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ABSTRACT

Copy number variations (CNVs) are being used as
genetic markers or functional candidates in gene-
mapping studies. However, unlike single nucleotide
polymorphism or microsatellite genotyping tech-
niques, most CNV detection methods are limited
to detecting total copy numbers, rather than copy
number in each of the two homologous chromo-
somes. To address this issue, we developed a sta-
tistical framework for intensity-based CNV detection
platforms using family data. Our algorithm identifies
CNVs for a family simultaneously, thus avoiding
the generation of calls with Mendelian inconsistency
while maintaining the ability to detect de novo CNVs.
Applications to simulated data and real data indi-
cate that our method significantly improves both
call rates and accuracy of boundary inference, com-
pared to existing approaches. We further illustrate
the use of Mendelian inheritance to infer SNP allele
compositions in each of the two homologous chro-
mosomes in CNV regions using real data. Finally, we
applied our method to a set of families genotyped
using both the Illumina HumanHap550 and Affyme-
trix genome-wide 5.0 arrays to demonstrate its
performance on both inherited and de novo CNVs.
In conclusion, our method produces accurate CNV
calls, gives probabilistic estimates of CNV transmis-
sion and builds a solid foundation for the develop-
ment of linkage and association tests utilizing CNVs.

INTRODUCTION

A central strategy in the genetic study of human dis-
eases is to identify genomic DNA variations related to

clinical phenotypes. Human genomic variation exists in
many forms, including single nucleotide polymorphisms
(SNPs), simple repeat elements, microsatellites and
structural variations such as copy number variations
(CNVs) (1). A CNV is defined as a chromosomal segment,
at least 1 kb in length, whose copy number varies in com-
parison with a reference genome (2). A significant fraction
of CNVs are likely to have functional consequences, due
to gene dosage alteration, disruption of genes, positional
effects or the uncovering of deleterious alleles (3,4). Thus,
comprehensive identification and cataloging of CNVs
will greatly benefit the genetic and functional analysis of
human genome variation.
Multiple techniques have been developed to detect dele-

tions or duplications in the human genome and other
mammalian genomes (5), and many of them depend on
analyzing patterns of signal intensities across the genome.
Traditionally, large chromosome rearrangements have
been detected by array-comparative genomic hybridiza-
tion (CGH) techniques that analyze the fluorescence
signal intensities of clones (6–9). Another comparable
platform for CNV detection is whole genome oligonucleo-
tide arrays. Since design of the arrays does not depend
on SNPs, such technology can achieve complete genome
coverage with higher precision for boundary inference of
CNVs. Due to recent increased popularity of genome-wide
association studies, high-density SNP genotyping arrays
have been commonly used for CNV detection and anal-
ysis. With such arrays, signal intensity is measured for
each allele of a given SNP, and analysis of signal inten-
sities across all SNPs in the genome is used to infer
CNVs (10,11). More recently, to improve the coverage
of SNP arrays for CNV analysis, manufacturers of SNP
genotyping arrays, such as Affymetrix and Illumina,
have incorporated nonpolymorphic (NP) markers into
their SNP genotyping arrays, especially in known
CNV regions.
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Although traditionally ‘losses’ and ‘gains’ have been
used to describe the major classes of CNVs, CNVs in a
diploid genome are indeed chromosome-specific events.
That is, CNVs can exist in any of the two homologous
chromosomes, such as being deleted on one chromosome
but duplicated on the other. Knowing chromosome-
specific copy number is important to the development of
linkage and association tests for CNVs. However, those
commonly used CNV detection techniques mentioned
above all depend on signal intensity measures, and are
therefore unable to infer copy number in each homolo-
gous chromosome. The efficient utilization of family
information can potentially help circumvent this issue.
Furthermore, since most CNVs follow Mendelian inheri-
tance (8), the use of family information can improve the
sensitivity and specificity of CNV detection (12). In fact,
family-based designs are now commonly used in genome-
wide association studies, making it highly desirable to
develop methods to infer chromosome-specific copy
numbers. For example, in a recent CNV study on autism
spectrum disorders, 751 families have been genotyped by
the Affymetrix genome-wide 5.0 Human SNP arrays (13);
in our ongoing study, 943 autism families were genotyped
using the Illumina HumanHap550 SNP arrays (14). Other
family-based genome-wide association studies include the
Framingham heart study (15), a multiple sclerosis study
(16) and type I diabetes studies (17,18).
To use family information in analysis of CNVs, Kosta

et al. (19) developed an approach to infer chromosome-
specific copy numbers for nuclear families after the total
copy numbers are obtained from quantitative PCR. In
our previous CNV analysis (12), we incorporated family
information in a two-step procedure in which family
members were first used independently to generate CNV
calls, and then combined together to post-validate calls
obtained in the first step by incorporating family relation-
ships. Although this approach has been shown to signifi-
cantly increase the sensitivity and specificity of CNV
detection, the family information is not optimally used.
Moreover, if the CNV boundary is inferred incorrectly
in the first step, it cannot be corrected in the second
step. More recently, Marioni et al. (20) discussed similar
issues extensively for array CGH data, and proposed that
copy numbers can be inferred on each chromosome, using
HapMap family data as examples.
Efficient utilization of family information in CNV

detection requires incorporation of the family relation-
ships when modeling the joint probability distribution
of signal intensities for family members. Similar to tradi-
tional multipoint linkage analysis with families, such a
modeling procedure requires consideration of two levels
of dependency—the dependency of signal intensities both
between adjacent markers for each family member and at
the same marker between family members. The first level
of dependency can be modeled by a hidden Markov chain,
in which the degree of dependency is determined by tran-
sition probabilities of the hidden copy number states,
whereas the second level of dependency is determined
by Mendelian inheritance. However, unlike the analysis
of SNPs or microsatellites, family-based CNV studies
are limited by the technical platforms, which can only

give intensity estimates of the total copy number of a
diploid genome. The analysis of CNVs in families is
further complicated by the occurrence of de novo events,
which occur as germline, somatic or cell line-induced
chromosome aberrations in offspring that were not inher-
ited from either parent.

