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Abstract

Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in
systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory
network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide
ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We
increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight
matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate
iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with
existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target
sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast
cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by
p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F
and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show
how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes.
iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org.
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Introduction

Precise regulation of gene expression is imperative for all

biological processes. Sequence-specific transcription factors (TFs)

bind to their DNA recognition sites within cis-regulatory elements

and thereby contribute to the control of the transcriptional

initiation rate of their target genes through an interplay with other

transcription factors, co-factors, chromatin modifiers, and tran-

scription factories [1–3]. The human genome encodes for about

1800 sequence-specific TFs, each of which regulates hundreds of

target genes [1,4,5]. Because TFs play key roles in gene expression,

they are often considered the master regulators of cellular

processes. Thus, the mapping and characterization of their

regulon (all the target genes of a TF) can provide crucial insight

into the biological processes they control [6,7]. For example, in

cancer, ,40% of the driver mutations affect TFs, and many of the

key oncogenes and tumor suppressors, such as p53, MYC, E2F,

and NF-kB, are transcription factors [8]. Identification of the TFs

that operate a perturbed gene network, and detecting their target

genes, are instrumental steps in uncovering key insights into

oncogenic programs, including the discovery of therapeutic targets

[9–12]. For example, although many target genes have been

described for the tumor suppressor p53 [9,13,14], several aspects

of the gene regulatory network (GRN) downstream of p53 remain

unknown. For example, it is still unclear whether p53 also directly

represses target genes; whether p53 cooperatively regulates target

genes with particular co-factors; and whether different target genes

are regulated depending on the cancer type, or depending on the

context of p53 activation. The situation is obviously worse for less

studied TFs for which often none or only few target genes are

known.

The targets of a known TF can be identified experimentally

with relatively high accuracy through chromatin immunoprecip-

itation followed by high-throughput sequencing (ChIP-Seq) [15].

However, ChIP-Seq has limitations because it is usually applied to

cells in culture rather than to the actual biological sample (e.g., a

tumor); and it focuses on a single TF at a time, that has to be

chosen a priori. When the TF is not known in advance, or when
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only gene expression profiling can be performed, regulatory

relationships can be uncovered by reverse-engineering a gene

regulatory network starting from the expression data. One

approach to solve this problem is by exploiting the fact that genes

that are co-regulated by the same TF commonly share binding

sites for this TF. However, detecting these short and variable TF

binding sites (TFBS) within large non-coding regions represents a

computational challenge when working with human or mouse

genomes. Although a lot of progress has been made over the last

decade and many motif discovery methods have been developed

and refined (reviewed in [16–19]), motif discovery methods alone

are not sufficient to map a gene regulatory network, nor can they

be applied to noisy gene sets containing mixtures of targets of

multiple TFs. This is true for both motif discovery methods relying

on de novo detection and those relying on the enrichment of

known position weight matrices (PWM). Additionally, many tools

have a motif-oriented output, making it difficult to identify the

possible upstream TF. A further limiting factor is that many

methods are restricted to using human annotated PWMs (e.g.

TRANSFAC [20], JASPAR [21] or UNIPROBE [22]), limiting

the number of TFs that can be identified as candidate network

regulators based on motif enrichment. Therefore, although cis-
regulatory sequence analysis has great potential in resolving direct

TF-target interactions, it has until today seen limited applications

towards gene regulatory network mapping.

Finally, the recent availability of thousands of ChIP-Seq

datasets, both from ENCODE [23], and other resources [24],

yields new opportunities to discover master regulators from co-

expressed gene sets [25], while at the same time pose challenges on

how to integrate these data with motif discovery.

Here, we aim to tackle some of these challenges by increasing

the performance of motif detection to yield high-confidence

results, even in noisy gene sets. Motif detection is followed by the

annotation of the discovered motifs with associated TFs and direct

targets. To this end, we have collected more than nine thousand

PWMs from various sources and from different species and link

them to candidate binding TFs using a ‘‘motif2TF’’ procedure.

This will allow the user to link hitherto anonymous motifs, and

motifs of TFs from other species, to candidate human TFs.

Furthermore we developed a user-friendly Cytoscape plugin [26],

called iRegulon, allowing the integration of predicted cis-
regulatory binding sites directly into a biological network. Finally,

we extend and generalize this framework towards combined motif

and track discovery on a co-expressed gene set, incorporating

more than 1000 ChIP-Seq tracks. The iRegulon Cytoscape plugin

is available via the Cytoscape App Store [27] and can be

downloaded from http://iregulon.aertslab.org/.

Results

The iRegulon framework
The goal of iRegulon is to enable gene regulatory network

mapping directly based on motif enrichment in a co-expressed

gene set. As motif discovery method we have chosen to elaborate

on the recent ranking-and-recovery methods [28–32] (Fig. 1). In

the ranking step we generate whole-genome rankings of 22284

human RefSeq genes for a library of PWMs where a PWM is a

matrix representation of a regulatory motif (Table 1). For each

gene, a regulatory search space (500 bp, 10 kb or 20 kb around

the Transcription Start Site (TSS), see Materials and Methods) is

scanned for homotypic cis-regulatory modules (CRM) using a

Hidden Markov Model [33] (Fig. S1). Starting from a library with

N PWMs, N ranked lists of genes are generated, each with the

most likely genomic targets of a particular motif at the top of the

ranking [28,29]. Next, orthologous search spaces in ten other

vertebrate genomes are determined by UCSC liftover tool [34]

and are subsequently scanned with the same PWMs. The rankings

for different species are combined by rank aggregation [35] into

one final ranking for each PWM in our library. For the PWM

libraries we have collected and reformatted most of the available

libraries into a ‘‘6K collection’’ (N = 6383 PWMs) and a ‘‘10K

collection’’ (N = 9713 PWMs) (Table 1). These libraries contain

PWMs from different species and also include candidate PWMs

for unknown TFs. The results of the ranking step are N human

gene rankings stored in an SQLite database. We also generated

similar databases using mouse and Drosophila as reference species,

in case the input gene set is derived from mouse or fruit fly.

The recovery step uses as input any set of co-expressed genes

(Fig. 1B). The enrichment of these genes is determined in each of

the N motif-based rankings using the Area Under the cumulative

Recovery Curve (AUC), whereby the AUC is computed in the top

of the ranking (default set to 3%, see Fig. S2 for validation). The

AUC values are normalized into a Normalized Enrichment Score

(NES) on which we set a default cutoff of 3.0, corresponding to a

False Discovery Rate (FDR) between 3% and 9% (Fig. S3 and

Materials and Methods). The leading edge of candidate targets is

selected as the optimal subset of highly ranked genes compared to

the genomic background and compared to the entire motif

collection as background (Fig. 1B and Materials and Methods).

We have previously successfully applied the ranking-and-
recovery method for Drosophila, namely in cisTargetX [29] and

i-cisTarget [28]. These methods have been proven successful in

identifying upstream regulators and direct target genes from co-

expressed gene sets for Atonal [29], Shavenbaby [36], Fruitless

[37], EcR [38], Dichaete [39], Glass [40], dJun/Vri [41], and Rfx

[42]. Here, we apply this framework for the first time to human

and mouse and we add two novelties to facilitate GRN mapping.

The first is a motif2TF procedure that links an enriched motif

(PWM) to a candidate binding TF (Fig. 1C and Materials and

Methods). For this step we constructed a database of motif-TF

direct annotations, TF-TF edges as defined by gene homology

Author Summary

Gene regulatory networks control developmental, homeo-
static, and disease processes by governing precise levels
and spatio-temporal patterns of gene expression. Deter-
mining their topology can provide mechanistic insight into
these processes. Gene regulatory networks consist of
interactions between transcription factors and their direct
target genes. Each regulatory interaction represents the
binding of the transcription factor to a specific DNA
binding site near its target gene. Here we present a
computational method, called iRegulon, to identify master
regulators and direct target genes in a human gene
signature, i.e. a set of co-expressed genes. iRegulon relies
on the analysis of the regulatory sequences around each
gene in the gene set to detect enriched TF motifs or ChIP-
seq peaks, using databases of nearly 10.000 TF motifs and
1000 ChIP-seq data sets or ‘‘tracks’’. Next, it associates
enriched motifs and tracks with candidate transcription
factors and determines the optimal subset of direct target
genes. We validate iRegulon on ENCODE data, and use it in
combination with RNA-seq and ChIP-seq data to map a
p53 downstream network with new predicted co-factors
and targets. iRegulon is available as a Cytoscape plugin,
supporting human, mouse, and Drosophila genes, and
provides access to hundreds of cancer-related TF-target
subnetworks or ‘‘regulons’’.
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[43,44], and motif-motif edges as defined by motif similarity (using

Tomtom [45]). The database links 6031 motifs from the ‘‘10K’’

collection to 1191 human TFs. The advantage of this method is

that it allows discovery of motif-TF links based on orthology and

based on similarities between annotated and ‘‘unknown’’ motifs in

the collection. Application of this method adds 247 more TFs to be

identified than the 944 directly annotated TFs in human, and

vastly increases the number of different motifs per TF (see

Materials and Methods for more detailed description). The second

novelty is the availability of the method as a Cytoscape [26]

plugin, called iRegulon. The plugin works on any input network

and returns a combination of regulators, their direct targets within

the input network, and their binding motifs. A detailed description

on the use of the plugin is provided in Fig. S4. This is, to our

knowledge, the first method that brings cis-regulatory sequence

analysis into Cytoscape. This dramatically changes the way motif

discovery is performed, because instead of a list of promoter

sequences used as input, now any set, network, or pathway of

genes can be used as input. Instead of a list of enriched motifs,

regulons, are the output, containing the candidate TFs along with

their optimal direct target subsets. iRegulon results can be

immediately used to map (or annotate) gene regulatory networks

and be integrated with the extensive array of regulatory,

expression, and annotation tools available within Cytoscape.

To evaluate the performance of iRegulon, we derived direct

target gene sets for 115 sequence-specific TFs from the ENCODE

ChIP-Seq data [46], and for each target set we investigate whether

the ChIP’ped TF can be correctly recovered (see Materials and

Methods). Out of 115 tested TFs, iRegulon correctly identifies up

to 94 TFs (82.6%) with Normalized Enrichment Scores (NES)

above 3 (Fig. 2A, and Materials and Methods). We found iRegulon

to be robust to noisy gene sets by adding increasing levels of noise

(negative genes) to each set of targets (Fig. 2B). The motif2TF step

is crucial to link an enriched motif to a candidate TF; and

including motifs from other species and unknown motifs allow

detecting many more correct regulators compared to using only

known human motifs from TRANSFAC or JASPAR (Fig. 2C).

