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Abstract: Modern nuclear magnetic resonance spectroscopy (NMR) is based on two- and
higher-dimensional experiments that allow the solving of molecular structures, i.e., determine
the relative positions of single atoms very precisely. However, rich chemical information comes
at the price of long data acquisition times (up to several days). This problem can be alleviated by
compressed sensing (CS)—a method that revolutionized many fields of technology. It is known
that CS performs the most efficiently when measured objects feature a high level of compressibility,
which in the case of NMR signal means that its frequency domain representation (spectrum) has a
low number of significant points. However, many NMR spectroscopists are not aware of the fact that
various well-known signal acquisition procedures enhance compressibility and thus should be used
prior to CS reconstruction. In this study, we discuss such procedures and show to what extent they
are complementary to CS approaches. We believe that the survey will be useful not only for NMR
spectroscopists but also to inspire the broader signal processing community.

Keywords: compressed sensing; nuclear magnetic resonance; sparsity

1. Introduction

Nuclear Magnetic Resonance spectroscopy (NMR) is currently one of the most versatile techniques
of chemical and physical analysis. Its range of applications is impressively broad: from analysis of
small molecules structures in all states of matter [1], through characterization of complex natural
mixtures [2,3], including applications to medical screening (metabolomics) [4] up to the biological
studies of structure and dynamics of proteins and ribonucleic acids [5]. The introduction of Fourier
transform (FT) in 1966 [6] became a cornerstone of modern NMR spectroscopy, which is based on a
measurement of a free induction decay signal (FID) in a time domain. The FID is induced in a receiver
coil of an NMR spectrometer by oscillating effective magnetization of nuclear magnetic moments
polarized by an external magnetic field and excited by a radio frequency (RF) pulse. Importantly,
the precession frequency is dependent not only on the nuclear magnetic moment and the induction
of an external magnetic field but also on the electronic surrounding of a nucleus causing shielding
or deshielding effect. Thus, the frequencies emitted by the sample are interesting for chemists that
can deduct molecular structures from them. Formally, the precession frequency (ω) is dependent
on the external magnetic field (B0), shielding tensor (σ) and magnetic moment being a product of
gyromagnetic ratio γ and spin vector I.
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ω = −γI (1− σ) B0 (1)

The FID signal s(t) typically takes a form of a sum of oscillatory decaying components:

s(t) =
K

∑
k=1

Ak exp (i(ωkt + φk)) (2)

The number of components K is equal to the number of groups of nuclei differing in resonance
frequency. Each component has its amplitude (Ak) and frequency (ωk). The imaginary part of a
frequency corresponds to a decay rate of a signal (transverse relaxation). The phase error φ stems
from various experimental imperfections and is typically either constant or linearly dependent on the
frequency (φ = φ0 + φ1ω).

The concept of multidimensional data acquisition [7] opened way to measurement of
N-dimensional FID signals that are functions of several time variables t1, t2, . . . , tN . Such signals
are built of products of N components similar to those in Equation (2):

s(t1, t2, . . . , tN) =
K

∑
k=1

N

∏
l=1

Ak exp (i(ωk,ltl + φk,l)) , (3)

where the k - index in ωk,l corresponds to the component’s number and l corresponds to the dimension
of the signal (there are N dimensions in total, one direct and other indirect).

N-dimensional spectra contain useful information—not only about resonance frequencies ωk,l but
also about interactions exploited to trigger excitation transfer between nuclei. This allows resolving
the structure of a studied molecule, i.e., to determine which nuclei are connected by single or multiple
chemical bonds (transfer via spin-spin couplings), which are close in space (transfer via dipole-dipole
cross-relaxation) etc. [1].

However, the acquisition of multidimensional NMR data is very time-consuming, which is
cumbersome due to high costs of NMR hardware maintenance, chemical instability of some samples [8]
and processes occurring in them [3]. The problem of lengthy acquisition stems from combination of
three facts. First, according to the Nyquist-Shannon sampling theorem [9], the sampling rate must
be at least equal to the bandwidth of a signal. Secondly, the spectral resolution is proportional to
the maximum time sampled [10]. Both requirements must be fulfilled in all spectral dimensions,
which means that a number of data points grows exponentially with the dimensionality of a spectrum,
reaching many thousands. Finally, every sampled data point in indirect dimensions (t1, t2 . . . tN−1) is
acquired as a separate, one-dimensional FID signal (s(tN)). The excited spin system needs to recover
(or at least approach) its equilibrium state before next point is acquired, which usually takes up to a
few seconds. Multiplied by several thousand indirect dimension points, this leads to even days-long
NMR experiments.

