–2006 and 2011–2014 [12], and the
UK Biobank [13]. Moreover, in the context of aging, the ability to collect objective measures
of physical activity are crucial due to the increasing prevalence of cognitive deficiencies
which can further bias self-reported levels of PA.

The increased use of accelerometers in observational studies, clinical trials, large
biobanks, and for recreational purposes has provided a wealth of data that can be used
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to obtain objective measurements of physical activity in free-living environments. Ac-
celerometers typically measure acceleration in three orthogonal axes at the sub-second
level, capturing high resolution information on horizontal, lateral, and vertical movement.
Typically, these sub-second level data are aggregated at lower resolution time intervals
called epochs, most commonly 1 minute epochs; this produces multiple days of 24 h
minute-by-minute activity trajectories for each subject. When combined across days to
create a single 24 h trajectory, these are referred to as daily acceleration or activity profiles.
Most often, analysis of data generated by accelerometers focuses on creating one number
summaries of the daily profiles for each subject, typically measuring volume of PA (e.g.,
step count, sedentary time, active time, etc.), circadian rhythm (e.g., relative amplitude),
or features of sleep (e.g., sleep efficiency, sleep duration, number of wakes). Summa-
rizing multiple days of data using this approach ignores the highly correlated nature of
these features and fails to efficiently exploit information contained in the timing of PA.
To overcome this limitation, recent work by Di et al. [14] used the joint and individual
variation explained approach [15] to characterize patterns of PA, circadian rhythms, and
sleep using a set of scalar features from each domain. An alternative approach involves
analyzing the entire 24 h acceleration profiles in conjunction with health outcomes. Despite
evidence that specific patterns of timing and magnitudes of physical activity over the
24 h day are associated with aging [11] and mortality [7,16], analytic approaches that use
the full acceleration profiles have been underutilized in the literature, perhaps because
of the computational and methodological challenges of working with high dimensional,
correlated, structured data.

Fortunately, statistical methods developed in the field of functional data analysis [17]
provide a natural framework for analyzing acceleration profiles. From the functional data
perspective, each 24 h acceleration profile is a statistical unit of observation that can be
analyzed using methods specifically developed to extract patterns of variation and perform
inference on noisy, dense, correlated data [18,19]. Here we focus on analyzing diurnal
patterns of physical activity using two methods from functional data analysis. Specifically,
we use function-on-scalar regression (FoSR) [20], a method which treats an entire “function”
(acceleration profile) as an outcome and associates the entire function with scalar features
(e.g., age), and curve registration [21] separates 24 h activity profiles into components
of “horizontal” variability and “vertical” variability which correspond to timing and
magnitude of PA, respectively. Function-on-scalar regression has been used to analyze
age-associated trends in diurnal patterns of physical activity in the BLSA [22], though that
analysis may not scale up to massively large datasets such as the UK Biobank. In addition,
the study using BLSA data employed a single axis accelerometer, worn at the chest, and
the unit of measurement analyzed was created using a proprietary algorithm which is not
transferable across devices. Our analysis is based on open-source and published algorithms
using a tri-axial wrist worn accelerometer, which should allow for more general use in
other studies. As a result, it is unclear whether and how those analyses would be replicated
using a tri-axial accelerometer placed on a different location on the body, and using a
different unit of measurement. Though registration of acceleration profiles was recently
used to uncover sub-types of circadian rhythms [23], to our knowledge registration has
never been used to study how trends in circadian rhythms change with age, nor has it
been paired with functional regression methods. We focus here on functional regression
for continuous and binary data, and combine FoSR with curve registration for binary data
to simultaneously analyze different aspects of sex-specific age trends in diurnal patterns of
PA, leveraging the information contained in the complex high dimensional acceleration
profiles to draw novel insights about diurnal patterns in PA across ages.

