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Abstract: Hydrophobic derivatives of polysaccharides possess an amphiphilic behavior and are
widely used as rheological modifiers, selective sorbents, and stabilizers for compositions intended for
various applications. In this work, we studied the mechanochemical reactions of chitosan alkylation
when interacting with docosylglycidyl and hexadecylglycidyl ethers in the absence of solvents at
shear deformation in a pilot twin-screw extruder. The chemical structure and physical properties
of the obtained derivatives were characterized by elemental analysis, FT-IR spectroscopy, dynamic
light scattering, scanning electron microscopy, and mechanical tests. According to calculations for
products soluble in aqueous media, it was possible to introduce about 5–12 hydrophobic fragments
per chitosan macromolecule with a degree of polymerization of 500–2000. The length of the carbon
chain of the alkyl substituent significantly affects its reactivity under the chosen conditions of
mechanochemical synthesis. It was shown that modification disturbs the packing ability of the
macromolecules, resulting in an increase of plasticity and drop in the elastic modulus of the film
made from the hydrophobically modified chitosan samples.

Keywords: chitosan alkylation; alkyl glycidyl ethers; solid state organic reactions; mechanochemical
synthesis; hydrophobic derivatives

1. Introduction

The hydrophobization of polysaccharides is widely used to change their hydrophilic–
lipophilic balance and, accordingly, the rheological properties of their aqueous solutions.
Lipophilic interaction of the introduced side substituents leads to aggregation of the macro-
molecules in an aqueous medium, which results in the formation of nanoparticles with a
“core-shell” structure, micelles, or gels, depending on the polymer concentration, tempera-
ture, number of substituents, and the length of their alkyl chains [1–5]. Such derivatives of
chitosan are used mainly for the development of amphiphilic drug delivery vehicles [6], for
cleaning the water surface from oil contamination, including with subsequent regeneration
of oils [7], as separating membranes [8], and for stabilizing oil-in-water emulsions [9–11].
Current trends in coatings also include the usage of chitosan as polymeric matrices having
the intrinsic antimicrobial properties, and thus a preservative ability [12]. The introduction
of hydrophobic substituents into chitosan increases its antibacterial activity [13] as well
coagulation ability when used as hemostatic agents [14]. A modern trend involving the
replacement of non-degradable polymers by natural ones requires the development of
advanced approaches to fabricate composite materials. Therefore, another promising appli-
cation of hydrophobized chitosan is the fabrication of filled polymeric materials based on
polyolefins, such as polyethylene, polypropylene, etc. The presence of hydrophobic units
within polysaccharide structure could positively affect the distribution of chitosan over
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polyolefin matrix, which is especially important for processing polymers via additive tech-
nologies, in particular for 3D printing where polyolefin-based filaments are successfully
used [15,16]. The fabrication of composite filaments for 3D printing usually requires several
steps of component mixing, and preliminary modification of their chemical structure could
facilitate the compatibility of the filler and polyolefin matrix [17,18].

Hydrophobization is usually carried out by introducing alkyl substituents of various
lengths into the structure of chitosan due to reactions of its amino groups with fatty acids or
their anhydrides (acylated derivatives) [6,19] or by interaction with aldehydes followed by
the reduction of azomethine bonds to secondary amines (alkylated derivatives) [3,7,20,21].
The processes of derivatization of natural polysaccharides are always accompanied by their
preliminary activation in order to destroy the highly organized supramolecular structure,
preventing the dissolution and melting of polysaccharides without decomposition [22].
These processes require the use of a large excess of organic solvents followed by their
expensive regeneration and always begin as heterogeneous reactions in the preparation
of hydrophobic derivatives [23,24]. Therefore, organic solid-state reactions based on the
joint action of high pressure and shear strains in a solid mixture of reagents, including
polymers [25–27], have numerous advantages since they are infinitely high-concentration
reactions and proceed much more efficiently and faster frequently than solution reac-
tions [28–30]. Shear deformation provides numerous possibilities to circumvent many
processing obstacles typical to the interaction of hydrophilic polymers and hydrophobic
organic reagents [31,32]. So, we developed a mechanochemical approach as an alternative
method to produce the hydrophobically modified polysaccharides, allowing to increase
the availability of polysaccharide functional groups in the processes of their chemical
modification.