Many methods have been proposed to alleviate the problem of lengthy sampling in
multidimensional NMR experiments. Currently, the majority of them are based on the concept
of sparse non-uniform sampling, where certain sampling points are removed from the sampling
schedule and reconstructed mathematically based on various assumptions about the resulting
spectrum. The assumptions may include: maximum entropy of a spectrum [11], presence of empty
regions [12], minimum number of FID components [13] or minimum number of meaningful spectral
points (“sparsity”) [14–16]. The latter assumption is a central pillar of the compressed sensing (CS)
method that conquered many branches of technology and science [17], including chemical sciences [18].
The sparsest spectrum is found by minimizing the penalty function which is a sum of two terms:
the first measures its accordance with the measured data and the second expressed by the `p-norm
(0 < p ≤ 1) of the spectrum corresponds to the spectrum sparseness. The minimum can be found by
algorithms like iterative soft thresholding [14,19] (IST) or iteratively re-weighted least squares [20]
(IRLS). Approaches related to famous CLEAN method also resemble `p-norm minimization [21].
The concise presentation of the CS theory can be found below in Section 2.
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Other techniques include the projection spectroscopy based on co-sampling of several indirect
time dimensions [22], covariance spectroscopy based on non-Fourier analysis of the conventionally
sampled data [23], extrapolation of such data using linear prediction [24] or attempts to remove
aliasing from sampling below Nyquist rate [25]. Although their effectiveness is also based on the
compressibility of the spectrum, the relationship to compressed sensing is loose and thus they are out
of scope of this study.

In this work, we will examine the relation between the sampling level and compressibility of
a spectrum in the context of various NMR experiments. We survey the data acquisition and signal
processing tricks that enhance the compression level and show, for the first time, that it is related to
the amount of data required to obtain credible spectral reconstruction with CS methods. The relation,
although stems from CS theory, has never been practically verified and demonstrated to the NMR
community. On the other hand, readers from outside NMR field may get inspired by the experimental
tricks enhancing the compressibility and use their analogues in different contexts. Thus, we find
it beneficial to share lessons from NMR spectroscopy with experts of the broadly defined signal
processing field.

2. Theory

Compressed sensing theory is based on the concept of sparse representation of a signal and
compressibility of a signal. These two features depend on a chosen basis of a signals’ vector space
V. The basis v1, . . . , vn is usually referred to as a dictionary. The examples of dictionaries that on the
one hand are often used by practitioners and on the other are covered by the CS theory are Fourier
basis and wavelet basis [26,27]. As shown by Qu et al. [16], the former is more efficient in the case of
NMR spectra. Given a dictionary v1, . . . , vn we say that a signal s ∈ V is k-sparse if it can be written as
λ1v1 + . . . + λnvn where at least n− k λj-coefficients are equal to zero. The set of k-sparse signal is
denoted by Σk. Please note that by simple combinatorics Σk is a union of (n

k) vector subspaces of V but
it is not a convex subset of V.

Having the latter in mind let us formulate the central problem of CS theory. For simplicity of
formulation, we shall consider the case of V = Cn for which we fix one of the standard dictionaries
(e.g., the Fourier dictionary is very useful in the NMR context). For a class of k-sparse signals
s = (s1, s2, . . . , sn) ∈ Σk the CS theory determines the minimal number of the coordinates sj of the
signal s required for the effective determination of the remaining ones. The effectivity requirement
excludes the brutal search strategy, which is just checking all possible l-sparse signals with l ≤ k
satisfying the measurement constraint and finding the sparsest one among them. Non-effectivity of
this approach is recognized by estimating a time needed for this strategy to be implemented in case of
the standard size signals, e.g., n = 512 and small sparsity, e.g., k = 10. The time required for solving
such a problem by a brute-force would be of the order of hundreds of years (see e.g., an estimation
in [28], p. 54). The CS theory provides a useful alternative for a brutal search strategy by replacing a
non-convex problem (recall the non-convexity of Σk) by its convex version.

Before describing the CS approach in more details, let us note that the sparsity is undoubtedly too
strong condition from the practitioner standpoint. Indeed, a signal acquired in a given experiment
is contaminated with a measurement noise and the noisy part of a signal excludes its sparsity with
respect to the standard dictionaries. Nevertheless, CS is still useful due to the approximate sparsity of
a signal, in this work referred to as compressibility.

Qualitatively speaking a signal is compressible if it can be well-approximated by a sparse
representation. This feature can be expressed quantitatively by means of the distance of the signal
from the subset of the k-sparse signal Σk. The measure of this distance can be chosen in many different
ways. One possibility is to use the `p-norm and define

σk(s)p,vi = inf
ŝ∈Σk
‖s− ŝ‖p,vi (4)
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where

‖∑
i

λivi‖p,vi =

(
∑

i
|λi|p

) 1
p

.

If V = Cn and (e1, e2, . . . , en) is the canonical basis of Cn then the norm ‖ · ‖p,ei will be denoted
‖ · ‖p:

‖(λ1, λ2, . . . , λn)
T‖p =

(
n

∑
i=1
|λi|p

) 1
p

.

Expanding a signal s in a dictionary v1, . . . , vn

s = λ1v1 + . . . + λnvn

the best kth approximation is given by keeping k largest components from the coordinates
(λ1, λ2, . . . , λn) and putting the others to zero.

Compressed sensing provides a methodology for

• highly probable exact recovery of a sparse signal based on limited information about it;
• highly probable approximately exact recovery of a compressible signal based on limited

information about it.

High probability refers to the fact that recovery of the signal provided by CS method is
(approximately) exact with very high probability, i.e., a wrong recovery is possible but very improbable.