After optimizing the parameters of iRegulon and motif2TF (see

Materials and Methods and Fig. S2), we compared iRegulon with

eight other motif discovery methods that use a similar input (a set

of co-expressed genes) and generate a similar output (candidate

regulators) using a non-ambiguous subset from Factorbook [46]

(Materials and Methods). iRegulon identifies the correct TF at the

first position in 17/30 cases while the other tools on average detect

only 5.1/30 TFs at the first position (Fig. 2D, Table S1).

Interestingly, the improved performances of iRegulon are not

only due to the large PWM collection and the motif2TF mapping.

Indeed, iRegulon still outperforms the other methods when using

only the JASPAR collection and disabling the motif2TF step (Fig.

S2C) or vice versa, when manually promoting similar motifs in the

other tools to the correct TF (dashed bars in Fig. 2D). As expected,

the true positive target gene recovery is significantly higher when

iRegulon uses a 20 kb search space around TSS compared to

using only the proximal promoter (Wilcoxon rank-sum paired test,

Figure 1. Regulon detection by rank-based motif discovery and motif2TF. Motif enrichment in iRegulon is measured using a ranking-and-
recovery procedure using a large collection of position weight matrices (PWM). In the ranking step (A) all human genes are ranked for each motif by
scoring for homotypic motif clusters across ten vertebrate species. In the recovery step (B) each of these gene rankings is tested against the set of
input genes by calculating the Area Under the cumulative Recovery Curve (AUC, in pink). The example shown is for the top enriched motif, motif M2.
The AUC score is normalized, based on the AUC scores of all motif rankings (distribution is shown as inset), to a normalized enrichment score (NES). A
high NES score ($3.0) indicates a motif that recovers a large proportion of the input genes within the top of its ranking. In parallel, the leading edge
of the recovery curve is used to determine the optimal subset of genes that are likely controlled by this motif. In the last step (C) Motif2TF associates
the candidate motif with (a number of) TFs by finding possible paths from a motif to a TF, in a motif-TF network based on direct evidence, orthology,
and motif-motif similarity. The enriched TF can be from the input genes (e.g. TG5 encoding for TF2). See also Materials and Methods and Figures S1, S4.
doi:10.1371/journal.pcbi.1003731.g001

From Motif Discovery to Gene Regulatory Networks
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p-value = 0.004) (Fig. S2D). We conclude that the core motif

discovery framework of iRegulon is better than other tools, and

that the large motif collection and the motif2TF step deliver a

marked step forward in TF identification performance.

Regulons can be discovered from various types of noisy
and heterogeneous gene sets

In the validation and benchmark analyses above we used gene

sets derived from ENCODE ChIP-Seq data as input for iRegulon.

In this section, we explore more realistic types of inputs, such as

co-expressed genes downstream of a TF perturbation [47]; genes

involved in the same signaling pathway (e.g., KEGG [48],

Reactome [49] or Gene Ontology [50]); highly connected genes

in a biological network (e.g., GeneMania [51] or STRING [52]);

shared targets of a common microRNA. In the first example, we

applied iRegulon to a set of 171 genes that are significantly up-

regulated under hypoxia [53]. iRegulon yields a top-scoring

regulon that contains HIF1A as master regulator, along with 94

predicted direct target genes (Fig. S5A). The predicted HIF1A

targets are likely functional targets because they overlap much

more (41%) with known HIF1A targets [54] than the non

predicted targets (15%). More systematically, when applied to 76

co-expressed gene sets obtained after a genetic perturbation of the

TF (gene sets from MSigDB [47]), the perturbed TF is recovered

in 38 cases (50%) and as the top ranked master regulator in 18

cases (24%). The lower recall to detect the correct upstream TF

compared to ChIP-derived gene sets is expected because not all

TF perturbation experiments successfully result in significant gene

expression changes of the direct target genes.

Next, we analyzed a set of 161 genes involved in the NOTCH

signaling pathway and identified the top two regulons to be

controlled by HEY1/HEY2/HES1 and RBPJ, two major players

involved in NOTCH signaling (Fig. S5B). We also analyzed 1198

genes involved in immune response (GO:0006955), and as expected

we found the IRF and REL/NF-kB regulons, with 806 and 711

direct target genes respectively, highlighting their role as master

regulators of the immune response (Fig. S5C). We also analyzed all

2233 TF-centered subnetworks within protein association networks

and found enrichment of direct targets for 151 (13.2%) and 159 TFs

(14.6%) for GeneMania and STRING networks, respectively,

indicating that transcriptional interactions are partially represented

in protein-protein interaction networks as well (Fig. S5D). Finally,

we analyzed 159 sets of known microRNA targets, for which

iRegulon identified significant cross-talks (feed-forward loops)

between the predicted TF and microRNA regulons (Fig. S5E).

While previous methods have thus far been validated and applied to

co-expressed gene sets derived from gene expression profiling, here

we show that motif discovery with iRegulon can quickly identify

master regulons on diverse types of gene sets, as long as a small

fraction of the input set is directly co-regulated by the same TF.

Mapping a gene regulatory network downstream of p53
We now applied iRegulon to study the gene regulatory network

downstream of the p53 tumor suppressor. p53 functions mainly, if

Table 1. Description of the motif and track collections used.

Source Organism(s) Type of motif # motifs ‘‘6K’’ # motifs ‘‘10K’’ # tracks ‘‘1K ChIP’’

Elemento [73] Drosophila Predicted (conserved)a 371 371 -

FlyFactorSurvey [75] Drosophila B-1H, others (e.g., FlyReg) 614 652 -

hPDI [77] Human Experimental 437 437 -

Jaspar [21] Multiple species Curated 1315 1315 -

SelexConsensus [76] Drosophila Curated (FlyReg) 38 38 -

Stark [74] Drosophila Predicted (conserved)a 228 228 -

Tiffin [76] Drosophila Predicted (gene sets)a 120 120 -

TRANSFAC PUBLIC [5] Multiple species Curated, ChIP-chip 398 398 -

TRANSFAC PRO [5] Multiple species Curated, ChIP-chip 1153 1850 -

YetFasco [78] Yeast Uniprobe, Curated, ChIP-chip 1709 1709 -

ENCODE [79] Human Predicted (from DHS)a - 683 -

Factorbook [46] Human ENCODE ChIP-Seq motifs - 79 -

Taipale [132] Human, Mouse HT-Selex - 820 -

iDMMPMM [133] Human footprints, Selex, b1h, peaks - 39 -

SwissRegulon [134] Human Curated - 190 -

Wolfe [135] Drosophila ZFP motifs - 36 -

HOMER [116] Multiple species ChIP-Seq Motifs, others
(e.g. ENCODE)

- 1865 -

Dimers [136] Human Predicted dimers - 603 -

ENCODE ChIP-Seq [23] Human - - - 999

Taipale ChIP-Seq [24] Human - - - 117

p53 and control ChIP-Seq
(this study)

Human - - - 2

Total 6383 11611 (9713 nr) 1118

aOrphan motifs (unknown TFs).
nr = non-redundant.
doi:10.1371/journal.pcbi.1003731.t001

From Motif Discovery to Gene Regulatory Networks
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not exclusively, as a TF which regulates the expression of hundreds

of genes that in turn mediate its biological activities including

induction of cell-cycle arrest, senescence and apoptosis [55,56].

Although p53 is one of the most-studied transcription factor

and hundreds of target genes have already been identified

[14,55], many aspects of its downstream network remain

unresolved and a more comprehensive understanding of the p53

downstream signaling network is crucial given its importance in

oncogenesis.

We first determined a p53-dependent gene signature in the

MCF-7 human breast cancer cell line by RNA-seq upon

stabilization of p53 by the non-genotoxic small molecule Nutlin-

3a [57]. This treatment resulted in significant up-regulation of 801

genes and down-regulation of 790 genes. Both up- and down-

regulated gene sets were subsequently analyzed with iRegulon

(Fig. 3A). The top-scoring regulon in the list of up-regulated genes

is confirmed as the p53 regulon, with 307 genes predicted to be

direct targets (Fig. 3A and Table S2). This indicates that p53 itself

is the master regulator of the downstream network and directly

controls many up-regulated genes, but not all of them (at least

38%). A Gene Ontology (GO) enrichment analysis of the 307

predicted direct targets identifies p53-related processes and

pathways, such as ‘‘p53 signaling pathway’’ (adjusted pva-

lue = 3.18e-21) or ‘‘Apoptosis’’ (adjusted p-value = 6.76e-07), while

the set with the remaining 494 up-regulated genes show no

significant GO term enrichment (data not shown).

In this particular experimental setup the master regulator,

namely p53, was specifically perturbed and thus known a priori.
Yet, even under such circumstances there are two important

advantages of using a computational regulatory analysis with

iRegulon. First, the explicit finding of the p53 motif as top ranked

indicates that p53 directly controls a large portion of the up-

regulated genes but not all, creating two clearly distinct subsets.

Second, we discover potential p53 co-factors and secondary

regulons downstream of p53. Particularly, among the 801 genes

that are activated downstream of p53, we found three other

regulons, one operated by activator protein 1 (AP-1, heterodimer

composed of JUN/FOS/FOSL1/FOSL2), another by a Forkhead

TF (FOX), and another by NF-Y (Fig. 3A, Table S3A). These

secondary regulons show extensive overlap with the primary p53

regulon, indicating that these TFs may be important contributors

in gene regulation downstream of p53 (Fig. 3B). The AP-1

regulon, sharing 136 genes (59% of its regulon) with the p53

regulon might indicate a prevalent co-factorship between the two

proteins, something that has been reported before but never on

such an extended scale [58,59]. In addition, one of the shared p53-

AP1 targets is GADD45A, a gene involved in DNA damage repair,

that has been shown to be a bona fide target of both p53 and AP-1

Figure 2. Evaluation of iRegulon and comparison to other methods. The TF recovery (y-axis) corresponds to the fraction of TFs correctly
detected among all TFs for which a motif from our library can be associated. A. Positive sets consist of the top 200 genes ranked by the maximum
signal value of the ChIP-Seq peak in the corresponding search space. Control sets are negatives from ENCODE (genes without a ChIP-Seq peak); TF
neighborhoods (TFNB; all TFs within 5 Mb around a query TF); and random signatures (RND). The color (from red to yellow) and order of stacked bars
indicate the number of times the queried TF was identified in the 1st rank (top1), 2nd rank (top2), 3rd rank (top3), 4th rank (top4), 5th rank (top5) and 6th