The main aim of this work was the study of solvent-free mechanochemical reactions
of chitosan alkylation when interacting with docosylglycidyl and hexadecylglycidyl ethers
at shear deformation in a pilot twin-screw extruder. The chemical structure and physical
properties of the obtained derivatives were characterized by elemental analysis, FT-IR
spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and
mechanical tests of the films cast from their acidic aqueous solution.

2. Materials and Methods

Crab chitin (moisture 4.3%, ash content 1.8%) was purchased from Xiamen Fine Chem-
ical Import & Export CO., LTD (China). Chitosan (molecular weight (Mw) of 80,000; degree
of acetylation (DA) of 0.13) and chitosan (Mw of 140,000; DA of 0.07) were prepared
through the mechanochemical alkaline deacetylation of this chitin (ISPM RAS, Russia)
(Samples Ch1-LMw and Ch2-LMw, respectively) in accordance with the published pro-
cedure [33]. Chitosan (Mw of 350,000; DA of 0.20) was purchased from SONAT (Russia)
(Sample Ch-HMw). C16 Glycidil ether (HAGE 16, 2-[(hexadecyloxy)methyl]–oxirane,
C19H38O2, MW 298.511, MP 28–31 ◦C, CAS-No 15965-99-8) and C22 Glycidil ether (HAGE
22, [(docosyloxy)methyl]-oxirane, MP 55–65 ◦C, CAS-No 20920-10-9) of synthetic grade
were purchased from SACHEM Europe B.V. (The Netherlands) and marked as C16 and
C22 modifier. All solvents were purchased from Acros Organics (Belgium) as analytical
grade and were used without further purification.

The viscosity average molecular weight Mw of chitosan samples was determined by
viscometry and calculated by Mark–Kuhn–Houwink equation:

[η] = KmMa, (1)

where Km = 1.38 × 10−4 and a = 0.85 [34].
The degree of deacetylation was determined by potentiometry. Hydrodynamic char-

acteristics of the initial chitosan samples were determined with an Ubbelohde viscometer
with a capillary diameter of 0.54 mm at 25 ◦C, and the pH values, with an Ecotest-120
ionomer (NPP Infraspak-Analit, Novosibirsk, Russia) with a combined electrode, and
accuracy ± 0.1. Solutions of concentrations с= 0.5 and 1 g dL−1 were prepared by dissolv-
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ing a weighed portion of the chitosan in an acetate buffer (0.33 M CH3COOH + 0.2 M
CH3COONa) with рН4.4, and in hydrochloric acids of 0.1 M concentration, respectively.
The solutions were filtrated through a 0.45-µm syringe filter (Carl Roth, Karlsruhe, Ger-
many) before analysis. The DA of chitosan was calculated as following:

DA = 100 − 203m/G − 161m + 203m, (2)

where 203—Mw of acetylated chitosan unit; m—number of moles of amino-containing
units in a weighed sample of chitosan m = V × T; V—volume of NaOH corresponding to
neutralization of the protonated form of amino groups of chitosan, ml; Т—titer of NaOH
solution in mol/mL; G—weight of chitosan, g; 161—molecular weight of an elementary
unit of chitosan. The hydrodynamic properties of chitosan solution are given in Table A1.

Pre-mixing of alkylation reagents with chitosan was conducted as follows. Alkyl
glycidyl ethers were dissolved in acetone (1/4 w/v). Chitosan was soaked in the reagent
solution at predetermined ratios of the components at RT for 5 min. The mixture was
dried in a vacuum oven without heating for 1 h. The synthesis was carried out in a pilot
twin-screw extruder (Berstorff, Germany) with parallel rotation of screws (d = 40 mm)
and controlled heating (4 zones). Pre-mixed reagents were fed manually at screw rotation
speed of 60 rpm. The processing temperature of 40 and 50 ◦C for the HAGE 16 and HAGE
22, respectively, was set in all heating zones. With a residence time of ca. 2–3 min, a feed
rate of 30 g min−1 was achieved. The obtained products were marked as Ch2-L-C22-3,
Ch2-L-C22-10, Ch1-L-C16-3, and Ch-H-C16-5 samples, where first indicates initial chitosan
type, then modifier type and its weight percentage in the processed mix. Table 1 shows data
concerning the conditions for the synthesis of the samples and their main characteristics.