To describe the convexification of CS problem let us consider the function ‖ · ‖0,vi

V 3∑
i

λivi 7→∑
i
|λi|0 ∈ N

returning the number of non-zero components in the (vi)-expansion. This is often referred to as
`0-norm (actually not being a norm in the mathematical sense). Fix m ≤ n together with a subset
J ⊂ {1, . . . , n} of cardinality m and for every j ∈ J fix sj ∈ Cn. Using `0-norm one formulates the main
CS problem as follows:

minimize ‖x‖0,vi subject to xj = sj for all j ∈ J. (5)

The CS theory is based on the fundamental insight that the `0-problem as formulated in (5) can be
replaced by its `1-version

minimize ‖x‖1,vi subject to xj = sj for all j ∈ J (6)

at least for a certain class of basis [29]. To be more precise, the solution to the problem (5) coincides
with the solution of (6) and for this to hold there must exist sufficiently k-sparse solution s, and
the measurement matrix must satisfy so-called uniform uncertainty principle (UUP) also known as
restricted isometry property (RIP). The measurement matrix A = (aji)j∈J,i∈{1,...,n} assigned to a basis
(vi)i∈{1,...,n} of Cn and a fixed measurement schedule J ⊂ {1, . . . , n}, |J| = m is a matrix A with m
rows and n columns such that for all j ∈ J

sj =
n

∑
i=1

ajiλi.

We say that A satisfies uniform uncertainty principle for k-sparse vector if there is a constant
δ > 0 (sufficiently small) such that

(1− δ)‖λ‖2 ≤ ‖Aλ‖2 ≤ (1 + δ)‖λ‖2 (7)
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for any λ = (λi) ∈ Cn which has at least n− k zero coordinates, or in other words when λ1v1 + . . . +
λnvn ∈ Σk. If this condition is satisfied with sufficiently small constant δ and if the k-sparse solution
exists then the solutions of (5) and (6) are equal.

Restricted isometry property for A is desired by practitioners. For specific dictionaries,
this condition can be highly probable in the sense that given the sparseness level k and a random
measurement schedule J of size m, RIP holds with high probability for sufficiently large m. An example
of a precise criterion in the case of Fourier basis was given in [26] where the authors proved that for
every ρ > 0 there is a constant Dρ such that if

m > Dρk log(n) (8)

then the random schedule J leads to the measurement matrix A which satisfies uniform uncertainty
principle with probability 1−O(n−ρ). In particular, we can control the level of RIP-probability of the
partial Fourier transform by choosing sufficiently large m, and the good news is that the number m of
the measurement of the required signals, is linear in k up to the log(n) component.

The above discussion considers the idealized case of a sparse vectors’ recovery by CS method.
However, the practice, in particular in NMR, immediately leads to non-sparse CS context. The first
reason is the measurement error (noise) which forces the strict equality xj = sj in (6) to be replaced by
an equality up to a certain error xj ≈ sj. Usually ≈ is expressed by `2-norm of the vector (xj − sj)j∈J
in Cm

‖(xj − sj)j∈J‖2 =

(
∑
j∈J
|xj − sj|2

) 1
2

. (9)

Moreover, in a certain areas of applied CS, for instance in NMR, the strict sparseness assumption
must be replaced by the compressibility of signals even in the noiseless case. Indeed, the standard
Lorentzian peaks present in an NMR spectrum have infinite support in frequency domain. These two
facts justify the replacement of the strictly sparse CS problem (6) by its relaxed approximately sparse
noisy version

minimize ‖x‖1,vi subject to ‖(xj − sj)j∈J‖2 ≤ η (10)

where η reflects the level of the measurement errors. As proved within CS theory [30],
the reconstruction algorithms are stable, i.e., for small error level and for the compressible vector
s the solution of (10) is close to s. To be more precise this happens if the measurement matrix has
the restricted isometry property—the error of the solution of `1-CS problem is measured by σk(x)1,vi ,
see (4). In other words the k largest λ’s in the expansion x = λ1v1 + . . . + λnvn will be recover with
high accuracy, see [29].

CS in the NMR context is often applied for the recovery of the spectra consisting of peaks with
significantly different amplitudes (e.g., an NMR spectrum may contain a dominating peak whose
amplitude may be even four orders of magnitude larger than the amplitudes of other peaks, see NOESY
spectra). In such a case, many points contributing to the bottom part of the large (Lorentzian!) peak
can be “more significant” (have higher values) than smaller peaks and thus be reconstructed in the
first place. From the spectroscopist point of view, the hierarchy of importance is opposite—the small,
“off-diagonal” peaks in NOESY carry the most important information. Such non-linearity of the
reconstruction is also the reason the signal-to-noise ratio (SNR) in NMR spectra reconstructed with CS
is not informative [31,32]. Depending on the reconstruction parameters the apparent noise level can
vary from zero (high sparsity enforced) to far higher than actual (too low sparsity enforced causing
incomplete removal of “NUS artifacts”). This effect can be seen in all Figures below.