Studying PA across a wide span of age ranges, especially at older ages, typically
requires a large number of participants. Opportunely, the UK Biobank is a large prospective
cohort study that enrolled more than 500,000 adults. In the UK Biobank accelerometer sub-
study, over 100,000 adults wore a wrist-worn accelerometer (Axtivity AX3, Newcastle upon
Tyne, UK) for 7 days [24] between the years of 2013 and 2015. Approximately 88% of those
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enrolled report British ancestry. The UK Biobank collected vast amounts of information
regarding participants’ socio-demographic, lifestyle, environment, accelerometry, imaging
and genetics [25,26]. In addition, participants’ data can be linked to incident morbidity and
mortality through hospital and death records. With data of this size, we can potentially
uncover previously undetectable patterns in PA across ages and assess whether diurnal
aging trends observed in US based cohorts are replicated in a large UK cohort study.

This work aims to extend the existing literature on objectively measured physical
activity using wearable devices in older adults in several ways. First, we use an open
source, reproducible summary of raw sub-second level acceleration data aggregated at the
minute level to assess the replicability of the general sex-specific trends and differences
in the timing and volume of PA observed in US based populations in a large UK based
prospective cohort study. Specifically, we wish to validate sex-specific differences in the
time-of-day trends these trends using milli-gravity units values as opposed to previously-
published proprietary activity counts. Second, we illustrate different patterns of activity
of ages if using the values of activity versus an indicator of active vs. inactive using
thresholded data. Third, we introduce the concept of curve registration to the intersecting
field of physical activity and aging as a tool for analyzing epidemiological trends. Fourth,
we show that complex functional regression methods are computationally feasible on
very large physical activity datasets using high quality open source software. Finally, to
further the goal of the dissemination of our functional data methods applied to physical
activity data we provide an accompanying vignette that fully reproduces our analysis in the
NHANES 2003–2006 accelerometry data. To avoid the potential complications associated
with differential weekend versus weekday patterns of activity, we focus here only on
weekdays (Monday–Friday).

2. Materials and Methods
2.1. Data and Preprocessing
UK Biobank: Accelerometry Sub-Study

The UK Biobank accelerometry data were collected between June 2013 and December
2015, and participants wore the devices an average of 5.7 years (range 2.8 to 9.7 years)
after the date of their initial assessment. Doherty et al. [24] describes the inclusion criteria,
sampling design, and other aspects of the UK Biobank accelerometry sub-study. In sum-
mary, individuals wore a wrist-worn accelerometer for up to 7 days, providing acceleration
values in milli-gravity units (g = 9.81 m

s2 ). The data are made available at varying resolu-
tions: (1) raw sub-second level tri-axial data; (2) 5-second level aggregated acceleration;
and (3) subject-level summaries averaged across days. The 5-second level aggregated data
is created by taking the Euclidean norm of the time-series data from the 3 axes, subtracting
1 gravitational unit for gravity, then averaging within 5-second intervals (called ENMO for
Euclidean Norm minus one). Doherty et al. [24] describes the exact procedure for deriving
the 5-second level data from the raw data and estimating periods of non-wear. We use the
5-second level epoch data because the subject-level summaries do not provide day-level
information required for our analysis, and reprocessing the raw accelerometry data is a
vast undertaking which is beyond our scope.

We follow a recent study from Leroux et al. [9] to aggregate the 5-second level data into
1-minute epochs. This aggregation involves averaging the 5-second level data combined
with a step to impute the small proportion of missing data in the sample. A detailed
description of this procedure is provided in the supplemental material of Leroux et al. [9].
We apply the same exclusion criteria as [9] to determine what constitutes a “good” day of
accelerometry data. Specifically, we determine a good day of acceleration data to be one
with sufficient estimated wear time (≥95% of the day, or 1368 min), as well meeting the
three data quality criteria provided by the UK Biobank, which relate to data calibration
and sufficient device wear time. The exact criteria can be found at the UK Biobank data
showcase website (https://biobank.ndph.ox.ac.uk/showcase/ accessed on 1 January 2021)
by searching the field IDs 90015, 90016, and 90017. In addition, we require individuals to
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have at least 3 good weekdays (Monday–Friday) of accelerometry data. We included all
individuals who met these criteria.

After applying these inclusion criteria, our analytic sample contained 88,793 partici-
pants who were an average age 61.9 (range 42.8–78.7) at the time of accelerometer wear
and 49,538 (55.8%) of whom were female. In addition, 16.1%, 66.0%, and 17.9% of partic-
ipants had 3, 4, and 5 good days of weekday accelerometry data, respectively. There is
evidence [9] that individuals who participated in the UK Biobank accelerometry study were
younger and healthier than the UK Biobank study as a whole, which has been reported to
be healthier than the general UK population [27]. As a result, our analytic sample is likely
subject to multiple sources of healthy participant bias.