Table 1. Conditions for obtaining samples and their characteristics.

Sample Code Modifier Content,
wt-%

Temperature of
Treatment 1, ◦C

Solubility in 2% Aqueous
CH3COOH Mw, 2 kDa DD, 3 %

Ch-HMw - - 95 350 80
Ch1-LMw - - 94 80 87
Ch2-LMw - - 92 140 93

Ch2-L-C22-3 3 50–60 75 – –
Ch2-L-C22-10 10 50–70 57 – –
Ch1-L-C16-3 3 40–60 76 – –
Ch-H-C16-5 5 40–60 72 – –
1 The upper value of the interval was recorded in the second zone, where the power (kneading) elements of the screws are located. 2 Average
viscosity molecular weight according to capillary viscometry data; 3 degrees of deacetylation (glucosamine unit content) according to
potentiometric titration data.

The products were purified with chloroform followed by fractionation by dissolution
in 2% CH3COOH and separation of soluble and insoluble products by centrifugation at
9500 rpm. Then, the soluble fractions were precipitated with 1 M NaOH. The precipitates
and insoluble products were rinsed with distilled water up to neutral pH and freeze-dried
to produce the soluble (marked using “s” as suffix) and insoluble (“ins”) fractions in
powder form.

Content of carbon, nitrogen, and hydrogen was revealed using FLASH-2000 Organic
Elemental Analyzer (Thermo Fisher Scientific, Loughborough, UK). Glucosamine content
was calculated from the EA data using C/N ratio for both pure and modified chitosan.

FT-IR spectra were recorded on a Bruker Vertex 70 spectrometer (USA). All spectra
were initially collected in ATR mode at resolution of 4 cm−1 by employing an ATR-mono-
reflection Gladi ATR (Pike Technologies, Madison, WI, USA) accessory equipped with
diamond crystal (n = 2.4; angle of incidence 45 deg.). The obtained ATR spectra were con-
verted into IR-Absorbance mode. All the spectra presented in this work were recorded and
treated using a set of programs: Bruker Opus (version 6.1). The spectra were normalized
using the compound band of stretching vibrations C–O of the pyranose ring at 1075 cm–1

as an internal standard [35]. The chemical structure of chitosan and assignments of the
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polysaccharide main bands are given in Figure 1 and Table 2. The band assignments were
made according to [35–38].
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Figure 1. Chemical structure of chitosan.

Table 2. Interpretation of IR spectra.

Wave Number, cm−1 Interpretation [35–38]

3480 νОНin hydrogen bonds of (C6) H2OH groups
3450 νОНin hydrogen bonds between O3 and O2 atoms
3370 νNНasymmetrical
3295 νNНsymmetrical
3265 νNН(Amid II band)
3100 combined band νNН
2950 νCН3 asymmetrical
2930 νCН2 asymmetrical

2890–2880 νCН3, νCН2 symmetrical, νCНin the ring
3000–2840 νCНin alkyl substituents

1660 νC=О(пoлoсa aмидI) in hydrogen bonds C=О—НN
1630 νC=О(пoлoсa aмидI) in hydrogen bonds with О3
1600 δNН2
1560 δNН(Amid II band), νCN

1475–1450 δCН2 in alkyl substituents
1470–1430 δCН3 in alkyl substituents
1430–1420 δCН, δCН2, δCН3 in chitin and chitosan
1395–1365 δCН3 in alkyl substituents

1390 νCН, δCНsymmetrical
1380 δCН3 symmetrical
1375 νCN, δCН2
1320 δNН, δCН2 symmetrical
1310 δNН(Amid III band), δCН2 symmetrical

1260–1200 in (C3)НОНgroups
1155 νCОasymmetrical of acetal bond
1110 νCОasymmetrical in the ring

1070–1030 νCОin the ring, in (C3)НОНand (C6)Н2ОНgroups
975 C-CН3
895 νCОasymmetrical, δCН

770–720 δCН2 in alkyl substituents

Dynamic light scattering (DLS) of 0.2 wt-% solutions of initial chitosan and soluble
fractions of hydrophobic modified (HM) samples in 2%CH3COOH was carried out using a
Zetatrac particle size analyzer (Microtrac, Inc., Montgomeryville and York, PA, USA). The
solutions were filtrated through a 0.45-µm syringe filter (Carl Roth, Karlsruhe, Germany)
before analysis.

