
sensors

Article

Cultivar Discrimination of Single Alfalfa
(Medicago sativa L.) Seed via Multispectral Imaging
Combined with Multivariate Analysis

Lingjie Yang 1,2,3, Zuxin Zhang 1,2,3 and Xiaowen Hu 1,2,3,*
1 State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology,

Lanzhou University, Lanzhou 730000, China; yanglj14@lzu.edu.cn (L.Y.); zhangzx13@lzu.edu.cn (Z.Z.)
2 Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs,

College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
3 Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture

Science and Technology, Lanzhou University, Lanzhou 730000, China
* Correspondence: huxw@lzu.edu.cn

Received: 29 September 2020; Accepted: 13 November 2020; Published: 18 November 2020 ����������
�������

Abstract: Rapid and accurate discrimination of alfalfa cultivars is crucial for producers, consumers,
and market regulators. However, the conventional routine of alfalfa cultivars discrimination is
time-consuming and labor-intensive. In this study, the potential of a new method was evaluated that
used multispectral imaging combined with object-wise multivariate image analysis to distinguish
alfalfa cultivars with a single seed. Three multivariate analysis methods including principal component
analysis (PCA), linear discrimination analysis (LDA), and support vector machines (SVM) were
applied to distinguish seeds of 12 alfalfa cultivars based on their morphological and spectral traits.
The results showed that the combination of morphological features and spectral data could provide
an exceedingly concise process to classify alfalfa seeds of different cultivars with multivariate analysis,
while it failed to make the classification with only seed morphological features. Seed classification
accuracy of the testing sets was 91.53% for LDA, and 93.47% for SVM. Thus, multispectral imaging
combined with multivariate analysis could provide a simple, robust and nondestructive method to
distinguish alfalfa seed cultivars.
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1. Introduction

Alfalfa (Medicago sativa L.), a perennial legume species, is one of the most important crops in
semi-arid and arid areas due to its contribution to animal production and cultivated pastures [1].
Alfalfa not only has enormous value as a livestock feed, but it also plays an essential role in reducing soil
erosion and nutrient loss, enhancing soil carbon sequestration, and increasing soil nitrogen fertility [2].
Therefore, alfalfa has been an important component of sustainable agricultural systems for many
years [3,4].

With the development of breeding techniques, many cultivars of alfalfa have been brought into
the market [5]. Different cultivars of alfalfa vary in growth performance, nutrition characteristics,
and stress tolerance. Proper cultivars usually show better adaptation to local environment and growth
conditions, thus appropriate use of certified seeds plays a vital role in quality and quantity guarantee
of alfalfa production. Therefore, guaranteeing the purity of alfalfa seeds with effective cultivar
discrimination and sorting is increasingly vital for not only the generated profit of farmers but also
the healthy development of the seed industry.
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Traditional methods of alfalfa cultivar identification usually rely on the morphological description
of plant cultivars in the field [5]. According to the International Union for the Protection of New Varieties
of Plants (UPOV), the assessments of distinctness, uniformity, and stability (DUS) throughout the entire
growing period in field conditions are used to determine whether a cultivar is distinguishable from
another. However, DUS assessments are often costly, time-consuming and restricted to a relatively small
number of traits that are influenced by environmental conditions. Molecular testing has been considered
as a more efficient way to make cultivar identification with high accuracy [6–8]. However, molecular
methods are generally required destructive sampling, and not suitable for online measurements
and sorting. Thus, it would be in great request to develop a non-destructive, simple, and rapid method
for alfalfa cultivars classification.

Multispectral imaging technology integrates conventional imaging and spectroscopy information
simultaneously, and is non-destructive, simple, rapid, and does not have the requirement of sample
pre-treatment [9,10]. These merits make it suitable for seed purity testing and seed contamination
determination. Therefore, this technique has been increasingly applied to compare seeds among
species and cultivars. For example, multispectral imaging has been successfully applied to discriminate
transgenic and non-transgenic rice seeds [11], to detect differences between rice seeds of different
cultivars [12], and to classify maize kernels [13]. However, there is no report on the application of
multispectral imaging techniques for rapid discrimination for alfalfa cultivars. Here, we aimed to
develop a non-destructive, rapid and high-throughput alfalfa cultivars discrimination method via
single seed, based on multispectral imaging techniques in combination with multivariate analysis.