2.2. Methodology and Analysis
Physical Activity Acceleration Profiles

Each individual has 24 h trajectories of minute-level acceleration data for multiple
days that are condensed into physical activity (acceleration) profiles that represent one
day of activity for each subject. We consider two types of activity profiles that confer
complementary benefits and interpretations. First, let Zij(t), represent the observed ENMO
for participant i on day j at every minute t = 1, . . . , 1440. We collapse these Zij(t) across
days where each individual has Ji days of good data with 3 ≤ Ji ≤ 5 based on adherence
to wear-time protocols during the weekdays as

Zi(t) = J−1
i

Ji

∑
j=1

Zij(t) ,

and call these Zi(t) continuous activity profiles. Our second type of activity profile is
denoted Yi(t) and represents subjects’ median tendency to be have observed ENMO above
or below a threshold of 30 milli-gravity units. Here we use 30 milli-gravity units as this
is a candidate threshold of active versus sedentary behaviors. We refer to this threshold
as a “candidate threshold” for active versus sedentary behaviors as it has been used in
practice [9], but has not yet been widely validated, though hereafter we will refer to this as
simply active versus inactive behaviors for simplicity. Specifically, let

Yi(t) = dmed({1(Zij(t) >= 30) : j = 1, . . . , Ji}e ,

where the ceiling function de rounds up the median value across days in the event that Ji is
odd and the median is 0.5. These Yi(t), which we denote binary activity profiles, are binary
trajectories representing active (Yi(t) = 1) and inactive minutes (Yi(t) = 0) over the 24 h
period. In short, Zi(t) is the average daily profile and Yi(t) is the indicator if the majority
of days have activity in this minute (above 30 milli-gravity units).

There are two main motivations for constructing these two different profiles. First,
although registration is possible on the acceleration data itself, Zi(t), short bursts of high
intensity exercise may skew activity counts and exert undue influence on registration
results and this effect is attenuated by using binary profiles Yi(t) [23]. Second, it is possible
that these two profiles contain different pieces of information about how activity patterns
change with age. For example, it may be that the likelihood of being active does not change
much with age, but that the volume of activity is much less in older adults. Thus, we
choose to analyze the changes in both of these activity profiles as a function of age.

Curve Registration

Our registration procedure is adapted from Wrobel et al. [21] for the UK Biobank
accelerometer data and aligns binary activity profiles by common features such as wake
time, sleep time, and peaks in probability of being active. An example of registration
is shown in Figure 1: binary activity profiles (Figure 1A) are used to estimate µi(t), the
probability of subject i being active at time t (Figure 1B), then warping functions (Figure 1C)
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stretch and compress the time domain to produce aligned probability curves and activity
profiles (Figure 1D).

Figure 1. Toy Registration Example. Black and gray colors denote two separate subjects, and panels represent (A) binary
activity profiles, (B) unregistered probability curves, (C) warping functions, and (D) binary activity profiles and probability
curves that have been aligned using the warping functions in panel (C).

After registration, horizontal variability contained in the warping functions provide
information about timing of PA, and vertical variability contained within the aligned
activity profiles provide information about magnitude of PA; both the warping functions
and binary activity profiles will be analyzed in Section 3. Notation and model details for
this process are given below, and for a full technical explanation we refer the reader to
Wrobel et al. [21].