to 10th rank (top10). White color indicates the number of detected TFs (motif enrichment $3) but with rank .10. B. Positives are mixed with negative
genes (noise) from 0% to 100% of noise. The lines represent the sensitivity (Sn), Specificity (Sp), and Precision or Positive Predictive Value (PPV) of
target gene selection. C. The layers of motif2TF increase the performance. Recovery for ENCODE signatures and their control sets using different
motif2TF parameters: 1) Motif collection effect (J, T, A barcharts), 2) Homology effect using a threshold on Identity% for all motifs (A+O barcharts), 3)
Motif similarity effect using a threshold on the p-value (A+S barcharts), and combinations (A+O+S). Only Jaspar motifs (J); Only Transfac Pro (T); All
motifs from Jaspar and Transfac pro, and others databases (A); All motifs+Orthology (A+O); and All motifs+Orthology+Similarity (A+O+S); blue
indicates the analysis done on ENCODE sets and grey indicates on the control sets. D. Tool comparison using a benchmark of 30 gene sets
constructed as the top 200 target genes based on ChIP peak occurrences in the 20 kb regulatory region for 30 TFs (these TFs were selected from
FactorBook having their canonical motif as top enriched in the actual ChIP peaks). The number of times the queried TF was identified in the top1 (red)
and top5 (yellow) is recorded. The dashed boxes represent top 5 recoveries if similar motifs are manually re-associated to the query TF. Default
parameters were used, but when possible, they were adjusted to use the tss-centered-20 kb regions. See also Figures S2–S3 and Table S1.
doi:10.1371/journal.pcbi.1003731.g002
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[60]. Interestingly, two subcomponents of the AP-1 complex, FOS
and FOSL1, are themselves up-regulated upon p53 stabilization,

and are among the predicted direct p53 targets (Table S4). These

results, together with the fact that the AP-1 motif was not enriched

among the down-regulated genes indicate a positive, synergistic

effect of the p53 and AP-1 regulons.

Nutlin-3a treatment also resulted in 790 significantly down-

regulated genes. Interestingly, the analysis of this set with iRegulon

does not detect the p53 motif as enriched. It does however identify

E2F as master regulator with an astounding 653 (82.7%) predicted

direct targets (Table S3B). Moreover, three E2F family members,

namely E2F1, E2F2, and E2F8 are all strongly and significantly

down-regulated upon Nutlin-3a treatment (around 10-fold down

with p-value,1.0E-64), indicating the marked involvement of this

protein family in the repressive mechanisms of p53. Similarly,

iRegulon points towards NF-Y as an important second master

regulator of a large number of down-regulated genes (493 genes).

Both E2F and NF-Y have been reported as important players for

p53-mediated down-regulation of genes [61,62]. This may happen

through p21 regulated cyclin dependent kinases, resulting in a lack

of phosphorylation of NF-Y and Rb which ultimately renders both

NF-Y and E2F (through Rb) inactive [63,64]. Interestingly, the

majority of NF-Y’s predicted regulon overlaps with that of E2F,

with only a very small number of genes predicted as NF-Y only

targets (Fig. 3B). The enriched Gene Ontology terms of these

overlapping target genes are related to cell-cycle processes, an

expected result since both E2F and NF-Y have been established to

regulated cell cycle-related genes, often in a cooperative manner

[65–67]. In contrast to E2F, NF-Y itself is not down-regulated as a

gene by p53 activation. However, it is possible that NF-Y is

regulated at the protein level rather than at the transcriptional

level in response to p53 activation. All together, these findings

support the notion of an indirect rather than a direct p53

repressive process largely working through the p53-p21 axis, which

affects both E2F and NF-Y [63,68]. All together, iRegulon

generates marked ideas concerning p53, which are further

elaborated upon in the next section.

ChIP-Seq on p53 and E2F confirm their predicted
regulons

To test the predicted p53 regulon we determined the genome-

wide chromatin occupancy by p53 in Nutlin-3a stimulated MCF-7

cells using high-coverage ChIP-Seq (,30 Million uniquely

mapped reads). Fig. 4A shows the raw ChIP-Seq data for the

known p53 target CDKN1A, with a very strong peak overlapping

the known p53 binding site in the promoter of CDKN1A [69]. To

avoid arbitrary thresholds on peak calling we used lenient peak

calling settings to rank all genes in the genome according to their

Figure 3. Using iRegulon to map a p53-dependent gene regulatory network. A. MCF-7 breast cancer cells were treated with Nutlin-3a to
stabilize p53, followed by RNA-Seq after 24 h. iRegulon results shows p53 as top regulator in a set of 801 up-regulated genes, represented by 6
significantly enriched motifs, and 307 predicted direct targets. The top regulator in the set of down-regulated genes is E2F, with 653/790 predicted
direct targets. B. Regulatory network for up-regulated target genes showing the overlap between the p53 regulon and regulons of predicted co-
factors (AP-1, NFY, FOX) and regulatory network for down-regulated target genes showing a strong overlap between the predicted E2F and NF-Y
regulons. Targets are in grey circle nodes and TF in black hexagon nodes. Regulons for each TF are represented by different edge colours. See also
Tables S2–S5.
doi:10.1371/journal.pcbi.1003731.g003
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likelihood of being a p53 target based on ChIP peaks only (see

Materials and Methods). To assess whether this ranking yields true

p53 targets on top, we curated 223 bona fide p53 targets from the

literature and public databases (Table S5), and indeed found these

targets to be significantly enriched in the top of this ranking

(Fig. 4B, p-value = 1.40E-24). Within the same ranking, the 307

predicted p53 targets by iRegulon are nearly as significantly

enriched in the top as the curated targets (p-value = 2.60E-24),

while the 494 remaining up-regulated genes are not significantly

correlated with the ChIP peak data (p-value = 0.096). Importantly,

this result shows that iRegulon is not only able to identify the

master regulator, but is also able to correctly distinguish between

direct and indirect targets from a set of co-expressed genes. Only

two up-regulated genes with a high ChIP peak, namely PLK3 and

DDB2, were missed by iRegulon. About 100 up-regulated genes

have a small ChIP peak but have not been predicted by iRegulon

as target genes. These peaks are likely false positive ChIP peaks

because they do not show p53 motif enrichment when analyzed

separately (Fig. S6A–C). Finally, to compare how many targets are

missed by iRegulon, and how many by ChIP-Seq, we again used

the set of curated targets, and found comparable numbers of false

negatives, namely six for iRegulon and five for ChIP-Seq (Fig. 4C).

In the previous section we had also found that gene repression

downstream of p53 is indirect through E2F, which has been shown

recently to be mediated by p21 and RB [63,68]. If this is true, then

the down-regulated genes should not contain p53 ChIP peaks. To

test this, we plotted the recovery of the 790 down-regulated genes

along the p53 ChIP-peak-based gene ranking generated above

(Fig. 4B). Similar to the indirect up-regulated genes, the down-

regulated genes are completely depleted of p53 ChIP peaks (p-

value = 1.0). On the other hand, the down-regulated genes are

positively correlated with E2F1 ChIP-Seq data in MCF-7 from

ENCODE (Fig. S6D). When combining all the small p53 ChIP-

Seq peaks that are detected amongst the down-regulated genes,

the p53 motif is not found by de novo motif discovery, while the

ChIP peaks of direct up-regulated targets are strongly enriched for

de novo p53 motifs (Fig. S6A–C). From the ChIP-Seq validation

data, we conclude that iRegulon predicts the correct master

regulators (p53 and E2F) and that predicted target genes of these

TFs significantly overlap with ChIP-Seq derived targets. By

combining iRegulon and ChIP-Seq data, we propose a set of 110

‘‘top targets’’ of p53 in MCF-7 that are directly and positively

regulated. When further comparing these predicted targets to

recent reports of several p53 targetomes based on combining gene

expression profiles with p53 ChIP-Seq data under different

experimental conditions [58,59,68], we could confirm many

common targets, but also uncovered 56 new direct p53 target

genes with our analysis (Table S6).

New p53 targets are confirmed by meta-analysis across
human cancers and by enhancer-reporter assays

To explore the relevance of the newly identified p53 targets in

other tumor types, we applied iRegulon in a meta-analysis to

about twenty thousand cancer gene signatures, i.e. differentially

expressed genes obtained from cancer specific experiments. We

reasoned that those target genes that are recurrently predicted

across cancer gene signatures, might contribute to the tumor

suppressor role of p53. We used gene signatures from GeneSigDB

[70], MSigDB [71] and from gene modules generated across 91

large cancer microarray data sets (see Materials and Methods and

Fig. 5A). Out of 23172 signatures, p53 is found as regulator in 709

signatures. We merged the direct p53 targets across all these

signatures into a network and weighted the edges according to the

recurrence of this p53-target interaction across all signatures.

Many previously known p53 targets and many ChIP-Seq derived

targets are recovered using this analysis (GSEA NES = 3.01,

FDR,0.001) (Fig. S7). Of the 110 predicted p53 targets in MCF-7

cells (as defined above), 44 are also predicted as p53 target in

cancer gene signatures (grey area in Fig. 5B). These genes are

predicted as p53 targets by iRegulon and show a significant ChIP

peak and are represented in the p53 cancer-related meta-regulon.

Amongst these 44 genes, 20 were previously indicated as well

established p53 targets (genes in squares in Fig. 5B). When

extending the analysis and including target genes recently reported

in literature [58,59,68], it becomes clear that most overlap

coincides within this metatargetome (34/44) (Table S6). Keeping

in mind that many of the p53 targets reported by others were

found using different cell lines, the enriched overlap within this

metatargetome can be interpreted as a sign that these genes

represent a core set targeted by p53 regardless of the cell type.

Interestingly, when looking at targets like RAP2B, NHLH2,

SLC12A4, and ALDH3A1, they could not have been identified

through motif discovery in proximal promoters only, because the

p53 binding sites are located either further upstream (,1 kb for

RAP2B and ,5 kb for ALDH3A1) or in introns (NHLH2 and

SLC12A4) (Fig. 5C).

Next we confirmed experimentally whether these four targets

are bona fide p53 transcriptional targets. They are all induced in a

p53-dependent manner in various cellular model systems includ-

ing normal diploid human fibroblasts (BJ cells) and various cancer

cell lines (i.e. HCT116 and MCF-7) (Fig. 5D). Except ALDH3A1,

they are also all significantly induced upon exposure to the DNA

damaging agent doxorubicin, a well-established p53 inducer

(adjusted p-value,0.05). Their kinetic of induction both in

response to Nutlin-3a and DNA damage is comparable to the

one seen with known direct p53 targets such as CDKN1A further

supporting a direct role for p53 in their regulation (Fig. S8).