Films from chitosan and acid soluble fractions of the HM-samples were fabricated
through the casting of 2% respective polymeric solutions in 2% acetic acid on polystyrene
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Petri dish and drying in a dust-free chamber at RT. The thickness of the films was 90–120 µm.
Before mechanical testing, the films were kept in a desiccator at a constant humidity of 81%
above the (NH4)2SO4 saturated solution for a week. Mechanical studies of the film samples
(4.2 × 10 mm) were carried out using an AGS-H universal testing machine (Shimadzu,
Japan) at a speed of 5 mm/min following the guidelines of ASTM D3039/D3039M-08
“Standard test method for tensile properties of polymer matrix composite materials”.
Mechanical characteristics of the films, namely tensile strength, elastic modulus, and
elongation at break, were calculated as the average value of five measurements of a film
sample taking into account its thickness using the instrument software.

Scanning electron microscopy (SEM) of the films was carried out with an aim of
PhenomProX (Thermo Scientific, Waltham, MA, USA) operated at 10–15 kV.

3. Results
3.1. Structural Characteristics of the Obtained Derivatives
3.1.1. Elemental Analysis

The degree of substitution (DS) of the synthesized N-2-hydroxy-3-(hexadecyl) methyl
and N-2-hydroxy-3-(docosyloxy) methyl derivatives of chitosan was calculated from ele-
mental analysis data from the difference in the molar C/N ratios in the product and in the
initial chitosan, referred to the number of carbon atoms in the substituent (see Table 3).

Table 3. Elemental analysis data for the initial chitosan samples and the products of their interaction
with alkylation agents.

Sample %C %Н %N C/N DS

Ch-HMw 43.74 ± 0.14 6.79 ± 0.11 7.82 ± 0.02 6.53 –
Ch1-LMw 43.62 ± 0.12 6.67 ± 0.12 7.93 ± 0.02 6.42 –
Ch2-LMw 43.03 ± 0.21 6.82 ± 0.04 8.17 ± 0.03 6.23 –

Ch1-L-C16-3s 40.85 ± 0.10 7.85 ± 0.08 7.21 ± 0.01 6.61 0.012
Ch1-L-C16-3ins 43.56 ± 0.01 7.05 ± 0.01 5.33 ± 0.01 9.53 0.19

Ch-H-C16-5s 40.85 ± 0.10 7.70 ± 0.10 7.20 ± 0.01 6.62 0.006
Ch-H-C16-5ins 43.56 ± 0.01 7.05 ± 0.01 5.32 ± 0.01 9.55 0.19
Ch2-L-C22-3s 40.15 ± 0.08 6.65 ± 0.12 7.84 ± 0.02 5.98 –

Ch2-L-C22-3ins 43.58 ± 0.01 6.79 ± 0.11 6.28 ± 0.02 8.10 0.085
Ch2-L-C22-10s 40.72 ± 0.09 7.30 ± 0.10 7.21 ± 0.02 6.59 0.016

Ch2-L-C22-10ins 45.90 ± 0.10 8.31 ± 0.08 5.6 ± 0.01 9.56 0.15

3.1.2. FT-IR Data

Figure 2 shows the IR spectra of the initial alkylation reagents and the unreacted
modifier extracted from the Ch2-L-C22-10 sample with acetone. All the presented spectra
contain an intense doublet of the bands of asymmetric and symmetric stretching vibrations
of the methylene groups of the alkyl chain at 2916 and 2848 cm−1, respectively, as well
as the corresponding bands of their bending vibrations in the low-frequency region of
the spectrum. The doublet of the deformation vibrations of the alkyl groups of the C16
modifier at 1472 and 1462 cm−1 is the envelope of the bands due to the larger contribution
of the –C(H)– and –CH3 groups in the relatively short alkyl chain. The bands of stretching
vibrations of –C–O– bonds of the glycidyl group are present in the spectra at 1120 and
907 cm−1.
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Figure 2. FT-IR spectra (bottom to top): starting reagents HAGE 16 (C16), HAGE 22 (C22); modifier
C22 unreacted after co-extrusion.