To summarize this part, the concept of approximate sparsity and its relationship with the amount
of data to be measured is crucial in the context of NMR experiment. Thermal noise, dynamic range of
peak intensities and their linewidths, the fact that signal is complex (but only real part is of interest)
create a specific framework for the application of CS to reconstruct missing points in the FID signal.
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Keeping this in mind, we move to the practical considerations—a bunch of Lessons about the effective
use of CS in experimental NMR.

3. Results and Discussion

3.1. Lesson 1: Reduce the Number of Peaks

As can be seen from inequality (8), the number of sampling points required for an efficient CS
reconstruction (m) is dependent on the number of important spectral points (k). In the language
of NMR spectroscopy, k is, roughly speaking, the number of points contributing to peaks. Thus,
experimental techniques reducing the number of peaks to the necessary minimum not only improve
spectral resolution but also allow reconstruction of the spectrum with lower m and shorten the
experimental time.

Many such techniques were proposed. “Pure-shift NMR” (PS-NMR) certainly belongs to the most
spectacular improvements over the last decade [33,34]. The idea of PS-NMR is to remove the multiplet
structure of NMR spectra by suppressing the effect of J-couplings i.e., interactions between nuclear
spins transferred within the molecule via the nearby chemical bonds. The splittings of peaks caused
by J-couplings can be informative but lead to the reduction of resolution and requirement of more
sampling points for the proper CS reconstruction (since more peaks are present in a spectrum). With the
splittings removed, less data points are required for the reconstruction (see (8)). The simulation
from Figure 1 shows this effect. The fact that PS-NMR naturally fits to the compressed sensing
reconstruction has been discussed extensively by Aguilar and coworkers [35]. Importantly, while the
couplings between nuclei of the same kind (i.e., homonuclear) can be removed using selective echo
pulse sequence block in both direct and indirect dimensions of an NMR spectrum, the pseudo-random
NUS is feasible only in the latter case. In the direct dimension, pure-shift experiment can be performed
by sampling “chunks” of an FID signal. However, as shown in several papers [36–39] such data can
also be used as an input for CS algorithms, although the RIP (cf. Equation (7)) is worse and thus more
sampling points are required. Interestingly, such “burst sampling” has been reported by some authors
to have also certain advantages over other sampling schemes in the indirect dimensions [40].

Besides pure-shift approach, the number of spectral peaks can also be reduced by more selective
coherence transfer in correlation experiments. The selectivity is achieved by adjusting the delay time ∆
in the coherence transfer block or additional coherence-selection delay. The coherence of spins coupled
with J-constant evolves in an oscillatory manner, typically as sinn (π J∆) where n is the number of
nuclei J-coupled to the nucleus from which the transfer starts. The classic example is multiplicity
selection [41,42] which exploits the fact that coherence transfer between interacting nuclei A and X is
dependent on the multiplicity (n) of a spin system AXn. For instance, CH groups can be selectively
excited in a 2D 1H-13C Heteronuclear Single-Quantum Correlation spectrum (HSQC), making CH2

and CH3 peaks invisible. Similarly, one can make the transfer selective by exploiting the differences
in J between various pairs of nuclei. In 3D HNCA, the basic experiment used to establish sequential
connectivities in spectra of proteins, the excitation is initially transferred from amide hydrogens to
amide nitrogens. Then, from each 15N nucleus the transfer may go two-fold—to α carbon of the
same (i) and preceding (i − 1) amino acid residue. This is caused by the fact that HN-Cα coupling
constants for both ways are similar (typically 11 Hz for Ni-Cαi and 7 Hz for Ni-Cαi – 1) and ∆ can be
set to average value in-between. However, the variants of the experiment with an exclusive transfer
to one Cα also exist and have been used in combination with non-uniform sampling [43], also due to
better compressibility of the spectrum and thus the sampling.
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Figure 1. A simulation showing gains from the enhanced compressibility of the NMR spectrum
obtained with pure-shift method. A conventionally sampled signal of 512 points length, containing 7
components (see corresponding triplet and quartet in spectrum (A)) was sub-sampled to 32 random
points and reconstructed using 40 iterations of iteratively re-weighted least squares [20] algorithm (B).
In this case, the sampling level turned out to be too low resulting in wrong reconstruction. A fully
sampled (512 points) pure-shift experiment shows multiplets collapsed into the singlets (spectrum (C)).
The corresponding reconstructed spectrum (D) obtained using the same sub–sampling scheme and
reconstruction parameters as for (B) reveals to be of good quality. Reduced number of signal
components (enhanced compressibility) allowed for reliable signal reconstruction using the same
number of sampling points.

Another approach to achieve the reduction in a number of peaks in protein spectra was proposed
by Dötsch and colleagues [44]. They modified a CBCA(CO)NH pulse sequence [45], to acquire a signal
for amino acid types selected basing on topology. Only desired amino acid residues give signals in
such spectra, which facilitates the analysis and allows efficient low-level non-uniform sampling [46].