Finally, for all except one we could confirm luciferase reporter

activity of the predicted p53 enhancer region (Fig. 5E). Enhancer-

reporters for ALDH3A1, NHLH2 and RAP2B show a significant

induction after Nutlin-3a treatment in wild type but not in a p53

knock-down (KD) cell line (p-value,0.05). SLC12A4 does not

have a significant induction in either cell-type. Note that our

positive control enhancer, namely the CDKN1A promoter, is a

very responsive p53 target and likely responds to low levels of p53,

which could explain the induction that is still observed even under

p53 KD conditions. Functionally, these validated p53 target genes

have been implicated in p53-regulated processes such as the

control of cell volume, growth and movement (SLC12A4 and

RAP2B) and metabolism (ALDH3A1 and NHLH2).

Motif and track discovery join forces
We extended our motif discovery approach to allow the

discovery of significantly enriched ChIP-Seq tracks in a set of co-

expressed genes. We created a database with track-based gene

rankings from a collection of 1118 ChIP-Seq experiments against

246 human sequence-specific TFs across 40 cell types and apply

the same ‘‘ranking-and-recovery’’ enrichment calculation as

employed earlier (see Materials and Methods). These and other

recent resources further enlarged our motif collection to 9713

distinct PWMs (‘‘10K collection’’) (Table 1). To test whether

motif and track discovery can be performed simultaneously, we

combined the motif-based rankings and the track-based rankings

into one enrichment analysis, although each AUC score

distribution is kept separate for normalization (Fig. 6A–B).

Applied to the 801 p53-dependent up-regulated gene set, the

combined approach still detects p53, AP-1, NFY, and FOX in the

top motifs. Both for p53 and AP-1, enriched ChIP-Seq tracks are
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found by the track discovery, being our in-house performed p53

ChIP-Seq in MCF-7 after Nutlin-3a (ranked first of all tracks,

NES = 5.18) and the FOSL2 ChIP-Seq tracks in MCF-7 from

ENCODE (NES = 3.30) (Fig. 6C–D, Table S7). In addition, we

found five more candidate TFs with a putative role in the

network downstream of p53 that were not detectable using the

6K motif collection only (Fig. 3). Three of these additional

candidates, namely RFX5, NR2F2, and NFI have both their

ChIP-seq track and motif enriched while two more candidates,

namely p300 and TCF12 only show track enrichment (Fig. 6D).

To our knowledge, no interaction of these TFs with p53 has been

reported in the literature. Although the targetomes of the co-

factors overlap to some extent (20–42%) with p53 targets, they

have a considerably large set of target genes independent of p53.

Hence, with these additional TFs added downstream of p53, we

can once more explain an additional fraction of the up-regulated

gene set, with all the ChIP-Seq track-derived interactions

together regulating 542 of the 801 genes. RFX5 is of particular

interest since the gene itself is strongly up-regulated by p53 and is

in fact among the core set of 801 up-regulated genes

(log2FC = 1.9 and adjusted p-value = 1.05E-15). RFX5 is mainly

known as a regulator of MHC-II genes, and indeed, among the

top predicted RFX5 target genes downstream of p53 we find

HLA-F, MR1, and other genes involved in antigen and

interferon-related processes. Interestingly, RFX5 has recently

also been shown to act as a DNA mismatch repair stimulatory

factor [72], and several p53-shared RFX5 targets, such as DDB2

and BBC3, are in fact related to DNA damage response (adjusted

p-value = 6.99E-5, Wikipathway ID:WP707) (Fig. 6E). Hence,

RFX5 can be considered as a new candidate co-factor to

modulate certain aspects of the p53-regulated response, and may

explain why MHC-II genes are up-regulated in a p53-dependent

manner. This proof-of-principle of combined motif and track

enrichment paves the way towards further integration of

regulatory track data and enhancer prediction data to map gene

regulatory networks.

Figure 4. Validation of the p53 regulon by ChIP-Seq. A. Integrative Genomic Viewer (IGV) [131] screenshot for CDKN1A, a known p53 target
gene, showing up-regulation by RNA-seq (red arrowhead) and ChIP peaks in the upstream region (green and blue arrowhead). IGV is free software
under GNU Lesser General Public License, version 2.1 (LGPL-2.1). B. Gene Set Enrichment analysis, with on the x-axis all genes in the genome ranked
according to their maximum ChIP-Seq peak (20 kb around TSS). The p53 targets (green curve) show higher enrichment than the total set of up-
regulated genes (blue curve), approaching the previously known curated targets (red curve), while the non-predicted p53 targets (magenta curve)
and the set of down-regulated genes (cyan curve) show no enrichment. The initial two steps in the magenta curve represent two false negative
predictions of iRegulon (they fall just below the optimal cutoff), namely PLK3 and DDB2, which are up-regulated and have a ChIP peak. P-values in the
legend are calculated by the hypergeometric formula of the leading edge determined by GSEA. C. Comparison between annotated up-regulated p53
targets and predicted p53 targets by iRegulon and ChIP-Seq, indicating the number of previously known p53 targets. See also Figure S6.
doi:10.1371/journal.pcbi.1003731.g004
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Discussion

We have optimized and expanded motif discovery methods and

used large collections of up to 10.000 candidate motifs to facilitate

translation of motif detection results into a network biology

framework. By adding this network-layer on top of cis-regulatory

motifs, we could generate direct insight into a biological process,

rather than producing a mere list of enriched motifs from a gene

set. iRegulon outperformed existing methods at detecting the

correct upstream regulator. We found that using PWMs from

other species than human greatly helps motif detection in human

data sets. Many TFs are conserved from human to mouse, and

even from human to fly or yeast, and sometimes the yeast or fly

PWM is of higher quality or better captures the specificity of DNA

binding. In addition, we found that using multiple PWMs for the

same TF is an advantage and leads to higher performance of TF

recovery compared to using non-redundant motif collections. Our

motif collection also contains an important fraction of ‘‘novel’’

motifs for unknown TFs. These motifs are mostly derived from

whole-genome computational predictions. In some cases these

unknown motifs are clustered together in the output of iRegulon

alongside a known motif, and can thereby lead to candidate TF

predictions, while in other cases they may represent orphan motifs

(with unidentified TFs). The mixture of known and unknown

motifs creates a hybrid motif detection approach, combining de
novo motif discovery and pattern matching approaches.

Large-scale analyses of co-expressed gene sets of different

origins, including co-expression, TF binding (ChIP), protein-

protein association networks and microRNA targets, suggest that

by exploiting the genome sequence, together with other species’

genomes and collections of consensus TF binding sites, the most

relevant sub-networks that underlie observed changes in gene

expression or observed genetic interactions can be reconstructed.

In up to 70% of the cases, the upstream regulatory factor can be

identified, along with a set of direct targets. Therefore iRegulon

provides an alternative approach to probe a particular biological

process when gene expression data is available but the TF is not

known in advance and/or ChIP-Seq is not feasible. By combining

Figure 5. Validation of p53 target genes and target CRMs. A. Workflow to generate meta-regulons. Meta-regulons can be obtained directly
via the iRegulon Cytoscape plugin. B. Direct targets of p53 in MCF-7 cells. All genes are significantly up-regulated by p53, are predicted as p53 targets
by motif discovery in iRegulon and have a significant ChIP peak. In addition, genes in the grey shaded inner circle are part of the p53 meta-regulon,
meaning that they are also found as p53 targets across cancer signatures. C. Four new p53 target genes are presented in detail. D. Relative mRNA
expression levels of p53 target genes before (2) and 24 h after stimulation with 10 mM Nutlin-3a (N) or after 1 hour pulse of 5 mM Doxorubicin (D).
Expression is shown relative to non-treated control and normalized to optimal reference genes for each cell type, assessed by GeNorm [130]. Error
bars show standard error of the mean (SEM) of 3 replicates. E. Enhancer-reporter assays of four predicted p53 target CRMs, after transfection into
MCF-7 cells before and after induction with Nutlin-3a (5 mM) in Wild Type and p53 Knock-down MCF-7 cells. Error bars represent SEM of 5 replicates.
See also Figures S7–S8 and Tables S4, S6.
doi:10.1371/journal.pcbi.1003731.g005
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iRegulon with RNA-Seq, the resolution of gene expression

profiling and gene regulatory network mapping can be increased,

allowing the characterization of any cell type, cellular response, or

tumor sample, up to the single cell level.

Multiple regulons are often discovered from one co-regulated

gene set. This is expected because in higher vertebrates gene

regulation is combinatorial, where multiple TFs cooperate, either

through binding in the same CRM (called heterotypic CRMs), or

in separate CRMs of the same target gene [17]. In addition, the

targets of a TF can be TFs themselves, and in turn activate or

repress their own targets. For example, in the p53-dependent gene

set iRegulon identified not only p53 as regulator, but also a

previously known co-factor AP-1 and new regulators downstream

of p53 such as RFX5. Interestingly, FOS and FOSL1, important

Figure 6. Combined analysis using 10K motifs and 1K ChIP-Seq tracks. A. Two ranking databases were made using 9713 motifs and 1118
ChIP-Seq tracks. The ChIP-Seq tracks consisted of all ENCODE and Taipale ChIP-Seq data against TFs, and the p53 ChIP-Seq track generated in this
study. B. AUC distributions for ChIP-Seq and motif rankings, using the p53 signature as input. C. The actual recovery curve for the p53 motif and
track. Shaded area indicates the AUC. D. Top enriched ChIP tracks and motifs on the up- and down-regulated gene sets (NES.3, except for RFX5
motif that was detected with NES = 2.82 (b). (a) Predicted targets are shown for both enriched tracks and motifs respectively. E. Functional categories
found enriched for predicted co-factors of p53. The annotation of p53-shared targets is shown in the inner circle, while the annotation of non-shared
targets (for example, AP-1 targets but not p53) is shown on the outer circle. The co-factors shown here are those found by both motif and track
enrichment (see also Table S7).
doi:10.1371/journal.pcbi.1003731.g006

From Motif Discovery to Gene Regulatory Networks

PLOS Computational Biology | www.ploscompbiol.org 10 July 2014 | Volume 10 | Issue 7 | e1003731



members of the AP-1 complex, and RFX5, were all identified in

this study as targets of p53. These regulators can explain a large

proportion of the possible target genes of p53 as being indirect and

regulated by another TF. When we extended our ranking-and-
recovery framework to include more than one thousand ChIP-Seq

data tracks, we also found the respective ChIP-Seq peaks for AP-1,

RFX5, and several other co-factors as significantly enriched in the

p53 downstream network. The joint finding of both a motif and a

track for the same transcription factor strongly increases the

confidence for these factors to play a role in the network as master

regulator (i.e., directly controlling many target genes). Neverthe-

less, we envision that in most cases the motif enrichment alone,

without any track enrichment, can directly lead to candidate

master regulators, because ChIP-Seq data is condition-specific and

is currently available for relatively few transcription factors.