Figure 3 shows the IR spectra of the samples of the initial Ch-LMw chitosan and the
soluble fraction of the product prepared using hexadecylglycidyl ether (the initial content
in the reaction mixture was 3 wt-%). The high-frequency spectral region (3700–2500 cm−1)
includes a wide band of stretching vibrations of H–O groups, a doublet of overlapping
bands of H–C groups (with a maximum at 2871 cm−1), as well as a doublet of bands of
asymmetric and symmetric stretching vibration NH2-groups, which appear in the spectrum
as weak bands at 3361 and 3294 cm−1 against the background of the band of stretching
vibrations of hydroxyl groups.
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Figure 3. FT-IR spectra of the samples (bottom to top): chitosan Ch2-LMw; chitosan Ch1-LMw;
fraction Ch1-L-C16-3s.

Figure 4 shows the IR spectra of the initial chitosan Ch-HMw sample as well as soluble
and insoluble fractions of its derivative, i.e., Ch-H-C16-5 sample (modifier content 5 wt-%).
The spectra of both fractions of this sample also contain an additional absorption band
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of stretching vibrations of methylene groups, which appears at 2921 cm−1 and is better
resolved in the spectrum of the fraction of the sample insoluble in an aqueous acidic medium.
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Figure 5 shows the IR-spectra of the based on Ch-LMw chitosan fractions insoluble in
aqueous media. The intense doublet of the bands of asymmetric and symmetric stretching
vibrations of the methylene groups of the alkyl chain at 2918 and 2850 cm−1, respectively,
present in the spectra, practically repeats the shape and intensity of the absorption bands in
alkylation reagents. In the low-frequency region of the spectra, the absorption is determined
by deformation vibrations of NH2 groups, including those involved in the alkylation
reaction, resulting in secondary amine formation.
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3.2. Behavior in Solution and Properties of the Films
3.2.1. Dynamic Light Scattering

The effect of the introduction of the alkyl substituents into the structure of chitosan on
its macromolecular behavior in solution was evaluated with the use of DLS. Figure 6 shows
that the hydrophobization of both types of chitosan samples led to an increase in the size
of associates, while the profile of size distribution was unchanged. Original histograms
of the number-weighted size distribution of macromolecular associates of N-2-hydroxy-
3-(hexadecyl) methyl chitosan with degree of substitution 0.012 and initial chitosan with
degree of acetylation 0.07 and Mw of 140 kDa in 0.2 wt-% solutions in aqueous acetic acid
are given in Figure A1.
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3.2.2. Mechanical Tests

Mechanical characteristics of the films made of both LMw and HMw chitosan samples
and their water-soluble derivatives prepared using C16 modifier are summarized in Table 4.
Deformation curves as well as SEM micrographs of the films under investigation are
presented in Supplementary Figures S1 and S2, respectively.

Table 4. Mechanical properties of the films of initial and the modified chitosan.

Sample Tensile Strength, MPa Elongation at Break, % Elastic Modulus, MPa

Ch-HMw 71 ± 2.3 19 ± 2.1 1650 ± 35
Ch-H-C16-5s 65 ± 1.5 23 ± 1.4 750 ± 18

Ch1-LMw 37 ± 1.3 4 ± 3.3 1623 ± 32
Ch1-L-C16-3s 30 ± 1.1 8 ± 2.1 877 ± 16

4. Discussion

The proposed schemes of interactions of chitosan with HAGE 16 and HAGE 22 are
shown in Figure 7a,b, respectively.
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The chemical structure of the obtained samples was studied by elemental analysis
and IR spectroscopy. The spectrum of the unreacted modifier extracted from the Ch-L-
C22-10 sample (see Figure 2) contains traces of acetone (no more than 1–2%). Otherwise,
it indicates an insignificant contribution of the side reaction of hydrolysis of the glycidyl
group during extrusion. In the spectra of initial LMw chitosan samples (Figure 3), the
relative intensity of the bands of the doublet of deformation vibrations of NH2 groups at
1590 cm−1 and stretching vibrations of C=O in the amide group (Amide-I) at about 1650
cm−1 indicate a smaller degree of acetylation of Ch2-LMw, which is consistent with the
obtained data of potentiometric titration.