2. Materials and Methods

2.1. Seed Sample

Twelve alfalfa cultivars as Abi700, Boja, Maverick, Ranger, Sutter, uc-1465, Fado, Vernal, Zhongmu1,
Zhongmu3, Dongmu1 and Zhonglan2 were provided by the Germplasm Bank of Cold and Arid Region,
Gansu, China. The seeds were kept in water-proof bags in a storage room with an average temperature
of −18 ◦C until used for imaging in January 2020. Photo of the seeds is displayed in Figure 1.
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For each cultivar, 200 seeds were used for classification experiments. Origin of each cultivar is
listed in Table 1. For each seed lot, 70% were randomly selected as a training set, and 30% were used
for testing set.
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Table 1. Seeds information of Medicago sativa L.

Number Latin Name Origin Cultivar

1 Medicago sativa L. United States Abi700
2 Medicago sativa L. United States Boja
3 Medicago sativa L. United States Maverick
4 Medicago sativa L. United States Ranger
5 Medicago sativa L. United States Sutter
6 Medicago sativa L. United States uc-1465
7 Medicago sativa L. France Fado
8 Medicago sativa L. United States Vernal
9 Medicago sativa L. China Zhongmu1

10 Medicago sativa L. China Zhongmu3
11 Medicago sativa L. China Dongmu1
12 Medicago sativa L. China Zhonglan2

2.2. Multispectral Imaging System

Multispectral images were captured with a VideometerLab4 (Videometer, Hørsholm, Denmark)
multispectral imaging system. The images had a high spatial resolution of approximately 40 µm/pixel,
consisted of 2192 × 2192 pixels. Before capturing multispectral images, the system was fully calibrated
radiometrically and geometrically by using three successive plates: white, dark and a dotted one
followed by a light setup calibration. Samples were illuminated by high power light-emitting diodes
(LEDs) at the rim of the sphere, ranging from ultraviolet to near-infrared at 19 specific wavelengths:
365, 405, 430, 450, 470, 490, 515, 540, 570, 590, 630, 645, 660, 690, 780, 850, 880, 890, and 970 nm. The LEDs
strobed successively in a scan time of approximately five seconds, resulting in a monochrome image at
each wavelength at 19 different wavelengths.

2.3. Multispectral Image Analysis

Image segmentation was performed using the VideometerLab software version 3.10. Removing
the Petri dish and surrounding background preserves the main objects as seeds. Then, attributes of
seeds, such as morphological traits and main spectral features of all individual seeds were extracted from
the image analysis and processed. The morphological traits included area, length, width, perimeter,
diameter area, average edge distance, width/length ratio, compactness circle, compactness ellipse,
bounding box side regularity, BetaShape_ a, BetaShape_ b, eccentricity, pointness, width of blob
end, CIELab L*, CIE Lab a*, CIE Lab b*, saturation, and hue [9,14]. Based on the reaction of human
eye to RGB, Commission Internationale de l’Eclairage (CIE) defined some device-independent color
systems such as CIE XYZ, CIE LUV and CIE L*a*b*. CIE L*a*b* system is an improved version
of CIE XYZ, which is also an important international standard for measuring color-reproduction
errors and simplified mathematical approximation, to a uniform color space composed of perceived
color difference, making up for the deficiency of RGB and CMYK color system [15,16]. Parameter
L* represents lightness, a* for green-red color and b* for blue-yellow. The color of lightness L* is
arranged along the rectangular coordinates a* and b*. Explanation of morphological traits was listed in
Supplementary Table S1. The extracted spectral signatures of seeds represent the mean intensity of
reflected light for every single wavelength calculated from all seed pixels in the image.

2.4. Multivariate Data Analysis

Multivariate analysis, including principal component analysis (PCA), linear discrimination analysis
(LDA), and support vector machines (SVM), was conducted using FactoMineR, MASS, and e1071
packages respectively, in R, to classify and distinguish alfalfa cultivar seeds.
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2.4.1. PCA

Principal component analysis (PCA) was carried out to identify the patterns hidden in extracted
morphological features and spectral data of all seeds, as an explorative multivariate data analysis
technique. PCA is commonly used to get an overview of systematic variation in data or as a method
for qualitative analysis, it could calculate each principal component contribution and the cumulative
score. We used it to explore the possibility of grouping seeds with similar morphology and spectral
profiles [17–19].