The absence of a regulator in the output of iRegulon, when

neither a motif nor a track is enriched, can also be informative. For

instance, neither the p53 motif nor its ChIP-Seq track are found

enriched among the down-regulated genes, leading to the

hypothesis that p53 does not act as a direct repressor, but only

as an activator. Rather, iRegulon points to E2F as the master

regulator of the down-regulated genes, both by its motif and track.

This finding can be explained as indirect down-regulation of E2F

targets and has recently been experimentally established: p21

controls RB1-mediated repression of E2F targets, including E2F

family members themselves, thereby reinforcing this signal further

[63,68].

Our experimental findings on the p53 regulon were obtained in

MCF-7 breast cancer cells. Usually, one iRegulon analysis is

focused on one biological process, and predicts transcriptional

targets that are relevant in that particular cell type or condition

under study. We show that it is also possible to apply iRegulon

more systematically on multiple signatures to identify cancer-

related ‘meta-regulons’. They often represent the canonical, high-

confidence target genes and agree well with ENCODE ChIP-Seq

data (Fig. S7). This shows that relevant TF-target interactions can

be identified purely from the genome sequence, thereby creating a

valuable resource for less studied TFs.

Materials and Methods

Sequence search spaces
Three predefined regulatory search spaces are used in this

manuscript from small to large regions: 500 bp upstream of TSS

[TSS2500 bp,TSS]; 10 kb around TSS [TSS25 kb,TSS+5 kb];

20 kb around TSS [TSS210 kb,TSS+10 kb]. If another gene is

located within the upstream region, then the region is cut where

this neighboring gene begins or ends (depending on which strand

this gene is located on). Coding exons are excluded from the

search space to avoid bias towards these exons through

conservation. Notice that there can be multiple regions per gene

(various upstream regions for alternative transcripts, and multiple

introns) (see example in Fig. S1). When multiple regions are scored

for a given gene, the rank of the highest ranked region is taken into

account as the final rank of the gene.

PWM-based whole-genome rankings across species
Motif detection relies on an offline scoring step whereby every

gene in the human genome, along with orthologous sequences in

ten other vertebrate genomes, is scanned with Cluster-Buster [33]

for homotypic clusters of motifs using a library of N position weight

matrices (PWMs), generating a database of N ranked lists of genes,

each with the most likely genomic targets of a motif at the top of

the ranking.

1) Motif collection. The library of motifs used in this

manuscript is comprised of 6383 PWMs from several sources

[73,74] and databases: TRANSFAC [5], Jaspar [21], FlyFactor-

Survey [75], SelexConsensus [76], hPDI [77], YeTFaSCo [78]

and Tiffin [76] (Table 1). The motifs are collected as count

matrices (scaled to 100 when the source matrix is a position-

frequency matrix). Redundant PWMs (i.e. exactly the same count

matrices annotated independently by different sources) are

discarded. Importantly, note that we didn’t use the motifs derived

from ENCODE ChIP-Seq data that are published recently (76

from Factorbook [46] and 683 motifs in ENCODE [79]) to avoid

over-fitting in our in silico validation. This motif collection

(excluding TRANSFAC PRO motifs) is publicly available from

http://iregulon.aertslab.org.

2) Conservation information. Each gene is identified by its

HUGO Gene Nomenclature Committee (HGNC) identifier and

the whole-genome ranking for human (hg19) is comprised of

22284 genes. The LiftOver utility from the UCSC Genome

Browser [34] was used to obtain orthologous regions between

different vertebrate genomes. Vertebrate genomes used for

conservation correspond to 7 or 10 other species: bosTau4 (Bos
Taurus), canFam2 (Canis familiaris), mm9 (Mus musculus),
monDom5 (Monodelphis domestica), panTro2 (Pan troglodytes),
rheMac2 (Macaca mulatta), rn4 (Rattus norvegicus), danRer6

(Danio rerio), galGal3 (Gallus gallus) and tetNig2 (Tetraodon
nigroviridis). The three last genomes are not included when only 7

species are considered for conservation.

3) Motif scoring. TFBS are often organized in homotypic

clusters in human [80]. We used Cluster-Buster as CRM prediction

method based on previous benchmark results [81,82], although

other Hidden Markov Model implementations would yield similar

results, as shown for SWAN in Drosophila [29]. The parameters

used for Cluster-Buster are the default parameters, except the –c

parameter is set to zero to allow a score for every region. The

Cluster-Buster score is a log likelihood ratio corresponding to log

[prob(sequence given that it is a cluster of real sites)/prob(cluster

sequence given that it is random DNA)]. All regions are ranked

according to the Cluster-Buster score, for each species separately.

These rankings are combined by rank aggregation using a

probabilistic method, OrderStatistics, to evaluate the probability

(q-value) of observing a particular configuration of ranks across the

different related species by chance [35]. This results in a q-value for

each region based on the species specific ranks and thus effectively

integrates all comparative genomics information in a single ranking

for each PWM in our library, thereby allowing for motif movement

within each region. The final rank of a gene is determined by the

highest rank of its best region in the cross-species ranking. Genes

with a score of zero are randomly queued. Note that this motif

scoring strategy has been validated and used successfully in previous

implementations designed for Drosophila, namely cisTargetX [29]

and i-cisTarget [28].

Track-based rankings of human genes
As in the case of motif detection, TF ChIP-Seq track detection

also relies on an offline scoring step whereby every gene in the

human genome is scored with M sets of ChIP-Seq peaks (broad or

narrow), generating a database of M ranked lists of genes, each

with the most likely genomic targets of a TF at the top of the

ranking.

1) Regulatory track collection. The collection of TF ChIP-

Seq tracks is comprised of 999 tracks from ENCODE [23], 117

from Taipale laboratory [24] and 2 in-house tracks from this study

(ChIP-Seq against p53 in MCF-7 after nutlin stimulation, and
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input). Concerning the ENCODE tracks, all the replicates were

used if available.
2) TF ChIP-Seq scoring. Regulatory regions around the

genes (for the three delineations, see above) were scored with the

entire collection of TFBS ChIP-Seq tracks. For the scoring we

used the maximum score of broad and narrow peaks (signalValue

column in bed file format) within the region. Finally, each gene has

one score per track. All the regions are ranked according to the

scores. Note that the regions having no overlap with a peak are

ranked randomly at the end of the ranking.

Calculating motif and track enrichment on a gene set
Our motif enrichment analysis differs from standard gene set

enrichment methods such as GSEA, which uses Kolmogorov-

Smirnov statistics [71]. In our method, we calculate the top

enrichment of a single gene set over Nmotif genomic rankings while

gene set enrichment methods assess the significance of many gene

sets for one genomic ranking. Enrichment is determined by the

Area Under the Recovery Curve (AUC) of the cumulative

recovery curve for the input set, along the whole-genome ranking.

As we are mostly interested in highly ranked genes, the AUC is

computed in the top of the ranking (default set to 3%, see Fig. S2B

for validation) for all PWMs or tracks of the collection. A

Normalized Enrichment Score (NES) for a given motif/track is

computed as the AUC value of the motif/track minus the mean of

all AUCs for all motifs (or tracks), and divided by the standard

deviation of all AUCs. When the distribution of AUCs follows a

normal distribution then the NES score is a z-score indicative of

the significance. The default NES cutoff in iRegulon is 3.0,

corresponding to FDR between 3% and 9% (Fig. S3).

Detection of the target genes
For each enriched motif, the candidate targets are selected as

the optimal subset of highly ranked genes compared to the

genomic background and to the entire motif collection as

background. This step is illustrated in Fig. 1B. The target gene

recovery is plotted along the whole-genome ranking for a given

motif (blue curve) and compared to the average recovery + (26
standard deviation) (red curve) for all motifs in the collection.

Similarly to the GSEA approach [71], the leading edge

corresponds to the rank where the difference between the signal

(blue curve) and the background (red curve) is maximal within the

top ranked genes (the latter is defined by the Rank Threshold

parameter). The input genes that have a better ranking than the

rank at the leading edge are predicted as target genes for the given

motif or track.

Detection of TFs using Motif2TF mapping
Enriched motifs are linked to candidate TFs, which could

potentially bind to the motif. If we use only the direct

annotations, only a small fraction of motifs (20%) can be

associated to human TFs (521 TFs with ‘‘6K’’ collection, 944 TFs

with ‘‘10K’’ collection). We developed a database, which we term

the motif2TF database, corresponding to a network of associa-

tions between motifs and TFs where motif-TF edges correspond

to all motif-TF direct annotations (from different species), TF-TF

edges are defined by homology (using Ensembl Gene Trees

[43,44]), and motif-motif edges are defined by motif similarity,

defined by the Tomtom p-value [45]. For each motif all possible

TFs are associated following different paths in the motif2TF

network. In the plugin at the client side, these TFs are ranked,

prioritizing directly annotated TFs, then the TF present in the

input set, then the ones that are found by gene homology and

finally the TFs found using motif similarity. Figure 1C illustrates

the different possible paths on a motif2TF subnetwork. Motif M1

is not directly annotated to any TF (so it can be part of the

unknown motif collections), but is similar to two other motifs,

namely M3 and M4, both of which are directly annotated. Motif

M4 is directly annotated to a human TF (TF1), while M3 is a

motif annotated for a TF from another species (TF7). Three TFs

in human (TF1, TF8, TF6) are possible orthologs of TF7. In this

example, the link between M1 and TF1 would go via the path

through M4, which is the shortest and best path (rather than via

M3 and TF7). For M1, motif2TF returns TF1, TF6, and TF8 as

candidate TFs, which are subsequently ranked. The second

example is for motif M2 which is annotated for TF5 in another

species. Three human transcription factors (TF2, TF3, TF4) are

possible orthologs of TF5, which may represent for example a

family of homologous TFs such as GATA factors, E2F factors, or

ETS factors. In such a TF family, the consensus motif may

indeed be shared by multiple family members and therefore

iRegulon may return multiple or all family members as

candidates. When multiple TFs are returned, we give priority

to a TF when it is part of the input genes. In this example, TF2

will be preferentially associated to M2 as it belongs to the input

genes (encoded by TG5 in the Figure).

ENCODE and Factorbook ChIP-Seq datasets
ChIP-Seq data was downloaded as hg19 aligned bed files

(view = peaks) from the TFBS ENCODE collections available from

the following servers: http://hgdownload.cse.ucsc.edu/goldenPath/

hg19/encodeDCC/wgEncodeSydhTfbs/ http://hgdownload.cse.

ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs/

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeUchicagoTfbs/. Almost one thousand files (999) were

downloaded corresponding to 160 sequence-specific TFs (TFSS): 672

files for HAIB (Hudson Alpha Institute), 323 for SYDH (Stanford/

Yale/USC/Harvard) and 6 files for Uchicago. Files corresponding to

Input and RNA Polymerase 2 (‘‘Pol2’’/‘‘Pol2(phosphoS2)’’) were not

downloaded. 115 TFs are detectable in iRegulon (i.e., at least one

motif in the collection of 6383 motifs can be connected to the TF),

corresponding to 786 ENCODE datasets. Each query set consists of

the top 200 target genes presenting a ChIP peak in a predefined

search space, i.e., for each search space tested (500 bp upstream of

TSS; 10 kb around TSS; 20 kb around TSS), we define a different set

of target genes, so that each target gene contains a ChIP peak within

the chosen motif search space. The ChIP-Seq scoring of the genes has

been done as mentioned earlier in the Track-based rankings section.

Finally, note that our motif collection does not contain PWMs

derived from these datasets (so we rely on other, previously curated

PWMs to identify the correct TF). The Factorbook dataset collection

is a subset of this ENCODE selection corresponding to 254 ChIP-Seq

files (121 from HAIB, 129 from SYDH and 5 from Uchicago),

inferred from the list of signatures published in the Table S1 of the

FactorBook reference publication [46]. 126 out of these 254

FactorBook signatures have the canonical motif corresponding to

the ChIP’ped TF. From these we randomly selected one signature per

TF for which the canonical motif was predicted as top 1 by their motif

discovery pipeline (inferred from Table S1A [46]). The list of the 30

used datasets is presented in Table S3. Different types of control gene

sets were selected, namely: from ENCODE ChIP-Seq we used (1)

genes without a ChIP-Seq peak in the corresponding search space; (2)

TF neighborhoods for 1150 TFs, containing for each TF all the genes

within 5 Mb flanking the TF; and (3) 1161 random signatures.

Datasets are available on our laboratory website (http://www.

aertslab.org). We also got similar performances using 631

uniformly reprocessed ChIP-Seq data generated in NarrowPeak

format by the ENCODE Analysis Working Group downloaded
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from http://genome.ucsc.edu/cgi-bin/hgFileUi?db = hg19&g =

wgEncodeAwgTfbsUniform (data not shown).

Selection of other tools used for comparison with
iRegulon

The classical motif discovery algorithms that originated in the

late 1990s can be put in two categories: string-based or

enumeration methods and matrix-based approaches. The string-

based approaches rely on the detection of statistically over-

represented words (oligonucleotides or spaced motifs) compared to

a given background [83–88]. Matrix-based approaches make use

of position weight matrices (PWMs) as a predictive model for TF

binding sites, which can be graphically represented as a motif logo

[89], and use optimization algorithms (Expectation-Maximization

[90], greedy algorithm [91,92] or Gibbs sampling [93–95]) to find

the most common motifs to all input sequences. Most of these

methods performed well on yeast or bacterial promoter sequences,

but they showed limited performances when applied to mouse or

human [96]. These methods could be improved by phylogenetic

footprinting [97–103] and by applying genome-scale methods that

exploit the entire gene expression data set rather than a set of co-

expressed genes [104–106]. Current developments have on the

one hand focused on the application of the early algorithms to

ChIP-Seq data [107–111], and on the other hand on the

application of motif discovery to gene sets, with the aim to

increase the performance in higher eukaryotes such as fly, mouse

and human, using large sequence search spaces. This category of

PWM enrichment methods is represented by phylCRM/Lever

[30], DIRE [80,112], PASTAA [32,113], PSCAN [114], Allegro

[115], HOMER [116], OPOSSUM [117] and i-cisTarget [28].

They all use libraries of candidate PWMs and apply PWM

enrichment statistics, often combined with other cues, such as

comparative genomics and TF binding site clustering. By using

libraries of PWMs for known TFs (e.g., PWMs derived from

protein binding microarrays), these methods promote a TF to a

candidate master regulator of the gene set when its PWM is found

enriched. We used all methods in this category of PWM

enrichment methods that are available online, that can work on

human gene sets, and that can be practically performed on 30 sets

of 200 human genes.

Benchmark analysis
Thirty gene sets from FactorBook were selected for motif

discovery tool comparison (Fig. 2D, Table S1). These gene sets

have been selected because the motif of the ChIP’ped TF was

detected as top enriched motif in the top 500 peaks in

FactorBook. We extracted the top 200 genes having the highest

peaks in their 20 kb region around the TSS. The comparison was

performed on TF and motif recovery using the parameters

indicated in Table S3. The parameters were left to default and

when possible, we only adjusted the parameters to allow for larger

upstream regions (when possible we choose TSS+210 kb).

iRegulon was compared to eight other publicly available motif

enrichment tools, namely OPOSSUM [117], DIRE [80,112],

PASTAA [32,113], PSCAN [114], Clover [16], AME [118],

Allegro [115] and HOMER2 [116] (in the case of Homer2, de
novo and known motif discovery are performed simultaneously

but we consider them as different approaches and validate them

separately). We selected these tools because they mostly take as

input a set of human co-expressed genes, and they all return, at

least to some extent, information on which TF could be

regulating the input genes. For this reason, it not feasible to

compare iRegulon with classical de novo motif discovery methods

(e.g., MEME-like methods) because such methods are intractable

on large human gene sets (e.g., 200 genes620 kb610 species

represents a sequence set of 40 Mb), and they result in new motifs

rather than candidate TFs. We also attempted to use SMART

[119] but we did not succeed in running the software. For tools

that require regulatory sequences as input (AME and Clover) we

used the same sequences as used by iRegulon. For some tools like

Clover, it is theoretically possible to use a large search space but

one run on one dataset takes too long (,17 hours), and therefore

we limited the analysis to 500 bp promoter sequences. In the case

of AME, we found no positive results with a large search space

(data not shown), so we show the results with the default search

space. For comparison, we used the number of motifs/TFs found

in top 1 and within top 5 positions. The total number of detected

motifs was not reported for comparison, because some tools use

more stringent thresholds than others. All these tools rely on the

available motif annotation to identify the candidate TF such as

Jaspar (J) or Transfac (T). However, we also manually re-

associated the detected motifs to candidate TFs (mainly by

comparison of the detected motif with the FactorBook motif) (see

column ‘‘USING SIMILARITY’’ in the Table S3). For Homer2,

14 motifs that are derived from ENCODE ChIP-Seq data

matching the actual Factorbook ChIP-Seq data were discarded

from their in-house PWM collection to avoid over-fitting (indeed,

iRegulon does not include FactorBook PWMs either, nor do any

of the other tools). Note that for the other large-scale analysis (e.g.

full ENCODE analysis), we use a command-line version of

iRegulon.

iRegulon Cytoscape plugin and server-side daemon
At the client side, iRegulon is implemented in JAVA as a

Cytoscape plugin, which can be downloaded from http://iregulon.

aertslab.org. The iRegulon plugin is connected to the server-side

daemon over the Internet. The iRegulon server-side daemon is

implemented in Python and uses MySQL to store and query the

PWM-based whole-genome rankings (see below). After submitting

a gene set or network to the service, the results are returned to the

client, and this happens on-the-fly, and takes about one minute.

The user can browse through the motif discovery results, select a

TF among the prioritized list of TFs, and add upstream regulators

and direct regulator-target ‘edges’ to the input gene set or network

under study. A detailed description on the use of the plugin is

provided in Figure S4. In addition, the plugin allows querying

cisTargetDB to obtain the meta-regulon for a given TF, i.e. targets

found recurrently predicted for this TF by iRegulon across

thousands of signatures/gene sets. iRegulon results were obtained

by running the Cytoscape plugin v0.97 on Cytoscape 2.8.1. The

current version of iRegulon (1.2) supports the ‘‘10K’’ motif

collection and the track discovery. The source code of the

iRegulon plugin is also available from the iRegulon website

(http://iregulon.aertslab.org).

A database with meta-regulons
iRegulon was applied in batch (i.e., using the GMT file format

as input for the command line version of iRegulon) to 3447

signatures in GeneSigDB (version 4), 6753 signatures from

MSigDB (version v3 collection 2) and 12972 bi-clusters we

obtained in-house. Bi-clustering was performed with Ganesh

clustering algorithm [120,121] using default settings to 91

microarray datasets. The 91 datasets were retrieved as normalized

(fRMA) microarray data from InsilicoDB [122]. iRegulon results

on all these gene sets is stored in a MySQL database, from which

all summaries per motif and subsequently per TF are computed,

resulting in a meta-regulon per TF. In a meta-regulon, each target

gene is annotated with a number that represents the number of
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gene sets where the TF is found enriched and the gene is among

the optimal subset of direct targets.

Gene Ontology (GO) and GSEA enrichment analysis
GO enrichment analysis was performed using DAVID

[123,124] or BINGO [125]. GSEA analysis on ChIP-Seq data

was performed to avoid arbitrary peak score cutoffs. The genome

was ranked according to the MACS ChIP-peak score (score range

between 0 and 1517.33 for p53) within an area of 20 kb around

the TSS of 22284 RefSeq genes. Functional categories found

enriched for co-factors of p53 were calculated by DAVID and

WebGestalt [126] based on Gene Ontology and KEGG pathways.

Culturing of MCF-7 cells
Cells were kept in culture at 37uC, with 5% CO2 and in RPMI

medium (+ L-glutamate, Gibco) supplemented with 10% fetal

bovine serum (Invitrogen), 0.4 mM sodium pyruvate (Gibco),

100 mm/ml penicillin/streptomycin (Invitrogen), 16non-essential

aminoacids (Gibco) and 10 mg/ml Insulin (Sigma).

RNA-seq
p53-Wild-Type MCF-7 cells were plated onto 24-well plates

(60000 cells/well). The next day, cells were either stimulated with

5 mM Nutlin-3a or left untreated. After 24 h, cells were washed in

PBS (Gibco) and prepared for RNA extraction according to the

RNeasy protocol (Qiagen), yielding around 2 mg of total RNA per

sample. The quality of the RNA samples were checked using a

Bioanalyzer 1000 DNA chip (Agilent) after which libraries were

constructed according to the Illumina TruSeqTM RNA Sample

preparation guide. Final libraries were pooled and sequenced on

the HISeq 2000 (Illumina), generating approximately 30 million

reads of 50 bp length. After removing adapter sequences reads

were mapped to the human reference genome (hg19) using

TopHat v1.3.3 [127] with default settings. Reads were aggregated

with HT-Seq (–str = no parameter, version 0.5.3p3) using the

human RefSeq annotation, release 42. DESeq [128] was used to

normalize and to calculate differential expression between Nutlin-

3a stimulated and non-stimulated samples. A final list of

differentially expressed genes was obtained using adjusted p-

value,0.05 and |log2FC|.1. The threshold of 2-fold up-

regulation was supported by the observation that the strongest

enrichment of the targets from the KEGG p53 signaling pathway

is observed among the top 648 up-regulated genes (GSEA leading

edge corresponds to log2FC = 1.182).