Other compressibility-enhancing pulse sequence blocks allow the triggering of an exponential
signal decay due to diffusion or relaxation and suppress signals selectively due to differences in
the decay rate. The diffusion filter is based on the gradient echo block added to the standard NMR
pulse sequence [47]. Used for mixtures of chemical compounds, it suppresses the signal from quickly
diffusing smaller molecules (although it exists also in a reverse mode [48]). The somewhat opposite
effect is achieved by a T2-filter (Carr–Purcell–Meiboom–Gill sequence block [49]) which suppresses
signals from nuclei with short transverse relaxation times (typically belonging to larger molecules).
Diffusion-filtering and multiplicity selection, as well as their effect on the required number of sampling
points, are shown in practice in Section 3.6.

3.2. Lesson 2: Minimize Dynamic Range

The high dynamic range of amplitudes of signal components does not constitute a significant
problem for CS reconstruction in the case of signals with strictly sparse representation. The real FIDs,
however, contain noise and are represented by Lorentzian peaks in the Fourier domain, with their
half-width being not negligible, but proportional to the signal decay rate. The consequence is an
imperfect performance of CS algorithms which are usually based on an iterative deconvolution of a
point spread function (PSF) from the spectrum (for the meaning of PSF in NMR context see [50–53]).
For example, one of the most classical CS algorithms, the orthogonal matching pursuit (OMP), does this
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by seeking for the FT basis function (an “atom”) giving the highest inner product with the FID. Then the
approximation that uses only that atom is subtracted from the signal and the process is repeated. Other
algorithms, like iterative (soft or hard) thresholding are based on a very similar concept [21]. The noise
obviously disturbs the approximation and makes artifact removal less complete. Additionally, as
mentioned in Section 2 above, the algorithm will rather tend to improve the bottom points at the sides
of large Lorentzian peaks than reconstruct lower components. Thus, whenever possible, it is crucial to
avoid high dynamic range of components in the spectra reconstructed with CS.

Very large and very tiny peaks are found together in spectra of mixtures of chemical compounds.
It might happen, however, that some of the compounds are not interesting for the spectroscopist and
can be suppressed in a spectrum. This is easy to achieve if interesting and non-interesting compounds
differ significantly in the molecular size. As mentioned above, the diffusion and relaxation filters can
be useful for this purpose. Unfortunately, the small and large peaks may be found even in the pure,
single-compound samples. This is the case of spectra based on nuclear Overhauser effect (NOESY and
ROESY). The additional difficulty arises from the fact that peaks intensities (especially those of small
peaks) are the most informative parameters and thus must be reconstructed with high fidelity. This is
troublesome, as series of tiny off-diagonal peaks are accompanied by huge (even 104× larger diagonal
peaks. To deal with this difficulty the diagonal-free NOESY experiments have been proposed [54] and
shown to be particularly effective when combined with non-uniform sampling [55–58].

The Figure 2 shows this effect on a 1D cross-section along the indirect dimension of a simulated
NOESY spectrum.
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Figure 2. A simulation demonstrating the quality of the reconstruction of a signal built of two low
amplitude components and one very high amplitude component (A,B); and of the reconstruction of the
same signal with the highest amplitude component being removed (C,D). Both starting signals (their
corresponding spectra—A,C) were sub-sampled to the same 42 random points (out of 512 points) and
reconstructed using 40 iterations of the IRLS algorithm. The reconstruction of low amplitude signals
in the presence of a high dynamic range of amplitudes was unsuccessful (B). The same sub-sampling
level and scheme turned out to be sufficient for the fine reconstruction of the signal in the absence of a
high amplitude component (D). The ratio of the largest peak intensity to the small ones in (A) was 160.
Notably, the level of noise, artificially added to the FID is not reproduced in the CS reconstruction.

Notably, reducing the dynamic range of a measured object is beneficial in CS applications
other than NMR. In a nice example of identification of bacterial species in a mixture by a single
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Sanger-sequencing reaction [59], Amir and Zuk suggested taking a square root of the data to reduce
the differences between “peaks”.

3.3. Lesson 3: Pre-Processing

The reconstruction of missing points in NUS data from NMR experiments is one of the middle
steps in the data processing workflow. This, usually, starts from the conventional procedures
performed in the direct dimension: filtering, apodization, zero-filling, phasing, Fourier transform and
baseline correction [60]. Importantly, before the CS reconstruction of the indirect dimension points is
performed, one can apply procedures that will make the frequency representation more compressible.
These include: removal of the imaginary part of a spectrum (virtual echo, VE) [61], removal of assumed
modulation in the FID (virtual decoupling, VD) [62–64] and combination of in-phase and anti-phase
(IPAP) complementary sub-signals [65,66].

The first trick, virtual echo, is based on the fact that phase of the signal in the indirect dimensions
(φ in Equation (3)) is usually known apriori, and thus the signal can be phased before the reconstruction.
Thus, imaginary part of the spectrum is not needed for CS procedure and can be removed. This is
beneficial, as an imaginary part of the Lorentzian line has dispersive shape and is less sparse than
absorptive real part. The effect is achieved by combining FID signal with its conjugate mirror-reflected
“copy” in each dimension [61]. Alternatively, a similar effect can be achieved by modifying the
minimized term in Equation (10) to calculate only the real part of x [67]. The Figure 3 demonstrates the
concept of VE.