To address these complications, we describe a unified
statistical framework developed to jointly model the signal
intensities for a parents–offspring trio. We demonstrate
that our model is computationally feasible and can be
used to analyze trios in a more efficient manner than exist-
ing methods, which do not consider family relationships
or use family relationships separately (12). By computer
simulations and analysis of experimentally validated
CNVs on real data, we demonstrate its superior perfor-
mance in increasing call rates and in identifying the exact
boundaries of CNVs. In addition, by analyzing a set of
families genotyped using both the Illumina and Affymetrix
SNP arrays, we further show the applicability of our
method on different technical platforms and in detecting
both inherited and de novo CNVs. Although CNV detec-
tion only concerns the total copy number, our model gives
probabilistic estimates of chromosome-specific copy num-
bers, which can be used for the future development of
linkage and association tests that require chromosome-
specific copy number information.

METHODS

Overview of the hiddenMarkov model framework

The hidden Markov model (HMM) is a statistical tech-
nique that models data generated from an underlying
Markov process. The HMM assumes that the distribution
of an observed data point depends on an unobserved
(hidden) state, where the elements of the hidden states
follow a Markov process. Since CNV detection typically
involves aggregating information from multiple consecu-
tive SNPs, HMM provides a natural framework for mod-
eling dependence structures between copy numbers at
nearby markers. Figure 1 shows a schematic representa-
tion of our proposed model for joint CNV distribution in
a parents–offspring trio. The model consists of a chain for
the copy number states of the father, a chain for the copy
number states of the mother, a chain for the de novo event
status of the offspring and these three chains are indepen-
dent of each other. Although the offspring copy number at
each marker is dependent on the copy number at the pre-
vious marker, it is also determined by six other elements:
the copy number states of parents and the de novo status at
both the current marker and the previous marker (dashed
lines in Figure 1). Below we will describe how to explicitly
model the joint CNV distribution of a parents–offspring
trio through likelihood calculation of the signal intensities.

Signal intensities for Illumina SNP arrays

To illustrate our method, we focus on data generated from
the Illumina SNP arrays and the Affymetrix arrays with
both SNP and NP markers. Illumina SNP arrays produce
two measures on signal intensities at each SNP—log
R ratio (LRR) and B allele frequency (BAF), and these
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two measures were originally proposed by Illumina for
copy number inference (10). To obtain LRR and BAF,
for each SNP, the raw signal intensities are subject to
a normalization procedure, which produces the X- and
Y-values, representing normalized signal intensity for the
A and B alleles, respectively. Two measures, R=X+Y,
and �=arctan(Y/X)/(�/2), are then calculated for each
SNP. As a normalized measure of total signal intensity,
LRR is then calculated as log2(Robserved/Rexpected), where
Rexpected is computed from linear interpolation of the
canonical genotype clusters. The BAF is a normalized
measure of the relative signal intensity ratio of the B
and A alleles. Let �g, g 2 {AA, AB, BB} denote the
mean � value for genotype cluster g obtained from a set
of reference samples. The corresponding BAFs are defined
as 0.0, 0.5 and 1.0, respectively. Then, for a subject with
�subject, the BAF is defined through linear interpolation
among the three clusters:

BAF¼

0, if �subject < �AA

0:5ð�subject� �AAÞ=ð�AB� �AAÞ, if �AA � �subject < �AB

0:5þ 0:5ð�subject� �ABÞ=ð�BB� �ABÞ, if �AB � �subject < �BB

1, if �subject � �BB

8>>><
>>>:

1

Signal intensities for Affymetrix SNP arrays

The Affymetrix genome-wide 5.0 and 6.0 SNP arrays
contain approximately equal numbers of SNP markers
and NP markers to improve the genome coverage. We
followed a similar procedure as used by the Illumina plat-
form to derive the LRR and BAF values for SNP mark-
ers, and the LRR values for NP markers. We used the
Affymetrix Power Tools (http://www.affymetrix.com/sup
port/developer/powertools/changelog/index.html) to per-
form data normalization, signal extraction and geno-
type calling from raw CEL files generated in genotyping
experiments. For each SNP marker, we then relied on the

allele-specific signal intensities for the AA, AB and BB
genotypes on all genotyped samples to construct three
canonical genotype clusters. Since each NP marker has
only one reference cluster, we set the center value of the
cluster as the median of the signal intensities for all geno-
typed samples. Once the canonical genotype clusters are
constructed, we can then transform the signal intensity
values for each SNP into R, LRR, � and BAF values.
The method described below uses both LRR and BAF
values, but for NP markers, the BAF information is
ignored in the likelihood calculation.

Likelihood of signal intensities for a parents–offspring trio

Assume a parents–offspring trio is genotyped at T conse-
cutive SNPs. For SNP j (1� j�T), let rj=(rj,f, rj,m, rj,o)
denote the triplet of LRRs of the father, the mother and
the offspring, bj=(bj,f, bj,m, bj,o) denote the corresponding
BAFs, zj=(zj,f, zj,m, zj,o) denote the underlying hidden
copy number states, and DNj (1: de novo event; 0: inher-
ited from parents) denote the de novo event status of the
offspring. The observed signal intensities for the trio can
be represented by r=(r1,. . ., rT), b=(b1,. . ., bT), and the
hidden copy number states can be represented by
z=(z1,. . ., zT). Let � denote all parameters in the HMM
(including means and standard deviations in the emission
probabilities of signal intensities, initial probabilities of
copy number states and transition probabilities). The like-
lihood of the signal intensities for the trio is

Pðr1, . . . ,rT,b1, . . . ,bTj�Þ

¼
X
z1

� � �
X
zT

X
DN1

� � �
X
DNT

�
Pðr1, . . . ,rTjz1, . . . ,zT,�Þ

� Pðb1, . . . ,bTjz1, . . . ,zT,�Þ

� Pðz1, . . . ,zTjDN1, . . . ,DNT,�Þ

� PðDN1, . . . ,DNTj�Þ

�

¼
X
z1

� � �
X
zT

X
DN1

� � �
X
DNT

�
Pðr1jz1,�ÞPðb1jz1,�Þ

Pðz1jDN1,�ÞPðDN1j�Þ

�
YT
j¼2

Pðrjjzj,�ÞPðbjjzj,�ÞPðzjjzj�1,DNj,DNj�1,�Þ

PðDNjjDNj�1,�Þ

�
:

2

Figure 1 provides a schematic representation of the depen-
dence structure specified in Equation (2). This equation
requires a few simplifying but reasonable assumptions,
including the conditional independence of LRR and
BAF values at each marker (supported by empirical
data), the conditional independence of LRR/BAF values
between adjacent markers, as well as the conditional inde-
pendence of BAF values and the de novo event status
at each marker. For the starting SNP, its contribution to
the likelihood is the product of the emission probability
of the signal intensities, the initial probability of copy

Figure 1. Illustration of the hidden Markov model framework for
modeling genetic inheritance of CNVs in parents–offspring trios.
F, M and O represent copy number states of the father, mother and
offspring, respectively, and DN is an indicator variable for de novo
event status of the offspring.
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number states, and the initial probability of the de novo
event status. Based on empirical data from HapMap,
we estimate that e=PðDN1 ¼ 1j�Þ ¼ 1:5e� 6. For the
remaining SNPs (2 � j � T), the contribution of each
SNP to the likelihood is the product of the emission
probability, the transition probability of copy number
states and the transition probability of the de novo event
status. The challenge of the HMM lies in the inference
of the hidden copy number states of each marker and the
de novo event status of the offspring, given the observed
signal intensities. Below, we describe elements needed in
the HMM calculation. We note that the calculation in
Equation (2) can be easily extended to nuclear families
with multiple offspring, in which each additional offspring
requires a variable specifying copy number state and a vari-
able indicating de novo status for each marker.

Hidden copy number states. We adopt a five-state defini-
tion of hidden copy number states (Table 1) to reflect
possible copy number changes, including double-copy
deletion (zero copies), single-copy deletion (one copy),
normal state (two copies), single-copy duplication (three
copies) and double or more copy duplication (four or
more copies). A copy number of more than four is usually
indistinguishable from four copies in patterns of signal
intensity, so we combine this rare scenario with four copies.

Emission probabilities of signal intensity. Given the copy
number states of the father, the mother and the offspring,
their signal intensities are independent, thus for marker
j,Pðrjjzj,�Þ ¼

Q
k2ff,m,og Pðrj,kjzj,k,�Þ. We propose to model

the emission probability of the LRRs as a normal distri-
bution based on empirical observations, Pðrj,kjzj,k,�Þ ¼
�ðrj,k;�zj,k ,�zj,kÞ, where �ðrj,k;�zj,k ,�zj,kÞ is the normal den-
sity function with unknown mean �zj,k and SD �zj,k .
The emission probability of BAF is slightly more com-

plicated than the LRR. For the zero-copy state, we used
a mixture of normal with mean 0.5 and unknown SD, and
a point mass at 0 or 1 to model the distribution of BAF.
For each state other than the zero-copy state, there are
multiple possible genotypes with distinct patterns of BAF.
Let C(zj,k) denote the total number of genotypes (Table 1)
for state zj,k of individual k at SNP j. For each genotype
that is consistent with the copy number state, let g denote
the number of copies of allele B. Let pj,B be the population
frequency of allele B at marker j, which can be estimated
from a set of reference samples such as the HapMap. Then
the emission probability of BAF can be modeled as a

mixture of distributions, Pðbj,kjzj,k,�Þ ¼
P

g Pðbj,kjg,zj,k,�Þ
Pðgjzj,k,�Þ, where

Pðgjzj,k,�Þ ¼
Cðzj,kÞ

g

� �
pgj,Bð1� pj,BÞ

Cðzj,kÞ�g 3

is the probability of genotype g, and

Pðbj,kjg,zj,k,�Þ ¼

�ðbj,k;�BAF,zj,k,g,�BAF,zj,k,gÞ, if 0 < g < Cðzj,kÞ

Ifbj,k¼0gM0 þ If0<bj,k<1g

� �ðbk,j;�BAF,zj,k,g,�BAF,zj,k,gÞ,
if g ¼ 0

Ifbj,k¼1gM1 þ If0<bj,k<1g

� �ðbk,j;�BAF,zj,k,g,�BAF,zj,k,gÞ,
if g ¼ Cðzj,kÞ

8>>>>>>><
>>>>>>>:

4

The use of truncated normal distribution is due to the
truncation in BAF calculation. The point mass probabil-
ities are set as M0=M1=0.5.

Initial probability of copy number states. For the first
marker, the initial probability of the copy number states
for the trio is

Pðz1jDN1,�Þ ¼Pðz1,fj�ÞPðz1,mj�ÞPðz1,ojz1,f,z1,m,DN1,�Þ

¼�z1,f�z1,mPðz1,ojz1,f,z1,m,DN1,�Þ
5

where the first two terms are the initial probabilities of
copy number states for the father and mother, respec-
tively, and the third term is the conditional probability
of copy number state of the offspring given the parental
copy number states and de novo event status of the off-
spring. If DN1 ¼ 1, then a de novo event occurs. Assuming
the offspring is equally likely to take one of the five copy
number states, then Pðz1,ojz1,f,z1,m,DN1 ¼ 1,�Þ ¼ 1=5. We
note that this is a simplified assumption for computational
convenience, since in reality the probability of some de
novo events (such as when duplicating two additional
copies) requires more dramatic changes in genomic con-
tents than others (such as when duplicating one copy). If
DN1=0, then the offspring’s copy number is determined
by the parental copy numbers through Mendelian
inheritance.

