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Synopsis
Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1)
the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth;
(2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated
thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of
the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous
TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood
coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation
of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of
tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-
bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role
of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of
new antitumour therapies.
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INTRODUCTION

In the 1860s, the French physician Armand Trousseau repor-
ted the occurrence of ‘mysterious’ thrombotic disorders in can-
cer patients and concluded that spontaneous blood coagulation
events are frequent in these individuals because of a ‘special
crisis in their blood’ [1]. Later, his name was used to designate
the manifestation of thrombophlebitis in patients with malig-
nant neoplasias-Trousseau’s Syndrome. Currently, this designa-
tion commonly comprises all cases where unexplained throm-
botic events precede the diagnosis of an occult malignant tumour
or appear concurrently with the tumour.

Since the publication of ‘Clinique Médicale de l’Hôtel-Dieu
de Paris’ by Trousseau in 1865 [1], an important link between ma-
lignancy and hypercoagulable states has been established [2,3].
In fact, the occurrence of cancer is usually associated with vari-
ous clinical thrombotic syndromes, including local and systemic
venous and arterial thrombosis [4]. Additionally, thrombosis is
often diagnosed as the first clinical manifestation of a tumour and
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the second leading cause of death of patients with cancer [3,5,6].
It is noteworthy that abnormalities in in vitro coagulation tests
are found in more than 90 % of patients with cancer, irrespective
of their thrombotic status [7].

Various authors have demonstrated a significant correlation
between the incidence of thromboembolic events and a worse
prognosis of neoplastic disease, supporting the idea that the ac-
tivation of the blood coagulation system contributes to tumour
aggressiveness and vice versa. Sorensen et al. [8] noted that the
first-year survival rate of patients who are diagnosed with both
cancer and venous thromboembolism was 12 %, in contrast with
36 % observed in cancer patients without a diagnosis of throm-
boembolic events. Patients with thrombosis-associated malignan-
cies were also reported to exhibit a higher mortality in the first 6
months of a thrombotic event than those individuals presenting
with cancer without thrombosis or thrombosis without cancer
[9]. It is important to note that the lower survival rate observed
in cancer patients displaying a thrombophilic profile is not ne-
cessarily related to the thrombotic event itself but probably to
tumours with a more aggressive behaviour. Sallah et al. [10],
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for example, demonstrated that the occurrence of disseminated
intravascular coagulation (a consumptive coagulopathy) in pa-
tients with solid tumours had a negative effect on the survival of
those individuals, regardless of the manifestation of thrombosis.
These results suggest that the haemostatic system may play an
important role in cancer pathogenesis. Indeed, a large body of
evidence has indicated that cellular and circulating haemostatic
factors have an active role in the fundamental aspects of tumour
biology, such as the angiogenesis, metastasis and modulation of
innate immune responses [11,12]. The experimental strategies
applied include pharmacological modulation of the function of
platelets and various constituents of the blood coagulation cas-
cade, as well as the use of genetically modified animals exhibiting
altered expression or activity of those components.

Molecular and cellular bases of haemostatic
activation in cancer
Corroborating clinical data indicate a close association between
tumour progression and the development of a thrombophilic pro-
file. Diverse cellular and molecular evidence linking cancer with a
hypercoagulable state has been described. Histopathological ana-
lyses demonstrate the presence of fibrin deposition and platelet
aggregates in and around different tumours, indicating local ac-
tivation of coagulation [13]. In addition, haemostatic alterations
analysed by the laboratory tests are found in 60–100 % of patients
with malignant neoplasias, including those without thrombotic
manifestations [7]. These changes comprise different levels of
blood coagulation abnormalities, such as shortened aPTT (activ-
ated partial thromboplastin time), elevated levels of circulating
blood coagulation proteins [i.e., fibrinogen, FV (factor V), FVIII
(factor VIII), FIX (factor IX) and FX (factor X)], thrombocyt-
osis and increased concentrations of fibrin/fibrinogen degradation
products, among others [14].

These findings can be partly explained by the inflammatory
response associated with neoplasia, by a change in protein meta-
bolism and/or by venous stasis. However, various studies have
demonstrated the importance of the participation of specific pro-
coagulant properties of tumour cells, including the expression of
TF (tissue factor), the central trigger of the coagulation cascade;
the surface exposure of the phospholipid PS (phosphatidylserine),
which provides a negatively charged surface required for the as-
sembly of some catalytic active coagulation complexes; and the
shedding of circulating procoagulant MVs (microvesicles). In
the present review, we will discuss the different mechanisms of
blood coagulation activation in cancer and their role in tumour
progression.