The virtual decoupling is the removal of the manifestation of scalar couplings, i.e., cosine
modulation of the FID, by dividing the signal by the assumed cos(π Jt) function [63,64] or by equivalent
modification in the algorithm [62]. The operation makes the spectrum sparser but is based on two
rigorous assumptions. First, all FID components must share the same modulation (i.e., the same J).
Secondly, division by zero must be avoided—either by regularization or by omitting zeros in the
sampling schedule [68]. Contrary to virtual echo, the virtual decoupling is beneficial even in the
case of fully sampled data, where no reconstruction is required. It leads to resolution and sensitivity
enhancement as broad multiplets collapse into narrower and higher singlets. However, the requirement
of constant J among all spin systems is rarely fulfilled. Typical examples are limited to adjacent carbons
in 3D HNCA [64] (Cα-Cβ coupling) or HC-CH TOCSY spectra [63] (coupling between carbon atoms
belonging to methyl and a neighboring group).

The NMR spectra are sometimes combined from subsets, as is done in case of IPAP method [65,66].
Two experiments are recorded, first providing doublets in-phase and the other anti-phase. Then, they
are added which cancels the doublet components with opposite sign. In standard FT processing, it does
not matter whether the addition is performed on FIDs or on spectra. For CS, however, the former is
more beneficial, since it makes the spectrum more compressible (reduces the number of peaks) before
the reconstruction.

The reduction of the number of components by sample preparation, sophisticated signal
excitation or pre-processing is not limited to NMR and can enhance CS reconstruction in other fields.
The inspiring examples can be found in CS video processing where common features of neighboring
frames can be found by motion-estimation helping to enhance sparsity [69]. The sub-regions of interest
in a reconstructed object can be also explicitly defined to reduce the number of significant points,
as shown in the field of angiography [70].
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Figure 3. The concept of Virtual-Echo enhancing the compression level and improving the
reconstruction quality. The upper panels (A–C) correspond to the signal and reconstruction without
the use of VE, while the lower panels (D–F) correspond to the signal and reconstruction with VE
pre-processing. A starting signal of 256 points length, containing 5 components of different amplitudes
was zero-filled to 512 points (A) or processed accordingly to the VE method (D). The spectral
representations of both signals, including the real (blue line) and imaginary (red line) parts, are shown in
(B,E). A less sparse imaginary part of the starting signal is completely removed when VE is applied (E).
Both signals were sub-sampled using the same sampling scheme of 48 random points. Importantly,
a sampling scheme also undergoes the operation of VE in the same way as the signal. The missing
points were reconstructed using 40 iterations of the CS-IRLS algorithm. The resulting spectra indicate
that VE pre-processing leads to a better-quality spectrum (F). At this level of sampling, the spectrum
reconstructed without VE pre-processing (C) suffers from characteristic phase distortions (see black
arrows in the corresponding panel). The dotted line in panels C and F shows the real part of the fully
sampled spectrum.

3.4. Lesson 4: Match Sampling with the Decay

The vital aspect of NUS in the indirect dimensions of an NMR experiment is that the sampling
schedule can be completely arbitrary. For example, its density can be modulated according to the
assumed function. Besides J-modulation mentioned above, the useful trick is to avoid large gaps in
the sampling schedule [50,71] by approaches known from other fields like jittered sampling [72] or
Poisson-disk sampling [73]. Some authors show that gaps should be avoided at the beginning and at
the end of a signal [74].

The oldest and most commonly applied modulation of NUS density is relaxation-matched
sampling introduced by Barna et al. [75]. The gains on signal-to-noise ratio (SNR) have been analyzed
in detail by other authors [31,32,76]. The reason for SNR improvement is quite simple—an FID signal
decays exponentially in time, while noise level remains constant. Thus, initial sampling points have
higher SNR. The measurement sensitivity aspect of the problem is simple. However, the situation
becomes more complicated when analyzed from the point of view of CS theory. It can be shown
that although relaxation-matching improves SNR, it worsens restricted isometry property of the
measurement matrix [77]. Thus, there is certain balance between the two effects. This fact is also
connected to the observation that CS works more efficiently for the interpolation of the data rather
than extrapolation [78].
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Interestingly, the sensitivity benefit from relaxation-matched CS can be so strong that it can even
lead to results better than fully sampled experiment acquired in the same time. The simulation in
Figure 4 shows this effect.

In many applications outside NMR field, the sampling density can be adjusted “on-the-fly”,
i.e., during the measurement. Such adaptive sampling is well established in image processing where
sampling density is a function of local image variance [79,80]. In NMR spectroscopy such examples,
although feasible, are still lacking.
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Figure 4. A simulation illustrating the benefit of relaxation-matched non-uniform sampling on signal
reconstruction. A signal of 1024 points length containing 2 components of equal amplitudes (A) was
artificially contaminated with a white noise such that peaks in a corresponding spectrum (B) were
hardly visible. A blue spectrum imposed in (B,D,F) is obtained from the noiseless signal (A) to mark
the correct positions of the hidden peaks (for better visualization, the peak intensities in blue spectra
are normalized to half-intensity of the maximum peak in the corresponding black spectrum). The same
2-component signal was sub-sampled to 256 random points (C), and 256 points selected according
to the relaxation-matched probability (E). A continuous black line in (C,E) stands for the full signal,
whereas red markers correspond to sub-sampled points. Both sub-sampled sets of points were used
for reconstruction using 40 iterations of the IRLS algorithm. Importantly, the sub-sampled signals
(C,E) were injected into a noise being 2 times lower than for signal A. This is due to a fact that 256
points can be acquired with 4 times more scans keeping the same total experimental time, thus SNR
of the acquired samples will be 2 times higher. A reconstructed spectrum (D), obtained from random
non-uniform sampling strategy (C) shows no improvement, while the spectrum (F) obtained from
a relaxation-matched non-uniform sampling strategy (E) indicates a significant improvement of the
visibility of peaks. As described above in the text, the relaxation-matched sampling (E) strategy leads
to better results in such cases as more samples are collected for the initial part of the signal, where SNR
is higher.