Let t represent observed chronological time. Then Yi(t) and µi(t) represent the binary
activity profile and activity probability curves, respectively over chronological time for
the ith subject. The warping functions, denoted h−1

i for subject i, nonlinearly stretch and
compress chronological time to define a new time domain t′ = h−1

i (t) on which activity
profiles are registered. This registration occurs via a two-step iterative algorithm where
in step (1) the probability curves µi(t) are estimated using binary functional principal
component analysis (FPCA) and in step (2) the warping functions h−1

i (t) are estimated
via constrained likelihood maximization. The model for this joint FPCA-registration
algorithm is

E
[
Yi

(
h−1

i (t)
)
|ci, h−1

i

]
= µi(t′)

logit
[
µi(t′)

]
= α(t′) +

K

∑
k=1

cikψk(t′),

where Yi

(
h−1

i (t)
)
= Yi(t′) represent the registered activity profiles, α(t′) is the population

mean function, and cik and ψk(t′) are the subject-specific scores and population-level
eigenfunctions, respectively, for the kth principal component. The algorithm iterates
between step 1 and step 2 until activity profiles are aligned, resulting in estimated warping
function h−1

i (t) for each participant.
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Functional Regression

We fit a series of functional regression models that address the following question:
what is the epidemiology of activity patterns with age in the UK Biobank and how does
disentangling horizontal and vertical variability via registration amplify or modify these
trends? We choose to model these associations flexibly using techniques from generalized
function-on-scalar regression (FoSR) [28,29], where we allow for the association between
the outcome to vary smoothly in time of day, t, and age on the linear predictor scale.
We fit separate models for: Yi(t), Zi(t), and h−1

i (t) stratified by sex where h−1
i (t) are the

participant-specific estimated warping functions obtained from the registration algorithm
described in Section 2.2. Specifically, we fit models of the form

g(E[Yi(t)|Agei]) = f0(t) + f1(t, Agei)

where g(·) is a link function and f0(t), f1(t, Agei) are unspecified smooth functions. When
modelling Zi(t) and h−1

i (t) we specify g to be the identity function and for Yi(t) we specify
g be the logit function. For identifiability of f1 we impose the constraint ∑N

i=1 f1(t, Agei) = 0
for all t. Note that the method we use for estimating an age effect can be easily ex-
tended to account for other covariates such as body mass index (BMI), comorbidities,
and lifestyle factors. In addition, the specification of the model can be simplified to
allow terms which vary linearly in the covariate (i.e., f1(t, Agei) = f1(t) × Agei), also
referred to as a varying coefficient model [30], or to vary smoothly in the covariate but
linearly in time (i.e., f1(t, Agei) = f1(Agei)× t), or to be linear in the level of the covariate
and fixed over time (i.e., f1(t, Agei) = β1Agei). Further note that we fit these models
stratified by sex, though a unified model could be fit by specifying g(E[Yi(t)|Agei]) =
f0(t) + f1(t, Agei) + f2(t, Agei)Sexi where Sexi is an indicator for whether participant i
is female.

The two primary methodologic challenges in fitting FoSR models are estimation of
smooth fixed effects and accounting for within-subject correlation. As our interest here is
in the estimation of population-level marginal models, we take a a bootstrap procedure for
both estimation and inference on fixed effects [31]. We use cyclic cubic regression splines
for estimating f0, and a tensor product smooth of marginal cyclic cubic splines and cubic
splines for estimating f1. Our use of cyclic splines in the time direction is motivated by
the fact that time of day is cyclical, so the estimated coefficient should meet at 12 a.m.
We penalize the curvature of the coefficients using a second derivative penalty to avoid
over-fitting of the model to the data, the degree of the curvature is controlled by a tuning
parameter referred to as a “smoothing parameter”. Methods for automatic smoothing
parameter selection are a key challenge in functional regression methodology based on
penalized splines. Here, smoothing parameter selection is done using the fast REML
procedure described in [32].

Computation, Software, and Reproducibility

We have 88,793 participants in our analytic sample with 1440 observations per subject,
resulting in a massive 127,861,920 total observations. We were able to fit our functional re-
gression models in a reasonable computation time of 11.1 min (0.19 h) and 72.2 min (1.20 h)
for continuous and binary outcomes, respectively, using smoothing software optimized
for very high dimensional data[32]. For registration we parallelized the estimation of
subject-specific warping functions using a node on a high performance computing cluster
with 50 cores. In total, the registration step took 24.0 h to complete. All methods are imple-
mented in the statistical software R [33]. Functional regression models are implemented
using the mgcv::bam() function in the mgcv [34] package, and registration is performed
using the registr package [35].