ChIP-Seq
p53 wild-type MCF-7 cells were seeded at a density of 5 million

cells per 15 cm dish and grown ON at 37uC to 80–90%

confluency. Cells were then stimulated with 5 mM Nutlin-3a for

24 h. ChIP samples were prepared following the Magna ChIP-

SeqTM preparation kit using the p53 antibody (DO-1, SCBT).

Per sample, 5–10 ng of precipitated DNA was used to perform

library preparation according to the Illumina TruSeqTM DNA

Sample preparation guide. In brief, the immunoprecipitated DNA

was end-repaired, A-tailed, and ligated to diluted sequencing

adapters (dilution of 1/100). After PCR amplification with 15–18

cycles and gel size selection of 200–300 bp fragments, the libraries

were sequenced using the HiSeq 2000 (Illumina). Cleaned reads

were mapped to the human reference genome hg19 (UCSC)

using bowtie (v2.0.0-beta3) with the addition of parameter –local,

allowing for further soft clipping of the reads. Reads with a

mapping quality below 4 were removed. Peak calling was

performed using MACS (version 1.4.2) [129] either with the

default p-value threshold (3634 peaks) of 1.0E-5 or using

p-value,0.05 (lenient setting to generate the whole-genome

ranking).

RT-qPCR
MCF-7, HCT116 (human colon carcinoma cell line) and BJ

cells were treated continuously with 10 mM Nutlin-3a or a pulse of

5 mM Doxorubicin and total RNA was harvested at different time

points. Reverse transcription was performed using the High

Capacity cDNA Reverse Transcription Kit (Applied Biosystems).

Real Time quantitative PCR reactions were run on Light-

Cycler480 (Roche) in 384-well format, using SYBR-Green Fast

Universal PCR Master Mix (Applied Biosystems). Multiple primer

pairs were tested for each target, and melting curve analysis

confirmed amplification of a single product. Normalization was

done with the most stable reference genes, assessed by GeNorm

analysis [130]. The normalized relative fold changes were log-

transformed before performing two-sided t-test to determine

significance levels. The p-values were further corrected for

multiple testing by very stringent Bonferroni correction. RT-

qPCR primer sequences: NHLH2-fw-CACTGTGGGAGGA-

TCTGAGC; NHLH2-rev-ATAAAGGGGCACTTCGCCTG;

ALDH3A1-fw-CTGCAGGGAACTCAGTGGTC; ALDH3A1-

rev-GGTACAGATCCTTGTCCAGGT; SLC12A4-fw-GGGA-

ACAACATTCGCAGCAG; SLC12A4-rev-AGTGGCATTCG-

ACGTGTCAT; RAP2B-fw-GCGCACAAAAGCCAAACGC;

RAP2B-rev-AGACACCCTGGCCAATGCAA.

Transfection and luciferase assays
MCF-7 cells (WT or p53-KD) were seeded in a 24 well plate at

a density of 50 000 cells per well. After 24 h, cells were transfected

using Fugene HD (Promega) in a 1:3 ratio. 400 ng of luciferase

reporter plasmid containing one of the enhancers of interest

(CDKN1A, RAP2B, ALDH3A1, SLC12A4 and NHLH2) was

mixed with a b-gal plasmid in a 1:10 ratio to correct for

transfection efficiency. The next day, cells were stimulated with

5 mM Nutlin-3a. After 24 h, the transfected cells were harvested

and luciferase and b-galactosidase activities were measured

following the manufacturer’s instructions (Applied Biosystems).

The p-values were calculated using a t-test.

Accession numbers
The RNA-Seq and ChIP-Seq data are available from the NCBI

GEO database (GSE47043).

Supporting Information

Figure S1 Delineation tracks for CDKN1A transcripts in
the human genome. UCSC Genome Browser Gateway screen-

shot showing the human genome (hg19) region around the CDKN1A

loci (chr6:36644237–36655116). The top tracks show our different

delineations: in green (500 bp upstream of the TSS, named

‘‘500 bp’’), in pink (TSS+25 kb, named ‘‘5 kb’’) and in blue

(TSS+210 kb, named ‘‘10 kb’’). The screenshot also shows different

tracks (from top to bottom): the Refseq genes annotations, the mark of

active chromatin (H3K27Ac) from ENCODE, the density of DNaseI

Clusters from ENCODE, the density of Transcription Factor ChIP-

Seq from ENCODE, the CpG islands, the regulatory elements

annotated in OregAnno, and vertebrate basewise conservation by

PhyloP. The promoter (and sequences further upstream and

downstream of TSS) of each alternative transcript is used. This can

be seen when we consider the delineation of the 500 bp promoters,

depicted as green track in the figure. In the RefSeq annotation there

are two major TSSs, and each has its own promoter. However, in the
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large search spaces the respective upstream and downstream regions

of both TSSs overlap, and become one large merged region (pink and

blue for 5 kb and 10 kb respectively).

(TIF)

Figure S2 iRegulon validation and tool comparison. A.
Motif2TF validation. Recovery for ENCODE signatures and their

control sets using different motif2TF parameters: 1) Motif

collection effect (J, T, A barcharts), 2) Homology effect using

threshold on Identity% for all motifs (A+O barcharts), 3) Motif

similarity effect using threshold on the p-value (A+S barcharts),

and combinations (A+O+S). Only Jaspar motifs (J); Only Transfac

Pro (T); All motifs from Jaspar and Transfac pro, and others

databases (A); All motifs+Orthology (A+O); and All motifs+
Orthology+Similarity (A+O+S); blue indicates the analysis done

on ENCODE sets and grey indicates on the control sets. The color

(from red to yellow) and order of stacked bars indicate the number

of times the queried TF was identified in the 1st rank (top1), 2nd

rank (top2), 3rd rank (top3), 4th rank (top4), 5th rank (top5) and 6th

to 10th rank (top10). White color indicates the number of detected

TFs (motif enrichment $3) but with rank .10. By comparing

several combinations of different thresholds on orthology and

motif similarity, we propose to not use any threshold on the

percentage of identity (i.e., using any homologous relationship);

and to use a stringent threshold (p-value,0.001) on the motif

similarity to avoid the high false discovery rates in random control

sets (labeled as ‘‘A+O[0%]+S[0.001]’’ in the plot or ‘‘A+O+S’’ in

Figure 2C). B. Validation of the rank thresholds for the AUC

calculation. The performances are quite robust to variation to the

rank thresholds within a range of 0.01% to 0.3%, but note that the

larger this threshold the longer the computation time. C. TF

recovery for Factorbook (similar as Fig. 2D) but results of tools

using JASPAR motif collection only. Tool comparison using top

200 genes showing a top peak in their 20 kb regulatory region

from 30 ENCODE ChIP-Seq having a top motif identified for the

ChIP’ped TF in Factorbook (see Table S1). Default parameters

were used, but when possible, they were adjusted to use the tss-

centered-20 kb regions. iRegulon was run without the use of

motif2TF and restricted to Jaspar motif collection only (‘‘motif’’) or

with the use of motif2tf (‘‘motif2tf’’). D. Target recovery using two

different search spaces: a proximal region (TSS-up500 bp) versus a

large region (TSS+210 kb) for each gene set in the 30TF

collection selected from Factorbook. The proportion of genes with

proximal peaks have been calculated for each TF by the overlap

between the inferred gene sets with peaks found within the

proximal search space (all genes) and the large search space (top

200 genes). Overall, when iRegulon is applied on a 20 kb search

space (TSS+210 kb), more true target genes are identified (i.e.,

higher sensitivity shown as green bars), compared to iRegulon on

500 bp promoter only.

(TIF)

Figure S3 FDR plots for each regulatory search space.
The plots in A, C, E shows the TF recovery (y-axis) on the

ENCODE ChIP-Seq datasets (in blue) for a given NES threshold

(x-axis) and a given regulatory search space, and the TF recovery

found for the same delineation on the control ENCODE sets

(bottom ranked genes) (in green). The plots in B, D, and F panels

show the FDR calculated by comparing the ratio of the TF

recovery in control datasets over the TF recovery in biological

datasets (ENCODE ChIP-Seq). For NES. = 3, the FDR is

between 1% and 5% for the delineation of 500 bp upstream the

TSS (up500 bp) (A,B), between 8% an 9% for TSS+210 kb

(C,D), and between 6% and 7% for TSS+220 kb (E,F).

(TIF)

Figure S4 Description of the iRegulon Cytoscape plu-
gin. Panels A–E show the prediction of master regulators and

targets and panels F–G show the query of meta regulons predicted

from the systematic iRegulon analysis on thousands of cancer gene

signatures. A. Input network. To perform TF and target

predictions, the initial gene set can be a set of selected nodes in

an existing gene network in Cytoscape or can be imported from a

text file using the menu File . import network as a table. B. The

query form presented here allows the user to give a name to the

analysis, specify the gene nomenclature, and choose the motif and

the track collection, the type of search space (gene-based or region-

based), the regulatory search space (500 bp upstream of the TSS,

10 kb or 20 kb around the TSS) and the conservation (within 7 or

10 species). The motif prediction parameters are the enrichment

score threshold, the ROC threshold for AUC calculation, and the

Rank threshold for target selection. The TF prediction parameters

are the minimal percentage of identity and the maximal FDR for

motif similarity. Then, it is possible to choose for the node

attribute having the gene IDs (HGNC symbols), and the number

of selected nodes is displayed. C. Results panel (motif view). The

raw results correspond to a list of enriched motifs, together with a

prioritized list of candidate transcription factors that can bind the

motif. The main table shows the motifs ranked by decreasing NES

score, with the calculated AUC, the number of predicted targets

(#Targets) and the number of TFs (#TF) found by motif2TF
mapping. Note that when the number of TFs is zero it means that

the motif cannot be associated to a known TF, but can still be

detected as enriched. The enriched motifs are clustered by

STAMP [137] so that similar motifs are visually represented with

different colors in the Results table. The sub-table is related to the

selected motif (highlighted in blue background) and shows: 1) on

the left side, the associated TF(s) with the value of the evidence

parameters (Motif similarity and %identity); 2) on the right side,

the corresponding predicted targets with their rank for this motif.