FTIR analysis of the products are presented in the Figures 3–5. In the high-frequency
spectral region (3700–2500 cm−1), the spectra of water-soluble fractions (Figure 3) contain
an additional absorption band (in the form of a shoulder) of stretching vibrations of
methylene groups at 2915 cm−1, which is related to alkyl substituents in the chitosan
structure. The spectra of insoluble fractions of the samples also contain an additional
absorption band of stretching vibrations of methylene groups, which appears at 2918–2921
cm–1 (Figures 4 and 5). Moreover, these bands are much better resolved. The intense
doublet of the bands of asymmetric and symmetric stretching vibrations of the methylene
groups of the alkyl chain at 2918 and 2850 cm−1, respectively, present in the spectra of
insoluble fractions of the LMw chitosan samples (Figure 5), practically repeats the shape
and intensity of the absorption bands in the alkylation reagents. All the above indicates a
relatively higher DS of chitosan functional groups by alkyl substituents in these fractions.
The data of elemental analysis also confirmed this observation (see Table 3, “ins” fractions
vs. “s” ones). Moreover, DS of insoluble fractions is approximately the same in all samples,
despite the large difference in the content of modifiers in the initial mixtures.

The absorption in the 1650–1500 cm−1 region is determined by δNH2. It can be seen
from the spectra that the DA of the commercial chitosan sample presented in Figure 4 is
higher than in the samples obtained by solvent-free extrusion. That also corresponds to the
characteristics declared by the manufacturer. The change in the relative intensity of the
bands of deformation vibrations of NH2 groups due to the alkylation reaction is practically
imperceptible, since for secondary amines this band (in the region of 1600–1500 cm−1) is
usually weak. In addition, the simultaneous presence of OH groups in amine molecules
makes it difficult to identify the absorption bands of the amino group [29]. At the same
time, a detailed examination of this region in the IR spectra of the samples based on
relatively low-molecular-weight chitosan (Figure 5) shows the presence of an intense band
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at 1557 cm−1, which should be attributed to the absorption of a secondary amine. This
band is significantly shifted towards lower frequencies due to the presence of a hydroxyl
group next to it in the structure of the products (see the interaction scheme in Figure 6). In
the spectra of the initial chitosan, this band is weakly expressed and refers to the vibrations
of δNH and νCN bonds in the amide group (Amide-II).

Rheological behavior of pristine and hydrophobized polysaccharides is logically
changed as a function of their chemical structure. In the case of chitosan, due to its
polyelectrolyte nature, the properties of the aqueous solutions also strongly depend on
the molecular characteristics of the initial polymer, such as Mw and DA [2]. As follows
from the data in the Figure 6, the hydrodynamic volume of the non-modified chitosan
samples grows with an increase in their molecular mass. The mean size of Ch1-LMw
was 250 nm, whereas for the other two samples a mean size of the associates in range of
400–600 nm was observed. The hydrophobization of chitosan macromolecules led to an
increase of the hydrodynamic volume that indicates a domination of the intermolecular
associating process in the aqueous system. The size of macromolecular associates of
hydrophobic derivatives was also larger in the case of an initial polymer with higher Mw,
i.e., Ch-H-C16-5s > Ch1-L-C22-10s > Ch1-L-C16-3s (Figure 6).

Synthesized hydrophobic chitosan derivatives are targeted to be used as biodegradable
fillers within polyolefin-based materials, but it is also possible to use them as substan-
tive polymeric materials. Therefore, their film-forming ability from acetic acid aqueous
solution was tested as well. SEM observation of the films of initial chitosan samples and
the acid soluble fractions of their HM-samples (Supplementary Figure S2) demonstrates
the homogeneity all of the patterns, more pronounced in the case of Ch-HMw-based
films. Mechanical tests showed that modification disturbs the packing ability of the macro-
molecules that results in an increase of plasticity and drop in the elastic modulus of the
film of HM-samples (Table 4, Supplementary Figure S1). These changes are favorable to
the improvement of the properties of chitosan-based materials in a number of applications,
in particular as biopolymeric dressings and coatings [39]. The relatively small degree of
substitution in the soluble fractions does not lead to the formation of an entanglement
network due to lipophilic interactions. Therefore, the strength of the modified film samples
also slightly decreases.