EXTRAVASCULAR ACTIVATION OF
BLOOD COAGULATION IN CANCER

Molecular mechanisms
The blood coagulation cascade is initiated upon the binding of
FVIIa (activated factor VII), a plasma protein, to TF, a 47-kDa

transmembrane protein that is constitutively expressed on the
surface of subendothelial cells and some extravascular tissues
[15]. This binding leads to the proteolytic activation of various
coagulation zymogens, such as FX, FIX and prothrombin, result-
ing in the formation of a fibrin clot. Interestingly, TF expression
is up-regulated on the surface of transformed cells, which has
long been implicated in the in vitro procoagulant activity and cell
aggressiveness of different tumour cell lines [16–18]. Moreover,
TF was shown to be overexpressed in samples from patients with
various neoplasias, including most carcinomas and other tumours
such as melanoma [19].

TF overexpression in malignant tumour cells seems to be dir-
ectly related to oncogenic events such as the presence of the
mutant oncogenes K-ras, EGFRvIII (epidermal growth factor re-
ceptor variant III) and HER-2 (human epidermal growth factor
receptor 2), as well as the loss of the tumour suppressor genes p53
and PTEN (phosphatase and tensin homologue) [20–22]. Further-
more, Zhang et al. [23] showed that the selective up-regulation of
TF in highly invasive MDA-MB-231 human breast cancer cells,
compared with that in less invasive MCF-7 cells, also appears to
be regulated by miRNA-19 (microRNA-19).

Tumour cells exhibit higher levels of the phospholipid PS
on their membrane outer surface (compared with normal cells)
[24], supporting the assembly of blood coagulation complexes
that depend on negatively charged membranes. Thus, by ex-
posing TF and PS on their outer membrane, tumour cells can
function as binding surfaces for different proteins of the coagu-
lation cascade (i.e., factors VIIa, VIIIa, IXa, Xa and Va) [25,26]
and promote the subsequent assembly of the prothrombinase and
tenase complexes, leading to the generation of fibrin in the ex-
travascular environment (Figure 1). TF expression by tumour
cells allows for the formation of the extrinsic tenase complex;
establishment of the intrinsic tenase and prothrombinase com-
plexes on the surface of various tumour cell lines has also been
described, mainly associated with PS exposure [27–31]. Remark-
ably, data obtained with cell lines are consistent with results from
immuno-affinity ligand-binding studies that have demonstrated
the presence of FXa (activated FX) and thrombin in human patient
tissues [32,33].

Impact of coagulation proteins on primary tumour
growth
In cancer patients, TF expression in different neoplasias has
been correlated with tumour grade, increased vascular dens-
ity and worse prognosis [34,35]. Additionally, in vitro studies
have shown that a strong correlation exists between TF expres-
sion and VEGF (vascular endothelial growth factor) production
[36]. In fact, TF expression by different cells present in the tu-
mour microenvironment (neoplastic or stromal ones) has been
particularly related to tumour growth and metastasis-associated
events. These include thrombin generation, and its subsequent
interaction with multiple targets, as well as the stimulation of
some surface receptors that are activated by many proteolytic
enzymes, including blood coagulation serine proteases. These
receptors, referred to as PARs (protease-activated receptors), are
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Figure 1 Extravascular activation of blood coagulation in cancer
(A) Neoplastic cells stimulate vascular permeability in the tumour mi-
croenvironment through the generation of proangiogenic factors such
as VEGF. In this way, blood coagulation proteins can leave the plasma
circulation and reach the extravascular tumour microenvironment, get-
ting in contact with the plasma membrane of tumour cells, which is rich
in procoagulant molecules such as (B) TF and (C) PS. The assembly
of different blood coagulation complexes thus culminates in the local
generation of thrombin and fibrin.

typical seven-transmembrane, G protein-linked receptors that are
activated by a unique mechanism. Proteases cleave the amino
terminus of PARs, allowing the internal ligand to autoactivate
[37]. Of the four mammalian PARs, PAR1, PAR3 and PAR4
can be activated by thrombin, whereas PAR2 can be activated
by coagulation proteases FVIIa and FXa but not thrombin [37–
39]. These receptors are expressed in various tissues, where
they are involved in a number of physiological and pathological
phenomena [40].

PARs are usually overexpressed in various human cancer
types, and many studies have shown that a strong correlation
exists between their expression and aggressive behaviour of
tumour cells [41–45]. The proteolytic activation of these re-
ceptors in tumour cells triggers complex signalling mechan-

isms that can stimulate migratory and/or invasive abilities and
the production of chemotactic and proangiogenic factors, such
as IL-8 (interleukin-8) and VEGF [46]. In vitro and in vivo
studies have demonstrated, for example, that the intracellular
signalling promoted by thrombin, through the proteolysis of
PAR1 in tumour and endothelial cells, elicits a proangiogenic
process that is associated with VEGF production and signalling,
as well as the secretion of MMPs (matrix metalloproteases)
[47–49].