2.4.2. LDA

Linear discriminant analysis (LDA) was used to establish a linear discriminant function that
maximizes the ratio between class and within-class variances [18]. In this study, seeds were randomly
selected as training (70% of the total samples) and testing sets (remaining 30%). The models for LDA
classification were built using the training packages, and the obtained models were validated using
independent validation, which was not included in the model construction [20].

For each discriminant model, the recognition levels to new samples in testing sets were defined as
the proportion of samples correctly identified to the total number of the seeds in testing sets. It was
calculated using the following equation.

Accuracy (%) = Correctly classified seeds/Total number of seeds × 100 (1)

2.4.3. SVM

The least squares-support vector machine (LS-SVM) was proposed by Cortes and Vapnik [21],
which was a supervised learning algorithm. As for multivariate function estimation or non-linear
classification tasks, SVM performed effectively. Different from other analysis methods, SVM can use
fewer training variables or samples in high-dimensional characteristic space. Details of the LS-SVM
algorithm can be found in previous research [22,23].

The “Accuracy” discrimination was determined according to Equation (1).

3. Results

3.1. Morphologic Features of Medicago sativa L. Cultivars Seeds

As for binary features, seeds of uc-1465 are the biggest in size, while those of Zhonglan2 are
the smallest. Additionally, uc-1465 showed significant differences in terms of the mean value of
area, width, diameter area and average edge distance from other cultivars. However, no significant
difference was observed among Sutter, Fado, Vernal, Zhongmu1, and Zhongmu3 in binary features
(Supplementary Figure S1).

For color features, 12 cultivars were different, especially in Fado, whose mean value of
CIELab L* was the highest, and the values of CIELab b*, saturation and hue were the lowest.
On the contrary, Abi700 had the lowest value of CIELab L*, and the highest value of CIELab b*,
saturation, and hue. Zhonglan2 and uc-1465 showed no difference in CIELab a*, CIELab b* saturation
and hue. Sutter and Zhongmu1 also showed no difference in CIELab L*, CIELab b* saturation and hue
(Supplementary Figure S2).

For shape features, Fado had the lowest value of compactness circle, BetaShape_ a, BetaShape_ b
and pointness, and had the highest value of width/length ratio and eccentricity. Uc-1465 had the highest
value of width/length ratio, compactness circle, compactness ellipse, bounding box side regularity,
and width of blob end. Seeds of 12 cultivars were almost the same in compactness ellipse, BetaShape_ a,
BetaShape_ b, and pointness. Boja, Ranger, and Sutter were similar in width/length ratio, compactness
circle, and eccentricity. Zhongmu1, Zhongmu3, Maverick, and Dongmu1 also had the same trend
(Supplementary Figure S3).
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When we applied PCA to morphological features, the first three principles components explained
67.41% of the original variance among seeds with 35.40, 20.28 and 11.73% for PC1, PC2 and PC3,
respectively (Figure 2a). For spectral features, the explained variance rate for the first three principal
components was 60.56, 25.63 and 9.33% of the total variance, respectively (Figure 2b). Moreover, the PCA
results based on morphological features and seed spectra also showed that the first three principles
components explained 65.98% of the original variance among seeds with 31.60, 19.59 and 14.79%
for PC1, PC2, and PC3, respectively (Figure 2c). However, either the score plot of PCA based on
morphological, spectral data or their combination failed to separate seeds of different cultivars into 12
distinct groups.

(a) (b) (c) 

Figure 2. Three-dimensional plot of the first three principal components (PCs) for (a) morphological,
(b) spectral and (c) morphological combined with spectral features dataset in 12 cultivars.

3.2. Spectroscopic Analysis

In general, the reflectance of seeds of 12 cultivars showed a similar trend in which the longer
the wavelength, the higher the reflectance (Figure 3). However, the reflectance differed significantly
among cultivars at each wavelength. For example, Fado had a significantly higher reflectance value in
the spectral range from 365 to 780 nm than that of other cultivars, while showed a lower reflectance value
in 850 to 970 nm compared to other cultivars in addition to Zhongmu1, Zhongmu3, Vernal, Dongmu 1
and Zhonglan2 (Supplementary Table S2). Seeds of 12 cultivars can be divided into 3 groups according
to their light reflectance on 365 to 540 nm and 880 to 970 nm. Group one only includes Fado, Group two
including Zhongmu1, Zhongmu3, Dongmu1 and Zhonglan2, and the group three including Abi 700,
Boja, Marcrick, Ranger, Sutter uc-1465 and Vernal. Regarding uc-1465, Boja and Maverick, they showed
a very similar reflectance pattern which has the lowest value from 365 to 540 nm, and the highest value
from 780 to 970 nm.
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3.3. Discrimination Models for Seed Classification