5. Conclusions

In this work, we have shown the efficiency of the solvent-free method, which makes
it possible to carry out the chemical modification of polymers in the absence of liquid
dispersion media as well as any catalysts to obtain hydrophobic derivatives of chitosan.
The solid state reactions of chitosan alkylation when interacting with docosylglycidyl
and hexadecylglycidyl ethers at shear deformation in a pilot twin-screw extruder were
investigated. According to calculations, the DS of amino groups of chitosan with alkyl
substituent for the soluble products was 0.006–0.016, that corresponds to 5–10 hydrophobic
moieties per chitosan macromolecule with a degree of polymerization of 500–800 (Ch-LMw
samples) and 12 substitutes per macromolecule for Ch-HMw sample with DP of 2000. A
significant part of the products (20–30 wt-%) lost the ability to dissolve in acidic aqueous
media, which is obviously associated with a sufficiently long length of alkyl substituents.
DS in such fractions is logically higher and reaches 0.2. The following conclusions can
be drawn from the FTIR analysis. The modifier practically does not undergo the side
reaction of hydrolysis of the glycidyl group during solvent-free co-extrusion, as evidenced
by the spectrum of the sample obtained by extracting unreacted low molecular weight
reagents. The length of the carbon chain of the alkyl substituent significantly affects its
reactivity under the chosen conditions of mechanochemical synthesis. Thus, the DS of the
samples is practically the same when the content of the C22 modifier is 10 wt-% and the
C16 modifier is 3 wt-% in the initial mixtures. Hydrophobic substituents in the structure of
the obtained samples led to a loss of solubility in aqueous media, and the DS within them is
quite high. Thus, the absorption bands of alkyl substituents and secondary amine are well
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resolved in the spectra of insoluble fractions of the samples. The spectral data obtained
are in good agreement with the data of the calculations based on the chemical analysis.
Changes in the plasticity of the modified chitosan films are favorable to the improvement of
the properties and the increased use of natural polymers as polymeric coatings. The effect
of alkyl fragment presence within the chemical structure of chitosan on its dispersibility
within polyolefin matrix will be tested subsequently.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13162807/s1, Figure S1: Deformation curves of the film samples of initial and the
modified chitosan, Figure S2: SEM micrographs of the films made of: (a) Ch1-LMw sample (DP
of 500, DA of 0.13); (b) Ch1-L-C16-3s (average 6 alkyl substitutes per chitosan macromolecule); (c)
Ch-HMw sample (DP of 2000, DA of 0.2); (d) Ch-H-C16-5s (average 12 alkyl substitutes per chitosan
macromolecule).
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Appendix A

Table A1. Hydrodynamic properties of Ch2-LMw chitosan solution.

C, 1

g dl−1 t, sec ηrel ηsp ηsp/C

0.45 363 3.42 2.42 5.35

0.33 276 2.60 1.60 4.82
0.26 230 2.17 1.17 4.46
0.22 197 1.86 0.86 4.2

1 C—polymer concentration in solution; t—the solution flow time; ηrel—relative viscosity (ratio of solution flow
time to solvent flow time); ηsp—specific viscosity (ratio of the difference between the viscosities of the solution
and the solvent to the viscosity of the solvent).

Intrinsic viscosity was determined by graphical extrapolation of ηsp/C values obtained
for several concentrations to zero concentration. According to the data and calculations,
it was found that intrinsic viscosity was 3.26 dl g−1, and Mw of the chitosan sample was
140 kDa.

https://www.mdpi.com/article/10.3390/polym13162807/s1
https://www.mdpi.com/article/10.3390/polym13162807/s1
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Appendix B

1 

 

  
(a) (b) 

 
Figure A1. Original histograms of number-weighted size distribution of macromolecular associates of (a) N-2-hydroxy-3-
(hexadecyl) methyl chitosan (Ch1-L-C16-3s sample, degree of substitution of 0.012) and (b) initial chitosan with degree of
acetylation of 0.07 and Mw of 140 kDa (Ch2-LMw sample) in 0.2 wt-% solutions in aqueous acetic acid.
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