Most of the pro-tumoural functions of TF concerning an-
giogenesis and primary growth have been correlated with the
intracellular signalling triggered by TF binding to FVIIa and
FVIIa/FXa-mediated proteolysis of PAR2 [50–56]. Remarkably,
some of these effects seem to be independent of the procoagu-
lant activity of the TF/FVIIa complex, because they are sustained
even when the capacity of TF/FVIIa to promote FXa generation
is completely blocked [57]. PAR2 activation has been correlated
with the production of tumour-promoting molecules, primary tu-
mour growth and the proangiogenic and invasive properties of
cancer cells [58,59]. In this context, blockade of TF-mediated
signalling through PAR2 using TF or PAR2 antibodies decreases
primary tumour growth and reduces tumour angiogenesis in a hu-
man breast cancer model [57]. These observations are supported
by studies employing a spontaneous murine breast cancer model
in which a PAR2, but not PAR1, genetic deficiency delays tumour
growth and angiogenesis [60].

There is evidence that PAR2 responses are strongly correlated
with intracellular signalling mediated by the TF cytoplasmic do-
main [61]. Indeed, PAR2 activation mediates TF cytoplasmic
domain phosphorylation. In a murine model of spontaneous
breast cancer development, deletion of the TF cytoplasmic do-
main induced the persistence of adenoma and the delayed devel-
opment of invasive carcinoma that is dependent on the angiogenic
switch. A similar phenotype was also observed in PAR2− / −

mice, as well as in double-deficient mice, further linking TF
and PAR2 signalling in the spontaneous development of invasive
breast cancer [62]. Consistent with these findings, human breast
cancer specimens showed marked overexpression of both PAR2
and TF antigens in invasive tumour cells [63].

In addition to PAR2, several pro-tumoural responses might be
evoked by PAR1 [58,64]. Remarkably, microarray studies em-
ploying tumour cell lines strongly suggest that PAR1 and PAR2
activation induce overlapping pro-tumoural responses [59]. PAR1
has been recognized as an oncogene, promoting transformation
in NIH 3T3 cells [65]. In addition, enforced expression of PAR1
promotes in vivo tumour growth in the human breast cancer cell
line MCF-7 [66]. Yin et al. [67] have demonstrated that PAR1
mediates angiogenesis through VEGF production in carcinoma
and melanoma models. Interestingly, it has been proposed that
MMP-1 might be a relevant PAR1 activator in the tumour mi-
croenvironment [66,68].

Altogether, these lines of evidence indicate that the pres-
ence of TF and blood coagulation enzymes in the tumour
microenvironment plays an important role in neoplastic pro-
gression, particularly through activation of PAR1 and PAR2
receptors.
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INTRAVASCULAR ACTIVATION OF
BLOOD COAGULATION IN CANCER

Molecular mechanisms
Under specific conditions, TF can be detected in the plasma
circulation at abnormally elevated concentrations, where it is
found mainly incorporated into tumour-derived MVs. This con-
dition allows for the formation of the TF/FVIIa complex and
subsequent intravascular activation of blood coagulation reac-
tions, which are correlated with thrombosis occurrence. MVs are
regarded as vesicular structures that are generated from the out-
ward blebbing of the plasma membrane of various cell types,
including normal and malignant cells [69]. This phenomenon is
closely associated with PS exposure [70]. These MVs present
with heterogeneous size (with a diameter ranging from 0.1 to
1 μm) and composition, which comprise various cell surface
proteins and lipids, as well as cytoplasmic molecules, such as
nucleic acids and proteins. MVs have long been studied in the
context of the coagulation system [71,72]. More recently, differ-
ent reports have shown that MVs participate in different aspects
of tumour biology, including the activation of blood coagula-
tion in vitro and in vivo [17,73], angiogenesis and metastasis
[74,75].