TomodelMendelian inheritance of CNVs, it is necessary
to specify models for chromosome-specific copy numbers.
Given the total copy number, there might be multiple
compatible chromosome-specific copy number configura-
tions. A detailed illustration is given in Suppplementary
Figure 1. Due to combinatorial complexities, the likelihood
function should explicitly incorporate and appropriately
weigh different configurations of chromosome-specific
copy numbers. To model the probability distribution of
chromosome-specific copy number at a single marker,
here we propose a single-parameter model with the
parameter a, which specifies the probability of the less
likely chromosome-specific copy number configuration
(Table 2). Once the parental chromosome-specific copy
numbers are known, the probability distribution of the
offspring’s chromosome-specific copy numbers can then

Table 1. Description of the five copy number states

Total
copy number

Genotypes Description
(autosomal markers)

0 Null Deletion of two copies
1 A, B Deletion of one copy
2 AA, AB, BB Normal state
3 AAA, AAB, ABB, BBB Duplication of one copy
4 AAAA, AAAB, AABB,

ABBB, BBBB
Duplication of two or

more copies
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be obtained following Mendel’s first law (Supplementary
Tables 1–3).

Transition probabilities of copy number states. For a par-
ents–offspring trio, the transition probability of their copy
number states from SNP j – 1 to SNP j is

Pðzjjzj�1,DNj,DNj�1,�Þ

¼ Pðzj,f,zj,m,zj,ojzj�1,f,zj�1,m,zj�1,o,DNj,DNj�1,�Þ

¼ Pðzj,ojzj,f,zj,m,zj�1,f,zj�1,m,zj�1,o,DNj,DNj�1,�Þ

Pðzj,fjzj�1,f,�ÞPðzj,mjzj�1,m,�Þ

6

The transition probability describes the probability of
having a copy number state change between two adjacent
SNPs. Intuitively, the copy number state is unlikely to
change for SNPs that are nearby but is more likely to
change for SNPs that are far apart. To appropriately
model such spatial dependency, we use the following
model to characterize the transition probability for the
parents (k= f or m),

Pðzj,k ¼ ljzj�1,k ¼ h,�Þ ¼
1�

P
l6¼h �h,lð1� e�dj=DÞ if l ¼ h

�h,lð1� e�dj=DÞ if l 6¼ h

�
7

where dj is the physical distance between SNPs j – 1 and j,
and D is a constant that is set as 100 kb. The values of g’s
are treated as unknown parameters.

For the offspring, we need to calculate Pðzj,ojzj,f,
zj,m,zj�1,f,zj�1,m,zj�1,o,DNj,DNj�1,�Þ. We note that

Pðzj,ojzj,f,zj,m,zj�1,f,zj�1,m,zj�1,o,DNj,DNj�1,�Þ

¼
Pðzj,o,zj,f,zj,m,zj�1,o,zj�1,f,zj�1,mjDNj,DNj�1,�Þ

Pðzj,f,zj,m,zj�1,f,zj�1,m,zj�1,ojDNj,DNj�1,�Þ

¼
Pðzj,o,zj�1,ojzj,f,zj�1,f,zj,m,zj�1,m,DNj,DNj�1,�ÞP

zj,o

Pðzj,o,zj�1,ojzj,f,zj�1,f,zj,m,zj,m�1,DNj,DNj�1,�Þ

8

Thus, we need to calculate Pðzj,o,zj�1,ojzj,f,zj�1,f,zj,m,
zj�1,m,DNj,DNj�1,�Þ. This probability can be classified
into four categories: de novo at both SNPs, de novo at
only one SNP and inherited at both SNPs.
When both SNPs are de novo, the parental copy num-

bers become irrelevant, implying that we can assume the
offspring’s copy number states follow a hidden Markov
chain that is independent of the parents. Under this
assumption,

Pðzj,o,zj�1,ojzj,f,zj�1,f,zj,m,zj�1,m,DNj ¼ 1,DNj�1 ¼ 1,�Þ

¼ Pðzj,o,zj�1,ojDNj ¼ 1,DNj�1 ¼ 1,�Þ

¼ Pðzj,ojzj�1,o,DNj ¼ 1,DNj�1 ¼ 1,�Þ

Pðzj�1,ojDNj�1 ¼ 1,�Þ,

9

where Pðzj�1,ojDNj�1 ¼ 1,�Þ ¼ 1=5, and Pðzj,ojzj�1,o,
DNj ¼ 1,DNj�1 ¼ 1,�Þ can be calculated based on
the transition probability as described earlier for the
parents.
When SNP j – 1 is de novo and SNP j is inherited, then a

CNV breakpoint occurs between markers j – 1 and j, thus
it is reasonable to assume that the copy number states of
the offspring at these two markers are independent. Under
this assumption,

Pðzj,o,zj�1,ojzj,f,zj�1,f,zj,m,zj�1,m,DNj ¼ 0,DNj�1 ¼ 1,�Þ

¼ Pðzj,ojzj,f,zj,m,DNj ¼ 0,�ÞPðzj�1,ojDNj�1 ¼ 1,�Þ

¼
1

5
Pðzj,ojzj,f,zj,m,DNj ¼ 0,�Þ

10

where Pðzj,ojzj,f,zj,m,DNj ¼ 0,�Þ can be calculated based on
Mendelian inheritance as specified in Supplementary
Tables 1–3. The conditional probability when SNP j – 1
is inherited and SNP j is de novo can be calculated in a
similar fashion.
When both SNPs j – 1 and j are inherited, the probabil-

ity Pðzj,o,zj�1,ojzj,f,zj�1,f,zj,m,zj�1,m,DNj ¼ 0, DNj�1 ¼ 0,�Þ
can be calculated based on Mendelian inheritance. Given
the high density of SNPs on Illumina’s whole-genome
SNP genotyping arrays, it is reasonable to assume that
there is no recombination between SNPs j – 1 and j, sug-
gesting that we can treat these two SNPs as a single
unit when calculating the Mendelian inheritance proba-
bilities. To model Mendelian inheritance, we need to
specify models for chromosome-specific copy numbers
given the total copy numbers at two adjacent SNPs.
Following a similar derivation of the chromosome-specific
copy number model for a single SNP, here we propose
a single-parameter model with parameter, b, which