The UK Biobank data are publicly available, but access requires approval on a project
with specific aims. Moreover, individual identifiers are randomized for each project such
that individuals cannot be directly linked between projects. As a result, reproducibility
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of our results in the UK Biobank is limited. In the interest of disseminating our work, we
provide code for performing all of our analyses using the publicly accessible accelerometry
data from the National Health and Nutrition Survey 2003–2006 [36] which has been orga-
nized in an analytic ready format through the R package rnhanesdata [7,37]. Our analysis
is reproduced using the NHANES data via a supplementary markdown file to be uploaded
to Github upon publication.

2.3. Populations of Comparison

We compare the results of our analysis on the UK Biobank 2013–2015 accelerometry
study to similar analyses performed in the NHANES 2003–2006 data [38] and the BLSA [22].
The accelerometry data used in the BLSA study was collected between August 2007
and January 2011 [11]. The NHANES is a nationally representative sample of the non-
institutionalized US population, while the BLSA is a study of healthy aging adults.

The UK Biobank study protocol differed in key ways from the studies using NHANES
and BLSA data regarding device placement and wear-time protocols. The UK Biobank
study used a tri-axial wrist-worn accelerometer, implemented a 24 h wear-time protocol,
and summarized the raw acceleration data using the open source summary Euclidean
Norm Minus One. In contrast, the NHANES 2003–2006 study had participants wear an uni-
axial accelerometer at their waist, implemented a wake-wear protocol where participants
were instructed to remove the accelerometer while sleeping, and summarized the raw
acceleration data in one-minute epochs using a proprietary “activity count” summary.
The BLSA study used a uni-axial chest-worn accelerometer, implemented a 24 h wear-
time protocol, and summarized the raw acceleration data in one-minute epochs using a
proprietary “activity count” summary. Note that the activity counts reported from the
devices used in the NHANES 2003–2006 and BLSA studies are not directly comparable.

3. Results

Our analysis examines weekday (Monday–Friday) activity profiles and binary ac-
tive versus inactive profiles across ages for 88,797 men and women in the UK Biobank
accelerometer study. In the first part of our analysis we apply functional regression to the
activity profiles, providing insight into how patterns in magnitude of acceleration vary
across ages and gender. These results are shown in Figures 2 and 3. The second part of
this analysis applies both functional regression and curve registration to the binary activity
profiles, providing information on age and gender-related differences in the probability of
being active at each time of day as well as age and gender-related shifts in average timing
of physical activity. These results are shown in Figures 4 and 5.

Figure 2 shows the population estimated average acceleration by time of day over the
age range in our analytic sample separately for males (panel A), females (panel B), and the
difference between males and females (panel C). The color in the panels A/B of Figure 2,
corresponding to average activity patterns in males and females, respectively, denotes
lower (dark/light purple) versus higher (light/dark green) acceleration (volume of PA).
Color in panel C of Figure 2 indicates periods of time where men are more (green) or less
(purple) active than women and a solid black line demarcates areas where the estimated
difference crosses 0 (i.e., no difference in activity levels between men and women, white
color). We observe that among both males and females, younger participants tended to start
activity earlier in the day (06:00 a.m. for 45–55 year olds vs. 07:00 a.m. for 65+ year olds)
and maintain higher levels of activity later in the day, on average. In addition, with the
exception of the youngest males in the sample, the peak average activity in this population
occurs in the morning.

We also see a clear shift in activity patterns beginning around age 60 that manifest
similarly in males and females; specifically, these individuals start their activity later in the
morning, and tend to wind down earlier in the afternoon, consistent with previous findings
in US populations, specifically NHANES 2003–2006 [38] and BLSA [22]. In addition, while
both males and females under the age of 60 have two clear peaks in activity (around



Sensors 2021, 21, 1545 8 of 14

8–9 a.m. and 6–7 p.m.), there is only one clear peak (around 10–11 a.m.) in older men and
women (age ≥ 60). This change from two peaks to one peak after age 60 can also be seen in
the BLSA study from Figure 3 of [22]. This clear shift in activity patterns around the age of
60, seen in both US studies and now the UK Biobank study, may be a result of individuals
beginning to exit the work force via retirement, leading to a change in the structure of
individuals’ weekday schedules.