3.5. Lesson 5: Non-Stationarity

The parameters of typical NMR signals (frequencies, amplitudes, relaxation rates) do not vary
in time when measured for the stable samples. Sometimes, however, at non-stationary conditions,
the frequency in some spectral dimensions varies in time [81]. Since sampling of the indirect dimensions
can be arbitrary (e.g., pseudo-random), the effective frequency-time dependencies can be complicated.
As demonstrated [8,81], the FID frequency varying in time leads to lineshape distortions in the case of
“chronological sampling”, i.e., (t = 0, ∆t, 2∆t, 3∆t . . .) and noise-like artifacts in the case of “shuffled”
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sampling. Figure 5 shows that NUS of a non-stationary signal lead to spectral quality even better
than fully sampled data. This can be explained by the fact that frequency variations within an FID,
occurring, e.g., due to chemical reaction in the sample, are reduced due to shorter time needed for data
collection. This means that compressed sensing should be the method of choice for samples whose
state varies over the time of experiment.
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Figure 5. A simulation showing the benefit of applying NUS for the acquisition of a non-stationary
signal (with frequency varying linearly during the experiment). A signal of 512 points length contains
two components of equal amplitudes (blue dotted line in each subplot). The frequency of the
component corresponding to the left peak changes by 0.05 spectral point with every NUS point
acquired. The sampling levels and total frequency change are: 100% and 25.6 pts. (A), 75% and
19.2 pts. (B), 50% and 12.8 pts. (C), 25% and 6.4 pts. (D), 12.5% and 3.2 pts. (E), and 6.25% and
1.6 pts. (F). The sampling schedule is shuffled so the change is not linear in a sampled time, but in a
real time of experiment. Thus, the non-stationarity leads to line broadening and additional noise-like
artifacts [81,82]. Importantly, the best spectrum is obtained with 12.5 % sampling (E, far better than
with full sampling A). All the NUS data sets, except of 100% NUS, were reconstructed with 40 iterations
of CS–IRLS algorithm and their corresponding spectra are plotted in black.

In the scientific literature, one can find several interesting examples of application of NUS/CS in
NMR spectroscopy for monitoring of the physical/chemical processes. The monitoring of processes
involving biomolecules (e.g., proteins) is particularly interesting. In a paper by Bermel et al. [83],
the NUS NMR experiment accompanied by CS reconstruction was successfully applied to monitor
protein dynamics in a function of temperature. The application of NUS and CS in their work allowed
to precisely track peak positions and intensities during sample heating. The reactions occurring in
complex mixtures were also extensively investigated by NUS/CS NMR spectroscopy [3,84]. Usually,
such mixtures require at least 2D NMR experiment to resolve important peaks in a spectrum, which
makes monitoring troublesome using conventional sampling. One may also apply NUS/CS NMR
spectroscopy to track different chemical reactions when a good temporal resolution and the benefits
provided by 2D NMR experiments are required [85,86].

Obviously, the fact that NUS/CS experiments are quick compared to full sampling provides
benefits in disciplines other than NMR. A good example has been discussed by Vasanawala et al. [87],
where authors applied CS in pediatric MR imaging. Since children are rarely able to stay still during
the measurement, the undersampled data is often of better quality (resolution) despite the need
for reconstruction.
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3.6. Practical Example

In this section, we finally move to the experimental example of a 2D HSQC spectrum acquired
with NUS and reconstructed using CS (see Figure 6). The 2D HSQC is one of the main workhorses of
structural identification, acquired in huge numbers in the most of NMR labs. Thus, optimization of its
speed and quality is important.