As explained before, two multivariate discriminate analysis models were developed on the basis
of different data sources: morphological features data, spectral features data and a combination
of morphological and spectral features data. The results revealed that the LDA model based
on morphological features data had a classification accuracy of 43.63% and 42.22% for training
and independent testing datasets, respectively (Supplementary Table S3). On the other hand,
Fado presented a distinct distance from the other cultivars, the other eleven cultivars could not
be separated (Figure 4a). In contrast, the accuracy of the LDA model was greatly improved on
the basis of the spectral data, which exhibited a high discrimination accuracy up to 87.50% and 86.81%
with training and testing datasets, respectively (Supplementary Table S4) (Figure 4b). When using
the combined morphological features and spectral data, the overall correct classification ratios in
training and testing sets were 91.96%, 92.44% and 91.53%, respectively (Supplementary Table S5).
However, the classification accuracy differs greatly among cultivars. For example, the classification
accuracy for Fado is 100%, while that of Zhongmu3 is as low as to 11.67% with LDA.

(a) (b) (c)

Figure 4. Score plot of linear discrimination analysis (LDA) model for discrimination twelve cultivars
seeds of Medicago sativa L. based on (a) morphological, (b) spectral and (c) morphological combined
with spectral features.

For the LDA model with morphology data, the first five features explained 72.98% of the total
variation, followed by width/length ratio (24.60%), diameter area (15.56%), compactness ellipse
(15.33%), eccentricity (10.13%), and width (7.36%), suggesting that morphological discrimination
between cultivars is mainly based on shape features (Figure 5a). For spectral data, 470 nm (12.75%),
490 nm (9.74%), 940 nm (8.79%), 430 nm (7.44%), 970 nm (7.28%) were first five features add up to
46.00% variation for LDA (Figure 5c). For the combination of morphology and spectral data (Figure 5e),
width/length ratio (15.53%), diameter area (11.60%), compactness ellipse (8.81%), eccentricity (5.76%),
and width (5.14%) were the first five features and accounted for 46.86% variation for LDA, showing that
morphological features had a great contribution for cultivar discrimination.
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Figure 5. Relative importance of morphological, spectral and morphological combined with spectral
features for LDA and support vector machine (SVM) model. (a) morphological features of LDA.
(b) morphological features of SVM. (c) spectral features of LDA. (d) spectral features of SVM.
(e) morphological combined with spectral features of LDA. (f) morphological combined with spectral
features of SVM.

The classification accuracy of the SVM model based on morphological data was 45.95%
and 45.14% for training and independent testing datasets, respectively (Table 2). When based on
spectral data, the accuracy was 89.46% and 87.78% for training and testing, respectively (Table 3).
Using the combination of morphological features and spectral data, the percentage of overall correct
classification ratio in training and validation sets was 95.65% and 93.47%, respectively (Table 4).
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Table 2. Discrimination performance based on SVM with morphology features of 12 Medicago sativa L. cultivars.

Predict
Actual Total

(%)Abi700 Boja Maverick Ranger Sutter uc-1465 Fado Vernal Zhongmu1 Zhongmu3 Dongmu1 Zhonglan2

Training Abi700 83 22 23 13 1 14 0 2 0 2 10 4
(n = 140) Boja 22 55 26 18 1 4 0 0 3 2 9 8

Maverick 8 25 48 19 2 5 0 3 3 2 7 4
Ranger 6 17 14 25 4 8 0 6 3 8 10 5
Sutter 2 0 1 6 54 7 0 5 20 19 12 11

uc-1465 10 3 6 12 11 79 0 5 11 16 19 4
Fado 0 0 0 0 0 0 140 0 1 0 0 1

Vernal 3 5 7 12 10 5 0 93 26 21 2 2
Zhongmu1 1 0 1 5 19 3 0 16 50 29 7 4
Zhongmu3 0 3 3 8 9 7 0 4 9 25 2 2
Dongmu1 4 5 5 12 11 6 0 0 4 5 42 17
Zhonglan2 1 5 6 10 18 2 0 6 10 11 20 78