Figure 2. Estimated population average acceleration (ENMO) by age and time of day for Males (panel A), Females (panel B),
and the estimated difference between Males and Females (panel C). Color intensity in panels A/B indicates lower (purple)
versus higher (green) levels of activity. Color intensity in panel C indicates Males are less (purple), the same (white), or
more (green) active as compared to Females, with a solid black line demarcating the transitions between regions where
males are more or less active than females (i.e., the difference is 0). Estimates of these surfaces in panels A/B are obtained
by fitting a function-on-scalar regression (FoSR) model separately by sex where the population average ENMO is allowed to
vary smoothly in both time of day and age. The FoSR model is fit by modelling the average ENMO as a tensor product
smooth of marginal spline bases, with cyclic cubic regression splines used in the time domain to respect the cyclic nature of
time. Panel C is obtained by taking the difference of panels A and B.

In the period roughly between 10 a.m.–12 p.m. and 2 p.m.–4 p.m. in males, and,
to a lesser extent females, average activity dips in the younger individuals (ages 45–60).
The 2 p.m.–4 p.m. dip in PA has been previously observed in the BLSA [22], but the
10 a.m.–12 p.m. dip has not been previously reported. It may be that the larger sample size
of the UK Biobank enables detection of more nuanced patterns than in smaller studies, or
it may be specific to the UK population. Alternatively, the observed shift may be due to
differences in the ENMO summary measure as compared to proprietary activity counts
used by Xiao et al. [22] generated by similar activities, the different location of the device
(wrist versus hip/chest), or some combination of the two. Because this pattern may be a
result of structured lunch breaks for employed individuals, we term it the “lunch effect”.

Moving to the right panel of Figure 2, we see that across the age range of this sample,
women tend to be more active than men during the daytime hours of 6 a.m.–6 p.m.
(mostly light/dark purple color during this period) with the exception of 12 p.m.–1 p.m.
(white/light green color), and less active during the nighttime hours of 12 a.m.–6 a.m.
(mostly light green color). Interestingly, younger women (ages 45–60) tend to be less active
during the evening hours of 6 p.m.–12 a.m., but older women (ages 60–80) are more active
during this period. The observed higher level of average activity in males as compared
to females in the early morning hours could be driven by poorer sleep quality (more
movement during sleep), more variable sleep periods, or less stable weekday circadian
patterns in men.

To give perspective on the average total amount of activity accumulated over the
12 a.m.–12 a.m. period, Figure 3 plots the estimated cumulative average activity at ages 50
(black line), 60 (red line), an 70 (blue line) separately for males (panel A), females (panel B),
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and the difference between males and female (panel C). Solid lines present point estimates
and dashed lines represent 95% confidence intervals obtained via bootstrap. Consistent
with the results from Figure 2, we see that younger individuals accumulate as much or
more activity at any point of the day as compared to older individuals (black curve ≥ red
curve ≥ blue curve at all times of the day). Comparing the estimated cumulative activity
curves for age 50 versus 60 in both males and females, we see that the younger age group
accumulate more activity early in the morning (larger difference between the two curves
between 6 a.m. and 10 a.m.) which shrinks to near zero difference moving into the early
afternoon due to the aforementioned “lunch effect” for younger adults, separating again in
the late afternoon/early evening, resulting in more overall activity for the younger group.
In addition, from Figure 3 panel C, we see that the estimated total daily activity for females
and males is roughly equal for the younger ages groups as the confidence intervals at
12 a.m. just overlap 0 (95% confidence intervals for ages 50 and 60 contain 0), while older
(age 70) females have noticeably higher estimated levels of total activity than older males
(point estimate for age 70 at 12 a.m. is negative and the 95% confidence interval does
not contain 0). This suggests that the lower levels of activity observed in men ages 50–60
during the day seen in the right panel of Figure 2 are offset by increased activity during the
evening and early morning hours. In contrast, by age 70, the increased activity of males
during the early a.m. hours is not enough to “make up” for the higher levels of activity in
females during the rest of the day. These results find that in this population women are
estimated to be as or more active than men ages 45–80 with women being relatively more
active after age 60. This may indicate that activity patterns changed deferentially by gender
as individuals begin to exit the workforce as they approach retirement age, though future
investigations to validate this hypothesis are required.