Table 2. Probabilistic model specifying chromosome-specific copy

numbers at a single marker, given the total copy number

Chromosome Total
copy number

Chromosome-specific
copy numbers

Probability

Autosome 0 0/0 1
1 0/1 1
2 1/1 1 – a

0/2 a
3 1/2 1 – a

0/3 a
4 2/2 0.5

1/3 0.5
Male

chromosome X
0 0 1

1 1 1
2 2 1
3 3 1
4 4 1

Female
chromosome X

0 0/0 1

1 0/1 1
2 1/1 1 – a

0/2 a
3 1/2 1 – a

0/3 a
4 2/2 0.5

1/3 0.5

In the last column, a is the probability of the less likely chromosome-
specific copy number configuration, and is simplified to be same for
different copy numbers. Our simplified model only considers those
combinatorial configurations listed in the table, while other extremely
rare combinations are treated as having probability of zero in the
modeling procedure.
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specifies the probability of the less likely chromosome-
specific copy number configuration in which copy number
changes occur at both chromosomes (Table 3). Such an
assumption is reasonable since it is unlikely that copy
number changes occur on both chromosomes unless
the CNV is common. Due to the high-dimensionality
(25� 25� 25) of the table for two-marker copy number
inheritance, we do not provide it in the manuscript, but
it is available in the source code of our software.

Transition probabilities of de novo event statuses for the
offspring. The majority of the CNVs in the offspring
are inherited from the parents, but a small fraction of
the offspring’s CNVs may occur due to meiotic recom-
bination, mitotic recombination, or cell line-induced
chromosome rearrangements. The transition probability
of de novo event status describes the probability of the
offspring’s CNV changing from inherited to de novo or
vice versa. Clearly, the transition probability is depen-
dent on distance between two adjacent markers since
markers that are close to each other are more likely
to be located in the same inherited or de novo region.
To model such spatial dependency, we adopt the
same transition probability model that was previously

described for copy number states but with different tran-
sition parameters,

PðDNj ¼ ljDNj�1 ¼ h,�Þ

¼
1�

P
l6¼h �h,lð1� e�dj=DÞ if l ¼ h

�h,lð1� e�dj=DÞ if l 6¼ h

(
,

11

where the values of ds are treated as unknown parameters.

Parameter estimation and CNV calling. Inference on the
hidden copy number states requires estimation of all
unknown parameters, including ms and �s for the signal
intensity, initial probabilities for copy number states �, the
transition probability matrix �=(gh,l) for copy number
states, the transition probability matrix for the de novo
event status �=(dh,l) and a and b, the parameters in
the single- and two-marker chromosome-specific copy
number models. It is computationally challenging to esti-
mate these parameters given the high dimension of the
data. Moreover, a single sample may not carry sufficient
information for estimating all model parameters.
However, assuming the samples are homogeneous, then
we can select a set of training samples with large CNV
regions through visually examining patterns of LRRs
and BAFs to estimate the corresponding ms and �s for
regions with different numbers of copies. In our analysis,
we fixed the values of a and b at 0.0009. Evaluations with
different values of a and b suggest that the results are
robust to misspecification of their values (data not
shown). The initial probabilities �, the de novo rate e
and the � matrix are estimated from previously published
HapMap CNV results (12). To estimate the parameters in
the transition matrix �, we used the Baum–Welch algo-
rithm (21) to maximize the likelihood in Equation (2).
Given a set of HMM parameters and the signal intensity
data from a trio, we then used the Viterbi algorithm (22)
to infer the most likely path (state sequences for all SNPs
along each chromosome) for each of the individuals in the
trio simultaneously. A CNV is called from the most likely
state sequence, whenever a stretch of states that is different
from the normal state is observed.

Availability

All the CNV calling algorithms have been implemented
in the latest version of PennCNV, which is freely and
publicly available at http://www.openbioinformatics.org/
penncnv/. The Affymetrix LRR/BAF data transformation
programs, which were used in this study for the Affymetrix
genome-wide 5.0 arrays, were also made available as a
beta version. A set of standard HMMmodels are provided
for commonly used arrays; however, like commercial
software such as Partek and GoldenHelix, users have the
freedom to tweak all HMM parameters, the CNV inheri-
tance models, as well as the population frequency of B
allele parameters, which are suitable for custom-made
arrays.

RESULTS

We have developed a joint-calling algorithm for CNV
detection in parent–offspring trios, using a hidden

Table 3. Probabilistic model specifying the relative probability of

CNV haplo-genotypes, given the total copy numbers at two adjacent

markers

Copy numbers at two
adjacent markers

Chromosome-specific
copy numbers

Probability

0 0 0 0 || 0 0 1
0 1 0 0 || 0 1 1
0 2 0 0 || 0 2 b
0 2 0 1 || 0 1 1 – b
0 3 0 0 || 0 3 b
0 3 0 1 || 0 2 1 – b
0 4 0 1 || 0 3 0.5
0 4 0 2 || 0 2 0.5
1 1 0 0 || 1 1 1
1 2 0 0 || 1 2 b
1 2 0 1 || 1 1 1 – b
1 3 0 0 || 1 3 b
1 3 0 2 || 1 1 1 – b
1 4 0 3 || 1 1 0.5
1 4 0 2 || 1 2 0.5
2 2 1 1 || 1 1 1 – b
2 2 0 0 || 2 2 b
2 3 1 1 || 1 2 1 – b
2 3 0 0 || 2 3 b
2 4 1 1 || 1 3 0.5 – 0.5b
2 4 1 2 || 1 2 0.5 – 0.5b
2 4 0 2 || 2 2 b
3 3 0 0 || 3 3 b
3 3 1 1 || 2 2 1 – b
3 4 1 1 || 2 3 0.5
3 4 1 2 || 2 2 0.5
4 4 2 2 || 2 2 0.5
4 4 1 1 || 3 3 0.5