D. Results panel (track view). The top table shows the enriched

tracks ranked by the maximal NES score, presented with the

number of merged targets (#Targets). The sub-table shows the

track description on the left side. The mid-table shows the

ChIP’ped TF. The table on the right side shows the ranked targets.

E. Results panel (transcription factor view). The top table shows

the enriched TFs ranked by the maximal NES score, presented

with the number of merged targets (#Targets) found by numerous

motifs/tracks (#Motifs/Tracks). The sub-table shows the motifs or

tracks results for a selected TF on the left side. The mid-table

shows the predicted TFs that can be associated by motif2TF to

these motifs with the levels of evidence (%identity, motif similarity

and number of motifs). The table on the right side shows the

ranked targets and the number of motifs for which they are

predicted. In this example, iRegulon has been applied to 171

genes that are up-regulated in MCF-7 cells under hypoxia

conditions. These genes come from the curated signature named

‘‘ELVIDGE_HYPOXIA_UP’’ in MSigDB (C2 CGP). The

highest-scoring regulon contains HIF1A as master regulator. F.
The output network for HIF1A can be drawn by clicking on the

button ‘‘+’’ (‘‘Add regulator and target genes with their

interactions to the current network’’). iRegulon parameters are

20 kb around the TSS (7 species), ROC threshold: 0.03, minimum

orthologous identity: 0%, FDR for maximum motif similarity:

0.001. G. Query panel of TF-target database. To query the

database of meta-regulons, the user needs to go to the query form

using Cytoscape menu (Plugins . iRegulon . Query TF-target
database). The query form allows the user to select the TF and the

Species, and the databases of signatures/gene sets (GeneSigDB,

Ganesh clusters or/and MSigDB). The occurrence count
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threshold indicates the minimal number of signatures, and the

second parameter indicates the maximal number of nodes to

display in the network. Then, it is possible to choose for the node

attribute having the gene IDs (only HGNC symbols are

supported), and to tick the box to automatically create a new

network. H. Output network resulting from the query of TF-target

database (F).

(TIF)

Figure S5 Regulons are detected in many types of
networks and gene sets. iRegulon can be applied to any kind

of gene set to predict upstream regulatory TFs along with

significant direct targets, forming TF-target regulons. A. 94

HIF1alpha targets identified in 171 genes involved in Hypoxia

(11 PWMs, NES = 4.89, rank = 1) (see also Fig. S2 for further

details on this iRegulon analysis). Known HIF1A targets [54] are

in thick circles. B. Application to genes from the Notch signaling

pathway (Pathway Commons Web Service Client in Cytoscape:

NCI/Nature Pathway Interaction Database (ID: notch_pathway)).

The imported pathway is composed of 161 molecules and 750

edges. Pathway interactions between genes are in grey and

predicted regulatory interactions are in green or blue. We applied

iRegulon on all the 87 genes. HES1 (green edges source node) is

ranked 1st (NES = 5.099, 5 PWMs) with 35 predicted direct

targets. RBPJ (blue edges source node) is ranked 3rd

(NES = 4.329, 2 PWMs) with 17 predicted direct targets, including

HEY1, HEY2, and HES1. These co-regulators control 47% of the

genes if the NOTCH signalling pathway (41/87 genes). C.
Application to immune response signature. The Immune response

gene set is a list of 1923 gene products in Homo sapiens associated

to immune response (GO:0006955 and children) was downloaded

as a tab delimited file from http://amigo.geneontology.org. Then,

this list was converted in a list of 1198 unique gene names (HGNC)

and imported in Cytoscape as a network. When applied to these

1198 genes, iRegulon finds the IRF and REL/NFkB regulons,

with 806 and 711 direct target genes respectively, indicating that

these are indeed that master regulators of the immune response.

D. Application to protein-protein interactions from STRING.

iRegulon was applied to 500 genes associated with p53 in

STRING. The p53 motif was found enriched with an enrichment

score of 4.59. Predicted direct interactions are shown in red. E.
Application to microRNA targets. iRegulon analysis has been

performed on 159 microRNAs with annotated targetomes.

Examples are shown for annotated targets of hsa-miR-133a, has-

miR-32, has-miR-429 and has-miR-106a. microRNAs are in red

nodes and target nodes are in blue or red (TF). For each

microRNA targetome, the enriched TF (found by iRegulon) is

represented in green. For example, SRF (green node) was found

enriched with a top motif ranked 5th (NES = 4.149) in hsa-miR-

133a targetome.

(TIF)

Figure S6 Validation of predicted regulons. A–C. Peak-

Motifs results. (A) Results of peakMotifs when applied on peaks near

genes that are NOT predicted as direct p53 targets by iRegulon. On

this set the p53 motif is not found. (B) Results on the ChIP peaks of

up-regulated genes that are also direct targets. On this set of peaks

the p53 motif is clearly found. (C) Results on the peaks near down-

regulated genes, again not finding the p53 motif. D. GSEA results

validating the iRegulon E2F predicted targets with E2F1ChIP-Seq

results. Both the total set of down-regulated genes and the predicted

E2F direct targets are highly enriched. E2F ChIP-Seq data in the

same MCF-7 cell line were downloaded as fastq files from

ENCODE. The sequences were mapped to hg19 using same

mapping parameters as for p53 ChIP-Seq experiments and the bam

files of the replicates were merged with samtools. See Experimental

Procedures for the description of the peak calling and ranking of the

genes. ENCODE Ids: wgEncodeYaleChIPseqRawDataRep1-

Mcf7Hae2f1, wgEncodeYaleChIPseqRawDataRep2Mcf7Hae2f1,

wgEncodeYaleChIPseqRawDataRep1Mcf7Input, wgEncodeYale-

ChIPseqRawDataRep2Mcf7Input.

(TIF)

Figure S7 Gene Set Enrichment Analysis (GSEA) on
GeneSigDB Meta-regulons. A. p53 meta-regulon (188 genes,

min 3 signatures) is found positively enriched by GSEA on the

preranked list of genes weighted by our in house p53 ChIP-Seq

peak scores with a NES of 3.01, Nominal p-value = 0, FDR q-

value = 0, leading edge at 890th rank of the signature. (B–E)

GeneSigDB meta-regulon for TFs found enriched in ENCODE

ChIP-Seq data using GSEA with 516/827 gene sets that passed

the gene set size filters (min = 15, max = 1000) and corresponding

to 78 TFs used in ENCODE ChIP-Seq datasets. B. ZEB1 meta-

regulon (46 genes) is found positively enriched with a NES of 1.24,

Nominal p-value = 0.001, FDR q-value = 0.918, leading edge at

950th rank of the signature. C. CREB1 meta-regulon (512 genes)

is found positively enriched with a NES of 1.07, Nominal p-

value = 0, FDR q-value = 1, leading edge at 3069th rank of the

signature. D. FOXA2 meta-regulon (410 genes) is found positively

enriched with a NES of 1.21, Nominal p-value = 0, FDR q-

value = 0.191, leading edge at 3069th rank of the signature. E.

CTCF meta-regulon (57 genes) is found positively enriched with a

NES of 1.48, Nominal p-value = 0, FDR q-value = 0.11, leading

edge at 6353th rank of the signature. Signature IDs are

wgEncodeHaibTfbsGm12878Zeb1sc25388V0416102PkRep2 (B),

wgEncodeHaibTfbsEcc1Creb1sc240V0422111PkRep2 (C), wg-

EncodeHaibTfbsA549Foxa2V0416102Etoh02PkRep1 (D), and

wgEncodeSydhTfbsK562CtcfbIggrabPk (E).

(TIF)

Figure S8 Time-course experiments by RT-qPCR.
mRNA levels in log2FC of p53 target genes in MCF-7 cells after

stimulation with 10 mM Nutlin3a (A) or 1 hour pulse of 5 mM

Doxorubicin (B).

(TIF)

Table S1 FactorBook gene sets used for tool compari-
son.
(XLSX)

Table S2 Up- and down-regulated genes between Nutlin
stimulated (S) vs non stimulated (NS) in MCF-7, with log
fold changes and adjusted p-values.
(XLSX)

Table S3 iRegulon results on (A) up-regulated and (B)
down-regulated genes.
(XLSX)

Table S4 Predicted p53 targets by iRegulon and p53
ChIP peaks annotated for all the 801 up-regulated genes
after Nutlin stimulation.
(XLSX)

Table S5 Curated p53 targets.
(XLSX)

Table S6 Overlap between 110 predicted p53 targets,
p53 meta-regulon, and p53 targets published in recent
literature.
(XLSX)

Table S7 iRegulon results on up-regulated and down-
regulated genes using motif (10K collection) and track
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discovery. Orange rows indicate enriched motifs while green

rows indicate enriched tracks.

(XLSX)
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131. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics
Viewer (IGV): high-performance genomics data visualization and exploration.

Brief Bioinform 14: 178–192. doi:10.1093/bib/bbs017.

132. Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, et al. (2013) DNA-
binding specificities of human transcription factors. Cell 152: 327–339.

doi:10.1016/j.cell.2012.12.009.
133. Kulakovskiı̆ I V, Makeev VI (2009) [Integration of data obtained by different

experimental methods to determine the motifs in DNA sequences recognized
by transcription-regulating factors]. Biofizika 54: 965–974.

134. Pachkov M, Balwierz PJ, Arnold P, Ozonov E, van Nimwegen E (2013)

SwissRegulon, a database of genome-wide annotations of regulatory sites:
recent updates. Nucleic Acids Res 41: D214–20. doi:10.1093/nar/gks1145.

135. Enuameh MS, Asriyan Y, Richards A, Christensen RG, Hall VL, et al. (2013)
Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a

multitude of novel recognition motifs and binding determinants. Genome

Res 23(6):928–40 doi:10.1101/gr.151472.112.
136. Jankowski A, Szczurek E, Jauch R, Tiuryn J, Prabhakar S (2013)

Comprehensive prediction in 78 human cell lines reveals rigidity and
compactness of transcription factor dimers. Genome Res 23(8):1307–18

doi:10.1101/gr.154922.113.

137. Mahony S, Auron PE, Benos P V (2007) DNA familial binding profiles made
easy: comparison of various motif alignment and clustering strategies. PLoS

Comput Biol 3: e61. doi:10.1371/journal.pcbi.0030061.

From Motif Discovery to Gene Regulatory Networks

PLOS Computational Biology | www.ploscompbiol.org 19 July 2014 | Volume 10 | Issue 7 | e1003731