Figure 3. Estimated population cumulative average acceleration (ENMO) by time of day for Males ( panel A), Females
(panel B), and the estimated difference between Males and Females (panel C). separately for ages 50 (black), 60 (red), and
70 (blue) years old. Solid lines denote point estimates and dashed lines represent point-wise confidence intervals. Estimates
of the curves presented in panels A/B are obtained by fitting a function-on-scalar regression (FoSR) model separately by sex
where the population average activity count is allowed to vary smoothly in both time of day and age, then numerically
integrating the estimated population average activity count over the 12 a.m.–12 a.m. period. The FoSR model is fit by
modelling the average ENMO as a tensor product smooth of marginal spline bases, with cyclic cubic regression splines used
in the time domain to respect the cyclic nature of time. Panel C is obtained by taking the difference of panels A and B.

Shifting focus to population level diurnal probabilities of being active versus inactive,
consider Figure 4. The interpretation and layout of the figure is the same as Figure 2 except
that color intensity now denotes probability of being active (or, in the right panel, difference
in probability of being active). We find that the overall trends are largely the same as those
seen in Figures 2 and 3 with a few key differences. Regarding similarities, from the left
two panels of Figure 4 we see that the estimated probability of being active tends to be
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highest in the morning shortly after waking, that this peak occurs later in older individuals,
that there are morning and early evening peaks in younger males and females, and that
there is a “lunch effect” that is present in both men and women. Analyzing the binary
activity profiles provides additional information that was not revealed by the analysis of
participants’ continuous activity profiles. Specifically, from the panel C of Figure 4, we see
that females tend to have a higher probability of being active during the daytime hours
(6 a.m.–6 p.m.) across all age groups and a lower probability of being active during the early
a.m. hours (12 a.m.–6 a.m.). Interestingly, although males ages 45–60 were generally found
to have higher levels of average activity 12 p.m.–2 p.m. and 6 p.m.–12 a.m., women have
nearly the same or higher estimated probability of being active. This suggests that women
are, on average, engaging in more low-light levels of activity and less moderate-vigorous
intensity activity during this time period. Alternatively, the average volume of PA may be
pulled upward by a few individuals engaging in very vigorous levels of activity, though
future work is needed to confirm this theory.

Figure 4. Estimated population average probability of being active (or, more specifically, generating ENMO greater than
or equal to 30 milli-gravity units) by age and time of day for Males (panel A), Females (panel B), and the estimated
difference between Males and Females (panel C). Color intensity in panels A/B indicates lower (purple) versus higher
(green) probability of being active. Color intensity in panel C indicates Males are less (purple), the same (white), or more
(green) likely to be active as compared to Females, with a solid black line demarcating the transitions between regions
where males are more or less likely to be active than females (i.e., the difference is 0). Estimates of these surfaces in panels
A/B are obtained by fitting a generalized function-on-scalar regression (FoSR) model separately by sex where the log odds
of being active is allowed to vary smoothly in both time of day and age. The FoSR model is fit by modelling the log odds
of being active as a tensor product smooth of marginal spline bases, with cyclic cubic regression splines used in the time
domain to respect the cyclic nature of time using binary active/inactive profiles. Panel C is obtained by taking the difference
of panels A and B.

Finally, consider Figure 5, which plots the estimated average warping functions for
males (panel A), females (panel B), and the difference between males and females (panel
C) for ages 50 (black line), 60 (red line), and 70 (blue line) years old. From panels A/B of
Figure 5 we see that in the morning period, the ordering of the lines is black (age 50) greater
than red (age 60) greater than blue (age 70). This pattern reverses after around 10 a.m.
in both men and women. This ordering of the curves is consistent with a compressed
chronological “active” time during the daytime hours and an expanded “inactive” time
during the nighttime/early morning hours, with active time being more compressed with
increasing age. We also see this phenomena in Figures 2 and 4. However, the observed
differences in warping functions are visually quite small. Looking at panel C, we see that
for the youngest age group shown (red line, age 50), the estimated difference is very close
to zero at all times of day, indicating similar active/inactive timing between men and
women age 50. In contrast, for the next youngest age group (red line, age 60), the estimated
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warping function is estimated to be positive for the entirety of the day, suggesting that
men’s active periods are uniformly shifted to earlier in the day relative to women age 60.
Finally, for the older age group (blue line, age 70), the estimated warping function starts
negative and then becomes positive after around 8 a.m., suggesting men have a compressed
active period relative to women age 70. These observations are all consistent with the
patterns observed in Figures 2 and 4. However, once again, the estimated differences in
average warping functions do not appear large in absolute value.