Accuracy (%) 59.29 39.29 34.29 17.86 38.57 56.43 100.00 66.43 35.71 17.86 30.00 55.71 45.95
Testing Abi700 30 11 9 5 0 7 0 0 0 0 6 1
(n = 60) Boja 13 24 12 5 1 1 0 1 1 0 3 3

Maverick 1 9 21 10 0 1 0 4 1 0 4 1
Ranger 4 5 8 17 2 4 0 1 1 2 3 0
Sutter 2 0 0 2 17 2 0 2 7 13 3 3

uc-1465 6 2 0 2 3 36 0 2 3 4 6 1
Fado 0 0 0 0 0 0 59 0 2 0 0 0

Vernal 1 4 5 4 6 1 0 38 6 12 1 0
Zhongmu1 0 0 0 3 9 0 1 6 25 13 3 4
Zhongmu3 0 0 0 3 6 4 0 5 5 7 2 1
Dongmu1 2 1 2 5 6 1 0 0 2 3 14 9
Zhonglan2 1 4 3 4 10 3 0 1 7 6 15 37

Accuracy (%) 50.00 40.00 35.00 28.33 28.33 60.00 98.33 63.33 41.67 11.67 23.33 61.67 45.14
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Table 3. Discrimination performance based on SVM with spectral of 12 Medicago sativa L. cultivars.

Predict
Actual Total

(%)Abi700 Boja Maverick Ranger Sutter uc-1465 Fado Vernal Zhongmu1 Zhongmu3 Dongmu1 Zhonglan2

Training Abi700 122 5 0 18 0 0 0 0 0 0 0 0
(n = 140) Boja 5 113 0 19 1 4 0 0 0 0 0 0

Maverick 0 1 119 1 4 14 0 0 0 0 0 0
Ranger 13 21 0 102 0 0 0 0 0 0 0 0
Sutter 0 0 7 0 133 4 0 0 0 0 0 0

uc-1465 0 0 14 0 2 118 0 0 0 0 0 0
Fado 0 0 0 0 0 0 140 0 0 0 0 0

Vernal 0 0 0 0 0 0 0 132 3 2 0 0
Zhongmu1 0 0 0 0 0 0 0 1 123 1 11 0
Zhongmu3 0 0 0 0 0 0 0 6 0 136 4 0
Dongmu1 0 0 0 0 0 0 0 1 14 1 125 0
Zhonglan2 0 0 0 0 0 0 0 0 0 0 0 140

Accuracy (%) 87.14 80.71 85.00 72.86 95.00 84.29 100.00 94.29 87.86 97.14 89.29 100.00 89.46
Testing Abi700 48 2 0 9 0 0 0 0 0 0 0 0
(n = 60) Boja 3 51 0 9 0 2 0 0 0 0 0 0

Maverick 0 0 52 0 1 3 0 0 0 0 0 0
Ranger 8 7 0 42 0 1 0 0 1 0 0 0
Sutter 0 0 1 0 59 3 0 0 0 0 0 0

uc-1465 1 0 7 0 0 51 0 0 0 0 0 0
Fado 0 0 0 0 0 0 60 0 0 0 0 0

Vernal 0 0 0 0 0 0 0 57 4 0 0 0
Zhongmu1 0 0 0 0 0 0 0 1 45 2 7 0
Zhongmu3 0 0 0 0 0 0 0 1 0 57 2 0
Dongmu1 0 0 0 0 0 0 0 1 10 1 51 1
Zhonglan2 0 0 0 0 0 0 0 0 0 0 0 59

Accuracy (%) 80.00 85.00 86.67 70.00 98.33 85.00 100.00 95.00 75.00 95.00 85.00 98.33 87.78
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Table 4. Discrimination performance based on SVM with morphology and spectral features of 12 Medicago sativa L. cultivars.