In the last column, b is the probability of the less likely chromosome-
specific copy number configuration in which copy number change
occurs at both of the two homologous chromosomes. Our simplified
model only considers those combinatorial configurations listed in the
table, while other extremely rare combinations are treated as having
probability of zero in the modeling procedure.
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Markov framework that simultaneously models family
relationship and signal intensities. This CNV calling algo-
rithm differs substantially from the previously described
family-based CNV calling algorithm (12) in that, first,
copy number estimates are given with respect to a
parent–offspring trio simultaneously in one step instead
of two steps (Figure 1), and second, it gives probabilistic
estimates of chromosome-specific copy numbers.
Therefore, we compared the performance of the proposed
joint-calling algorithm with existing algorithms that either
do not incorporate family relationship or use them sepa-
rately (12). We first performed simulation studies
and then analyzed experimentally validated CNVs from
multiple families in a real dataset genotyped using the
Illumina SNP arrays. Furthermore, we used several
concrete examples from real data to demonstrate how
chromosome-specific copy numbers and SNP allele com-
position within CNVs can be inferred from family data.
Finally, to demonstrate the versatility of the proposed
method, we tested it on inherited and de novo CNVs
from a set of families genotyped using both the Illumina

HumanHap550 and the Affymetrix genome-wide 5.0 SNP
arrays.

Comparative analysis of CNV detection on simulated data

To evaluate the performance of the proposed joint-calling
algorithm under various scenarios of CNV inheritance, we
performed computer simulations. We generated signal
intensity data, as represented by LRR and BAF values,
for 27,742 SNPs on chromosome 11 for the Human-
Hap550 SNP array, based on allele frequency and CNV
size distribution from the empirical data obtained from
the HapMap CEU samples (12). We tested a total of
eight different inheritance scenarios of parent–offspring
CNV combinations (Figure 2); for each scenario, we
called CNVs using (i) the individual-calling algorithm
that treats family members as if they were unrelated,
(ii) the posterior-calling algorithm as described before
(12) and (iii) the joint-calling algorithm as proposed in
this paper. A total of 1000 data sets are simulated for
each scenario, and there are either 1000 or 2000 true
CNVs for each scenario depending on whether the

Figure 2. Comparative analysis of three CNV calling algorithms on simulated data. For each of the eight scenarios, 1000 trio data sets were
simulated and analyzed. We evaluated whether each calling algorithm can identify ‘exactly correct’ CNV calls (calls with the exact CNV boundaries
and the exact copy number as true CNVs). The joint-calling algorithm has the overall best performance, especially for inherited duplications.
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CNVs are transmitted to the offspring. Given that de novo
CNVs are rare (23–25), we did not consider them in the
simulations; instead, we evaluated de novo CNVs in real
data analysis as shown in a later section.
For each simulation scenario, the number of ‘exactly

correct’ CNV calls (CNV calls with identical copy
number and identical boundaries as the true CNVs) is
shown in Figure 2. We can see that the three calling algo-
rithms have similar performance for scenarios 3, 4 and 6,
but for the other scenarios, the joint-calling algorithm
yielded a substantially larger number of ‘exactly correct’
calls. Another important criterion of comparing different
CNV calling algorithms is the number of false positive and
false negative calls. Here, we refer to a CNV call as false
positive if the call does not overlap with the true CNV,
and we refer to a CNV as false negative if it is not detected
by the CNV calling algorithm. Supplementary Figure 2
shows the numbers of false positive and false negative
calls for the simulated data. We observed that when the
offspring’s CNV is inherited, the performance of the joint-
calling algorithm far exceeds the other two algorithms,
especially for duplication CNVs. For example, for sce-
nario 7, where the father has duplication on both chromo-
somes and the offspring has duplication on only one
chromosome, the number of false negative calls for the
individual-calling algorithm is 646; it drops down to 404
and 162, respectively, for the posterior-calling algorithm
and the joint-calling algorithm. Our results suggest that
efficient utilization of family information can significantly
improve the call rates as well as the accuracy of CNV
boundary inference.

Comparative analysis of CNV detection on real data

To test the performance of the joint-calling algorithm in
real data, we examined 10 families (34 subjects) from the
Autism Genetic Resource Exchange (AGRE) Consortium.
All study samples were genotyped using the Illumina
HumanHap550 SNP array (14). To compare the perfor-
mance of the three calling algorithms, we focused on the
4p16.1 deletions between WDR1 and ZNF518B, which
spans only four SNPs, making the CNV detection espe-
cially difficult. We designed PCR-walking experiments to
validate the CNVs and mapped the approximate break-
points. We then selected a pair of primers to infer the true
copy numbers of all subjects by PCR amplification of the
genomic segment encompassing CNV breakpoints.
Finally, we re-sequenced the short PCR product to con-
firm that the breakpoints are identical among unrelated
families. Since the true copy number for all subjects are
known experimentally (Supplementary Figure 3), we com-
pared the CNV calls for three algorithms with the true
copy numbers. Collapsing all families together, there are
a total of 30 true CNVs. For the individual-based calling
algorithm, only 15 CNVs were detected, implicating a
relatively high false negative rate. In contrast, both the
posterior calling algorithm and the joint-calling algorithm
are capable of detecting all 30 CNVs in all families.
However, for one family, the posterior calling algorithm
identified a CNV call with only three SNPs, resulting in a
slight discordance in boundary inference. The joint-calling

algorithm, on the other hand, completely recovered all true
CNVs, and all the CNV calls have the correct boundaries
with four SNPs. This comparative analysis on real data cor-
roborate our analysis on simulated data, and confirms that
the joint-calling algorithm improves accuracy in boundary
inference and leads to decreased false negative rate.

Inference of chromosome-specific copy numbers
from family data

Family information can be used to infer CNV genotypes,
that is, chromosome-specific copy numbers on each of the
two homologous chromosomes. To illustrate this point by
a concrete example, we show in Figure 3 an AGRE family
in which all family members carry a �130 kb duplica-
tion on 22q11.21, which encompasses the PRODH and
DGCR6 gene. The results from the individual-calling,
the posterior-calling and the joint-calling algorithms are
concordant for this family, revealing that the first child
has four copies of this CNV region, yet the father, the
mother and the sibling in this family carry three copies.
As shown in Table 2, when the total copy number is 3, the
corresponding chromosome-specific copy numbers can be
either 1/2 or 0/3, and when the total copy number is 4,
the corresponding chromosome-specific copy numbers can
be either 1/3 or 2/2. Despite such uncertainty, when the
family relationship is considered, we can infer confidently
that the chromosome-specific copy numbers for the father,
the mother, the first child and the second child must be
1/2, 1/2, 2/2 and 1/2, respectively, and that the first child
inherits the duplicated chromosome from both parents.
If only one child is available in this family, we can still
infer the most likely chromosome-specific copy number
combinations in the parents–offspring trio, albeit with
less confidence. This example is merely an illustration of
how additional family information can be used to increase
confidence of chromosome-specific copy number esti-
mates, compared to the ‘prior distribution’ in Table 2.