Figure 5. Estimated population average warping functions for Males (panel A), Females (panel B), and the estimated
difference between Males and Females (panel C). separately for ages 50 (black), 60 (red), and 70 (blue) years old. Estimates
of the lines presented in panels A/B are obtained by fitting a function-on-scalar regression (FoSR) model separately by sex
where the population average warping function is allowed to vary smoothly in both time of day and age. The FoSR model
is fit by modelling the average warping function as a tensor product smooth of marginal spline bases with cubic regression
splines used in both the time and age domains. Panel C is obtained by taking the difference of panels A and B.

4. Discussion

This work extends the existing literature on physical activity and aging through the
(1) validation of aging trends seen in several US populations in a large UK cohort; (2) es-
tablishment of functional regression approaches as a set of computationally feasible, open
source tools for analyzing physical activity in the largest publicly available accelerometry
dataset; (3) combination of functional regression and registration for analyzing the associa-
tions among age, gender, and the timing and the volume of physical activity; (4) analysis
of multiple types of PA acceleration profiles (activity count versus binary activity profiles)
which showed that conclusions based about PA and aging are potentially dependent on
profile choice; and dissemination of template code which allows researchers to reproduce
our analytic procedure on any accelerometry dataset via an application to the NHANES
2003–2006 accelerometry data. In the future, the tools presented here could be used to
create reference quantities for normative patterns of physical activity by jointly considering
multiple types of PA profiles. Further, the methods applied in this study could be applied
to other bio-signals measured continuously using wearable devices which have circadian
patterns; for example, heart rate, continuous glucose monitoring, or skin temperature.

This study has several important limitations. First, we reduced multiple days of
subjects’ accelerometry data to one day per subject by collapsing across days. It may
be possible to gain additional insights into the epidemiology of the timing and volume
of physical activity and aging by analyzing individuals’ day-level data using a multi-
day approach to both registration and regression. We also restricted our analysis to
weekdays only. It may be that analyzing individuals weekend activity patterns, when
many employed people’s activity are not restricted by their occupational requirements,
could provide additional insights into individuals’ leisure time activities. Moreover, the
registration method we applied here was not designed to handle individuals who tend
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to sleep during the daytime. That is, registration does not respect the circular nature of
clock time.

In addition, the composition of the UK Biobank accelerometry sub-study has been
shown to be overall healthier than the larger UK Biobank study, which is itself healthier than
the UK population. As a result, the generalizability of our results is unclear. Nevertheless,
we were able to replicate key findings regarding the epidemiology of circadian patterns of
PA from previous studies in both nationally representative and healthy aging US cohorts,
suggesting that the observed aging trends are robust to some sources of sampling bias and
are likely to be reproduced in other studies which draw from similar populations. Finally,
driving and other systematic behavioral differences that are not physical activity but affect
accelerometry readings across age ranges and sexes can have a minor effect on results, so
all results must be viewed with this caveat [39]. Threshold-based methods such as our
binary-curve registration are more robust.

Synthesizing the results of our analysis, we find that the diurnal patterns of both
volume of physical activity and the probability of being active change with age and that
there are sizable gender difference in these trends. In addition, there does appear to
be an age trend in the timing of PA as older adults have a more compressed “active”
period. However, there does not appear to be a substantial gender difference in the
changes of the active period with age. Ultimately, from a scientific perspective, this study
validates previous studies’ findings in a new aging cohort (diurnal patterns of volume),
presents novel findings regarding the difference in analyzing various summaries of physical
activity profiles (probability of being active/inactive, registration and changes in phase
in timing of PA). In addition, we introduce new methodologies to the study of PA and
aging and, crucially, provide the code for reproducing our methods using publicly available
software through the accompanying online supplemental material to be uploaded to Github
on publication.
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