Predict
Actual Total

(%)Abi700 Boja Maverick Ranger Sutter uc-1465 Fado Vernal Zhongmu1 Zhongmu3 Dongmu1 Zhonglan2

Training Abi700 127 4 0 6 0 0 0 0 0 0 0 0
(n = 140) Boja 3 131 1 2 0 0 0 0 0 0 0 0

Maverick 0 0 135 1 1 9 0 0 0 0 0 0
Ranger 10 5 1 131 0 0 0 0 0 0 0 0
Sutter 0 0 0 0 139 0 0 0 0 0 0 0

uc-1465 0 0 3 0 0 131 0 0 0 0 0 0
Fado 0 0 0 0 0 0 140 0 0 0 0 0

Vernal 0 0 0 0 0 0 0 140 0 1 0 0
Zhongmu1 0 0 0 0 0 0 0 0 129 0 9 0
Zhongmu3 0 0 0 0 0 0 0 0 0 136 3 0
Dongmu1 0 0 0 0 0 0 0 0 11 3 128 0
Zhonglan2 0 0 0 0 0 0 0 0 0 0 0 140

Accuracy (%) 90.71 93.57 96.43 93.57 99.29 93.57 100.00 100.00 92.14 97.14 91.43 100.00 95.65
Testing Abi700 53 2 0 2 0 0 0 0 0 0 0 0
(n = 60) Boja 2 55 0 4 0 1 0 0 0 0 0 0

Maverick 0 0 55 0 0 8 0 0 0 0 0 0
Ranger 5 2 1 54 0 1 0 0 0 0 0 0
Sutter 0 0 2 0 59 1 0 0 0 0 0 0

uc-1465 0 1 2 0 0 49 0 0 0 0 0 0
Fado 0 0 0 0 0 0 60 0 0 0 0 0

Vernal 0 0 0 0 0 0 0 60 0 0 1 0
Zhongmu1 0 0 0 0 1 0 0 0 55 0 4 1
Zhongmu3 0 0 0 0 0 0 0 0 0 60 1 0
Dongmu1 0 0 0 0 0 0 0 0 5 0 54 0
Zhonglan2 0 0 0 0 0 0 0 0 0 0 0 59

Accuracy (%) 88.33 91.67 91.67 90.00 98.33 81.67 100.00 100.00 91.67 100.00 90.00 98.33 93.47
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For the SVM model with morphology data (Figure 5b), the first five features, CIELab L* (33.76%),
saturation (20.08%), CIELab b* (18.76%), CIELab a* (6.79%) and average edge distance (4.82%),
accounted for 84.21% variation of the model, indicated seed color played an important role in cultivar
discrimination. For spectral features (Figure 5d), 970 nm (12.77%), 940 nm (12.27%), 880 nm (10.48%),
850 nm (9.66%), 780 nm (7.45%) were first five features add up to 52.63% variation for SVM.
For the combination of morphology and spectral data (Figure 5f), 970 nm (9.67%), 940 nm (9.29%),
CIELab L* (8.19%), 880 nm (7.94%) and 850 nm (7.32%) were the first five features, accounting for 42.41%
variation of SVM, suggesting that spectral and color features were more important for SVM classification.

4. Discussion and Conclusions

Although the morphological features clearly show that seeds of different alfalfa cultivars vary
in binary, shape, and color in terms of mean value, the large variation within cultivar overrides
the difference among cultivars. Thus, using any single morphological feature would not distinguish
cultivars successfully.

The difference between seed spectrums reflected the difference in the seed coat texture and chemical
composition which may differ among different cultivars [24]. The reflectance at special wavelength
differed significantly among cultivars in wheat [25] and corn [26]. Consistent with this, our study
shows that cultivars can be divided into three groups according to spectral reflectance, these three
groups partly reflect the origin of cultivars. For example, the four cultivars of group two are all from
China, and the cultivars of group three are all from America. The reason is possibly that cultivars
originated from the same place share similar growth conditions as well as seed processing which play
a key role in shaping the morphological features and chemical composition of seeds. More importantly,
cultivars originated from the same place may also share the same breeding material, and thus have a
similar genetic background. For example, Zhongmu1 and Zhongmu3 have a close relationship during
breeding. Further, although reflectance differed significantly in cultivars in terms of mean value at
each wavelength, we still can find a heavy overlap due to large variation within cultivars, suggesting
any single spectral trait is not practical for cultivar discrimination.