Inference of chromosome-specific SNP genotypes
in CNVs from family data

For CNV calls generated on SNP genotyping arrays, we
can also use the SNP genotypes within the CNV to infer
the SNP allele composition for each of the two homolo-
gous chromosomes, that is, chromosome-specific SNP
genotypes. Unlike the ‘called SNP genotypes’ given by a
genotype calling software, which comprises three types of
allele compositions (AA, AB and BB), the ‘real SNP gen-
otypes’ within a CNV can be jointly inferred from the
BAF values and the total copy numbers (for example,
A, BB, ABB and AABB, in Table 1). Knowing the SNP
allele composition within the inherited CNV is important
for the development of linkage and association tests on
CNVs for disease phenotypes. To further illustrate this,
we used a large segregating pedigree in AGRE as an
example for such analysis: there are six offspring in this
family, and five of them are affected by autism spectrum
disorders (including four with strict autism diagnosis
and one with broad spectrum diagnosis). Figure 4 displays
the chromosome-specific SNP genotypes on the first 10
SNPs in the 10q11.22 duplication CNV region for each
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of the individuals. By examining SNP genotypes, we can
disambiguate the four parental CNV haplotypes with
clear SNP allele composition (Figure 4, Supplementary
Table 4).

Furthermore, Supplementary Figure 4 and Supplemen-
tary Table 5 show another example of chromosome-
specific SNP genotypes in this pedigree at a duplication

CNV on 6q27, which co-segregates with autism in this
family. However, unlike the 10q11.22 duplication, since
the mother is homozygous without copy number change
in the 6q27 region, the transmission patterns of the two
maternal chromosomes cannot be discriminated. In addi-
tion, we also analyzed the 22q11.21 duplication in the
family presented in Figure 3: the use of family relationship

Figure 3. Illustration of the signal intensity patterns (LRR and BAF values in upper panel) at a CNV region on 22q11.21 in four members in an
AGRE family. This CNV region encompasses the DCGR6 and PRODH gene, as shown in the genome browser (26) shot (lower panel), where the
CNV region for each individual is represented by a bar in the browser track (green= three copies, dark green= four copies). With the family
information, we can infer that the first child inherits duplications from both the father and the mother, resulting in having four copies of the
chromosome region.
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allows the identification of the SNP allele composition and
parental origin for each of the two duplicated homologous
chromosomes in the first child, who carries four copies
of this region (Supplementary Figure 5 and Supplementary
Table 6). All these examples suggest the importance of
examining family relationship and incorporating SNP gen-
otypes into the analysis of CNVs. Efficient utilization of
such information can provide valuable insights into study-
ing the biological aspects of CNVs, including their evolu-
tionary history as well as their genetic transmission
patterns.

Detection of inherited and de novoCNVs from Illumina
and Affymetrix SNP arrays

Although our algorithm was originally developed for
Illumina data, the algorithm is general enough and can
be readily applied to data generated from other technical
platforms. To demonstrate such utility, we analyzed a set
of AGRE families genotyped with both the Illumina
HumanHap550 SNP arrays by us and the Affymetrix
genome-wide 5.0 SNP arrays by others (13). All these
families contain at least one family member with

experimentally validated 16p11.2 deletion or duplication,
including three inherited CNVs from the father in family
AU0029 and five de novo CNVs in the offspring in four
other families. This CNV region is flanked by two �146 kb
segmental duplications which share 99.6% sequence iden-
tity to each other and are 593 kb apart (Figure 5). For the
Illumina HumanHap550 array, the CNV is covered by 47
SNPs with 530 kb in length. The Affymetrix genome-
wide 5.0 Human SNP array contains 82 markers between
segmental duplications; however, it also contains three
additional markers within segmental duplications without
unique genomic location, therefore we removed the three
markers from our analysis. The exactly correct CNV calls
from the Affymetrix array should contain 82 markers
(28 SNP markers, 54 NP markers) with 569 kb in length.
These families provide an ideal basis for comparison of
different CNV calling algorithms and different technical
platforms.

We compared the performance of the individual-
calling, the posterior-calling and the joint-calling algo-
rithms (Figure 5). All three algorithms gave correct
CNV calls in all individuals carrying the CNV, indicating
the high sensitivity and specificity of these algorithms in

Figure 4. Illustration of a duplication CNV on 10q11.22 that exists in the father and is transmitted to four offspring. The CNV calls are made on six
trios separately by the joint-calling algorithm. For each individual, the BAF values for all SNPs within the CNV and the chromosome-specific SNP
genotypes (for the first 10 SNPs) are displayed, and the SNP genotypes for the entire region are listed at Supplementary Table 4. The four different
parental CNV haplotypes are marked by different colors and denoted by I through IV beneath the genotypes. Combining information from total
copy number and the SNP genotypes, we can infer the SNP allele compositions within each homologous chromosome confidently for each offspring.
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detecting large-sized inherited or de novo CNVs. However,
the algorithms differ in their ability to detect the exact
CNV boundaries, which is especially obvious for the
Affymetrix array due to its higher levels of background
noise in signal intensity data. This example illustrates
the ability of the joint-calling algorithm in detecting
both inherited and de novo CNVs with accurate boundary
prediction, and its broad applicability to arrays that incor-
porate NP markers.