As described in Section 3.1, NMR offers a variety of different pulse sequence “blocks” that
can reduce the number of observed peaks in a spectrum to the necessary minimum and hence
increase its compressibility. In this section, we verify the relation between the number of peaks
in a spectrum (compressibility) and the reconstruction quality. For that purpose, we acquired
3 variants of the 13C HSQC experiment characterized by a different number of peaks in a spectrum.
The acquired 2D NMR signals for each HSQC variant were artificially sub-sampled by taking out
random points from the full data in the t1 (13C) dimension and reconstructed back to the original
size. The reconstructed spectra from the corresponding sub-sampled HSQC experiments are depicted
in Figure 6: standard unedited 13C HSQC (Figure 6b), 13C HSQC with CH-only editing (Figure 6c)
and 13C HSQC with CPMG filter (Figure 6d). A fully sampled, unedited 13C HSQC spectrum is also
depicted in Figure 6a) and stands as a quality reference for the reconstructed spectra (Figure 6b–d).
The 13C HSQC NMR experiments used in this study employ the same core HSQC pulse sequence [88],
which allows observing single-quantum 1H–13C correlation signals. The use of appropriate filters
(multiplicity-editing—Figure 6c and CPMG—Figure 6d) to the core HSQC sequence (Figure 6a,b)
allowed us to reduce the number of components in the signal. The filters were chosen concerning
the physicochemical properties of the substances being measured. The sample used for experiments
was a mixture of sucrose and heparin dissolved in D2O. Both compounds are saccharides, but their
molecular weights (MW) differ significantly, as heparin is a polysaccharide of MW in the range from
6000 up to 20,000 g/mol, while sucrose is a disaccharide of MW = 342.3 g/mol. We used this fact
to suppress signals of fast-relaxing nuclei belonging to large heparin molecules by means of CPMG
relaxation-filter (Figure 6d). We also used the fact that structures of sucrose and heparin consist mainly
of CH and CH2 chemical sites, which are the source of 1H–13C single-quantum correlation signals.
We employed the multiplicity-editing block to suppress signals that arise from CH2 chemical sites,
thus, only the signals corresponding to CH sites were visible. The unedited 13C HSQC spectrum
experiment (Figure 6a—reference and Figure 6b—reconstructed spectrum) show all the single-bond
1H–13C correlations regardless of the molecular size and type of chemical site.

The benefits of using editing and filtering “blocks” in 2D NUS NMR experiments can be found
through the comparison of stacked spectra in Figure 6. The numerous 1H–13C correlation signals in the
unedited 13C HSQC spectrum (Figure 6a) were poorly reconstructed using 24 out of 256 t1 sub-samples
(Figure 6b). The effect is visible on heparin signals near 3.55/75.0 ppm and 3.65/80.0 ppm (marked
with the black arrows in Figure 6). A reduction of the number of peaks in a spectrum allowed for more
reliable reconstruction using the same 24-points sampling level for 13C HSQC with CH-only editing
(Figure 6c) and 13C HSQC with CPMG filter (Figure 6d).
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Figure 6. A reference unedited 13C HSQC spectrum with conventional sampling of 256 t1 (13C
dimension) × 3348 t2 (1H dimension) points matrix (a) and the reconstructed spectra obtained using
only 24 t1 sub-samples from corresponding experiments: unedited 13C HSQC (b), 13C HSQC with
CH-only editing (c), 13C HSQC with CPMG filter (d). The missing data for (b–d) was reconstructed
with IRLS algorithm based on CS using 40 iterations. The virtual-echo method was applied in all
the reconstructions. The processing was performed using mddnmr software [89]. The concentration
of each compound in a sample was adjusted to yield similar peak heights in the 1H NMR spectrum
(ca. 0.6 mg/mL of sucrose, and 14.6 mg/mL of heparin).

4. Conclusions

Due to high maintenance costs of high-resolution NMR spectroscopy, it is beneficial to apply
sparse sampling techniques in multidimensional measurements and save the experimental time.
However, since the number of sampling points required for the efficient reconstruction grows with
the “complexity” of a spectrum (number of peaks and dynamic range of intensity) it is recommended
to minimize it before the CS reconstruction. This can be achieved using dedicated acquisition and
processing techniques. It is also noteworthy that in some cases, like strongly decaying or non-stationary
signals the sparse sampling followed by the reconstruction leads to results superior to full sampling
followed by Fourier transform. In this work we summarized those, often unnoticed, aspects of
compressed sensing in NMR.

Author Contributions: Experiments and simulations: D.G.; Theory: P.K.; supervision, project administration,
funding acquisition: K.K.; manuscript preparation: K.K., P.K., D.G. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors thank the Foundation for Polish Science for support from FIRST TEAM programme
co-financed by the European Union under the European Regional Development Fund no. (First TEAM/2017-4/34).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.



Sensors 2020, 20, 1325 15 of 19

Abbreviations

The following abbreviations are used in this manuscript:

CPMG Carr–Purcell–Meiboom–Gill
CS Compressed Sensing
DOAJ Directory of open access journals
FID Free Induction Decay
FT Fourier Transform
HSQC Heteronuclear Single-Quantum Correlation
IPAP In-phase anti-phase
IRLS Iteratively Re-weighted Least Squares
IST Iterative Soft Thresholding
MDPI Multidisciplinary Digital Publishing Institute
MW Molecular weight
NMR Nuclear Magnetic Resonance
NOESY Nuclear Overhauser Effect Spectroscopy
OMP Orthogonal matching pursuit
PS Pure-shift (NMR)
PSF Point spread function
RF Radio frequency
RIP Restricted isometry property
ROESY Rotating Frame Overhauser Effect Spectroscopy
SNR Signal-to-noise ratio
TOCSY Total Correlation Spectroscopy
UUP Uniform Uncertainty Principle
VD Virtual Decoupling
VE Virtual Echo
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