As an unsupervised discrimination method, principal component analysis (PCA) is generally
used to get an overview of systematic variation in data, showing the sample distribution pattern.
A previous study [27] showed that PCA can be used to discriminate maize seeds of different varieties
via hyperspectral imaging. Additionally, a distinct difference via multispectral imaging has been
observed from conventional and glyphosate-resistant soybean seeds to their hybrid descendants based
on PCA scatter plot [28]. In contrast with these, although there are some differences among cultivars in
both morphological and spectral traits, the PCA scatter plot fails to distinguish cultivars in our study.
A possible reason is that Medicago sativa is a cross-pollination plant, and variation within the group is
relatively large. Thus, PCA would not detect the difference among cultivars when variation within
the group is close to the variation among groups, since PCA is aimed to maximize the variation of
the samples. Moreover, the first three principal components account for less than 65% of total variance
whatever the data sources used in the present study. Thus, the loss of information may further lead to
a failure to separate cultivars by PCA.

The average accuracy of cultivars classification using the LDA and SVM model on the basis
of morphological features is also very low, suggesting that seeds of different cultivars have similar
morphological features. Thus, using either a single morphological feature or their combination could
not distinguish seed cultivars regardless of the discrimination model. However, for cultivars such
as Fado, accuracy is 100% either using LDA or SVM, and this result suggests that it is practical to
discriminate some special cultivars, such as Fado, with LDA or SVM models based on morphological
traits. The relative importance histogram shows that CIE L*, CIE a* and CIE b* play an important role
in the SVM model. Consistent with this, Zhang and Lu [29] found that CIE L*a*b* combined with SVM
was effective for the detection of browning degree in mangoes.
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In contrast, the average accuracy of cultivar classification was greatly improved when using
spectral data with a value of 86.81% and 87.78% for LDA and SVM, respectively. An interesting
thing is that the contribution of reflectance at various wavelengths proves to largely depend on
the discrimination model. Reflectance from 430 nm to 490 nm in the visible range has a high
contribution to the LDA model, while the wavelength from 780 nm to 970 nm in the NIR range is
particularly important for the SVM model. A possible reason is that the visible range detecting the color
of seeds as wavelength from 450 nm to 470 nm is sensitive to chlorophyll, and NIR reflects the chemical
difference, as 600 nm to 950 nm contains a wealth of useful information related to fats and proteins [12].

Furthermore, when the combination of morphological and spectral data is used, LDA and SVM
have an average accuracy as high as 91.53% and 93.47% in alfalfa cultivars discrimination, respectively.
The classification accuracy of different cultivars is ranged from 80.00% to 100% both for LDA and SVM.
In particular, the classification accuracy of 10 cultivars is higher than 90.00% with SVM, implying
multispectral imaging together with multivariate analysis could be a promising technique to identify
alfalfa cultivar with high efficiency. It is also worth noting that, for some closely related cultivars,
such as Ranger and Abi700, they are cross-misclassified with both LDA and SVM model, thus leading
to relatively low classification accuracy. As we discussed above, cultivars originating from the same
place may have similar growth conditions, seed processing as well as similar genetic background,
thus resulting in similar seed morphology and chemical compositions.

In brief, our study clearly shows that seeds of different alfalfa cultivars differ in morphology
and spectral traits, which exhibit a large variation both within and among cultivars. It is difficult to
discriminate seeds of alfalfa with different cultivars on the basis of any single seed trait or unsupervised
discrimination method such as PCA. However, supervised discrimination methods such as LDA
and SVM have a high accuracy of cultivar classification based on morphological and spectral data,
suggesting that multispectral imaging analysis together with multivariate analysis could be an efficient
way to alfalfa cultivar discrimination.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/22/6575/s1,
Figure S1: The binary features of 12 Medicago sativa L. cultivars. Different letters indicate significant differences
among cultivars at the same binary feature, Figure S2: The shape features of 12 Medicago sativa L. cultivars.
Different letters indicate significant differences among cultivars at the same shape feature, Figure S3: The color
features in 12 Medicago sativa L. cultivars. Table S1: List of the extracted variables from multi spectral images,
Table S2: Mean reflectance of each cultivar at different spectral wavelength, Table S3: Discrimination performance
based on LDA with morphology features of 12 Medicago sativa L. cultivars, Table S4: Discrimination performance
based on LDA with spectral features of 12 Medicago sativa L. cultivars, Table S5: Discrimination performance based
on LDA with morphology and spectral features of 12 Medicago sativa L. cultivars.
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