DISCUSSION

We have developed a formal statistical framework to
model the genetic inheritance of CNVs, via a HMM that
simultaneously considers family relationship and signal
intensities for parent–offspring trios. Our method consid-
ers the trio as a unit and calls their CNVs simultaneously,
thus avoiding the generation of calls that are Mendelian
inconsistent while maintaining the ability to detect de novo
events. Moreover, our method allows the probabilistic

estimation of chromosome-specific copy numbers, which
can be used in subsequent CNV analysis. By extensive
simulations and analysis of real family data, we showed
that when the offspring’s CNVs are inherited from the
parents, the proposed method improves the call rates
and the accuracy of boundary inference over existing
methods. Although we present the algorithm for parent–
offspring trios only, our method can be extended to ana-
lysis of nuclear families with multiple offspring, and we
demonstrated the utility of using information from addi-
tional family members in Figure 3. Altogether, we hope
that our method and software (http://www.openbioinfor
matics.org/penncnv) will be of great value to genome-wide
CNV studies using family data.
Although we described our CNV calling algorithm

for data generated from Illumina HumanHap550 and
Affymetrix genome-wide 5.0 SNP arrays, we note that
data derived from Illumina Human1M and Affymetrix
genome-wide 6.0 SNP arrays are similar in nature and
can therefore be analyzed directly with the proposed

Figure 5. Comparison of three CNV calling algorithms in identifying the exact boundaries of the 16p11.2 CNV in offspring of a set of families
genotyped by both Illumina HumanHap550 SNP array and Affymetrix genome-wide 5.0 Human SNP array. The CNV calls with exact boundaries
were marked by bold font in the table in upper panel. The CNV region is displayed within UCSC genome browser (26), with two tracks representing
marker coverage in two different arrays, as well as the RefSeq Genes track showing genes within the CNV. The three Affymetrix CN markers
located within segmental duplication regions are marked by a circle and are removed from analysis. Two �146 kb flanking segmental duplications
are shown as dark orange bars in the Segmental Dups track. The joint-calling algorithm makes more exactly correct CNV calls than the other two
calling algorithms.
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algorithm. Moreover, our algorithm can be extended to
other platforms, such as array-CGH experiments, or oli-
gonucleotide tiling arrays. For these non-SNP arrays,
since no allele frequency information can be inferred,
only the signal intensities at each marker contribute to
likelihood calculation. We note that due to the lower pre-
cision of array-CGH experiments, one might consider
using ‘loss’ and ‘gain’, rather than the exact copy
number, in the model. In such cases, the number of
hidden copy number states reduces to three, and the var-
ious CNV inheritance tables need to be adjusted accord-
ingly by combining copy numbers zero and one into a
single ‘loss’ state, and copy numbers three and four into
a single ‘gain’ state.
Compared to a previously published posterior-calling

algorithm (12), there are several distinct advantages
of the proposed joint-calling algorithm. First, instead of
using family information separately, the joint-calling
algorithm jointly models the family information with
signal intensities and thus uses data in the most efficient
manner. Second, if the CNV boundary is inferred incor-
rectly in the first step in the posterior-calling algorithm,
then it cannot be corrected in the second step; however, as
evidenced by our simulation results and analysis of the
AGRE families, for inherited CNVs, the joint-calling algo-
rithm is more likely to infer the correct boundary. Another
unique feature of the joint-calling algorithm is the ability to
give probabilistic estimate of chromosome-specific copy
numbers, which is only feasible when family information
is simultaneously modeled with signal intensities.
Despite the distinct advantages of the joint-calling

algorithm, we recognize that it is computationally inten-
sive and requires more assumptions than the posterior-
calling algorithm. First, in the joint-calling algorithm,
the family relationship needs to be jointly modeled with
the signal intensities, thus requires 5� 5� 5� 2 (five
states for each individual and two de novo states for the
offspring) states in the HMM for each marker in the
genome; however, the original formula for the posterior-
calling algorithm needs only six HMM states multiplied
by three individuals in a trio. Second, due to the increased
number of hidden states, the joint-calling algorithm
requires more memory than the posterior-calling algo-
rithm, which may be a problem for future ultra high-
density oligonucleotide arrays with dozens of millions
of markers. However, these problems can be solved by
analyzing chromosome segments sequentially and then
combining results together. Third, we note that the
joint-calling algorithm makes more assumptions (such as
the parameters used in Tables 2 and 3, as well as the de
novo indicator transition rate) than the posterior-calling
algorithm. The inherent complexity of the model dictates
that some parameters must be estimated directly from
empirical data rather than inferred from maximum like-
lihood. However, we note that the accuracy of these
parameters only affects rare scenarios, and has little effects
on the overall CNV calls. For example, increasing the
transition rate of DN indicator from ‘inherited’ to
‘de novo’ 10-fold only makes the detection of de novo
event in the child less sensitive, but has virtually no
effect on the detection of inherited CNVs in the trio or

non-transmitted CNVs in the parents, which comprise the
majority of CNVs in a family (data not shown).

For CNVs identified from high-density SNP genotyping
data, another important piece of information is the corre-
sponding SNP genotypes for markers within the CNVs;
for example, SNP genotypes can be used to characterize
parental origin of de novo events (12). In addition,
SNP genotypes can help interpret inherited CNVs and
extract more biological information, including probabilis-
tic models for chromosome-specific copy numbers. We
demonstrated the utilization of SNP genotype information
on an AGRE family in which we can infer with certainty
on the chromosome-specific copy numbers and the corre-
sponding chromosome-specific SNP genotypes. Results
from such analysis can be used to evaluate the preferential
transmission pattern in a transmission disequilibrium test
framework. In addition, information on the parental
origin of a CNV will be particularly important for analysis
of allelic imbalance and can help interpret gene expression
differences from two homologous chromosomes.

In summary, we have developed a statistical framework
to model the genetic inheritance of CNVs for parents–
offspring trios. The likelihood calculation makes it easily
extendable to nuclear families with multiple offspring.
We believe that the application, adaptation and extension
of our model in future studies will greatly facilitate the
development of CNV detection algorithms for data gen-
erated from various technical platforms, and will foster
the development of powerful and efficient linkage and
association tests utilizing CNVs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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