Various studies have demonstrated the presence of TF on
the surface of tumour MVs, likely supporting the formation of
the TF/FVIIa complex [17,75–77]. In addition, PS exposure on
tumour MVs promotes the assembly of the procoagulant pro-
thrombinase complex [27,78], contributing along with TF to the
propagation of the coagulation cascade. In parallel, most vascu-
lar cells exposed to procoagulant, proinflammatory or apoptotic
stimuli can shed PS-exposing MVs, which may carry other com-
ponents from their original cells, such as TF. Because of their PS
content, MVs derived from activated platelets, for example, allow
for the assembly of procoagulant complexes dependent on neg-
atively charged membranes, contributing to thrombin generation
[14,71]. TF-bearing MVs originating from activated monocytes
[79] can also function as suitable surfaces for FVIIa binding.
Moreover, these MVs can bind to sites of vascular injury through
the interaction of P-selectin, present in activated platelets, and its
ligand PSGL-1 (P-selectin glycoprotein ligand 1) [80,81]. Sub-
sequently, they may incorporate and transfer TF and other pro-
teins to the membrane of PS-exposing activated platelets, creating
a more effective procoagulant surface and enhancing thrombin
formation [82,83].

Several studies suggest that circulating MVs are key players in
cancer-associated thrombosis (Figure 2). The presence of MVs
in plasma has been used to explain why cancer patients may
present a thromboembolic event distant from the location of tu-
mour development. Indeed, previous studies have demonstrated
that TF antigen was readily detected in the circulation of mice
bearing orthotopically grown human pancreatic cancer [84,85]
and murine melanoma [17]. Studies employing samples of can-
cer patients or plasma samples collected from tumour-bearing
mice have also shown that circulating MVs may originate from
platelets, monocytes and endothelium, but mostly from the cancer

Figure 2 Intravascular activation of blood coagulation in cancer
Tumour cells may secrete TF-bearing MVs that also expose PS
on their surface. Procoagulant MVs released by tumour cells can
reach the plasma circulation and activate blood coagulation reac-
tions thus contributing to thrombus formation in the intravascular
environment.

cells themselves [17,81,84–87]. Finally, the presence of elevated
levels of TF-positive MVs in plasma has been related to the
thrombogenic activity of tumour cell lines in vivo [81,84,85], as
well as the thrombophilic state observed in cancer patients of
different origins [86–89]. Other lines of clinical evidence corrob-
orate the in vivo procoagulant activity of MVs, such as the strong
correlation between elevated numbers of TF-positive, rather than
PS-positive, MVs in human plasma and the increased risk of de-
veloping thromboembolic complications, as observed in various
studies [90–93]. Conversely, in rare severe syndromes, a greater
tendency for haemorrhagic events and the reduced levels of MVs
have also been associated [94,95].

In addition to procoagulant MVs, other mechanisms have
been proposed to explain the occurrence of cancer-associated
thrombotic events. Mucins are highly glycosylated proteins that
become aberrantly glycosylated in carcinomas and then are
inappropriately secreted into the bloodstream. Carcinoma mu-
cins have long been implicated in thrombus occurrence in vivo
[96,97]. Mucins often display glycans that mediate pathological
interaction with the selectin family of adhesion molecules [98].
Selectin–mucin interactions have been implicated in the haema-
togenous phase of tumour metastasis [99]. More recently, it
was demonstrated that carcinoma mucins promote the forma-
tion of platelet-rich microthrombi in vivo, through adhesion-
dependent, bidirectional signalling in neutrophils and platelets
[98,100].

In a murine model of chronic myelogenous leukaemia, Demers
et al. observed that cancer predisposes the release of chromatin
into blood through the generation of NETs (neutrophil extracel-
lular traps). Furthermore, mammary and lung carcinoma tumour-
bearing mice showed an increase in peripheral blood neutrophils
sensitized toward NET formation, as well as spontaneous throm-
bosis associated with NET generation [101].
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Impact of blood coagulation activation on tumour
dissemination
As mentioned previously, studies employing cultured cells as
well as patient specimens have shown that a strong correla-
tion exists between TF expression and aggressive tumour be-
haviour [102,103]. TF expression correlates with increased tu-
mour angiogenesis, as reported in studies on patient samples
from non-small cell lung, colorectal, hepatocellular and pan-
creatic cancer [35,104–106]. It is therefore proposed that TF
expression leads to an unbalanced production of anti- and/or
proangiogenic factors such as VEGF that favours increased tu-
mour vasculature [107,108] and certainly affects the metastatic
process.

In particular, TF procoagulant activity, which is mediated by
its extracellular domain, has been correlated with the metastatic
potential of tumour cells. This activity is essential for the es-
tablishment of cancer cells in sites distal to the primary tumour,
as demonstrated in melanoma, breast cancer and fibrosarcoma
models [16,57,109]. Consistent with these findings, genetically
altered mice defective in different coagulation proteins, such as
prothrombin, fibrinogen and factor XIII, show decreased suscept-
ibility to experimental metastasis [109–111]. In addition, Langer
et al. reported that haemophilia A mice, which lack FVIII, are
significantly protected against the metastatic potential of murine
melanoma cells [112]. Overall, these studies support a role for
blood-clotting proteins in tumour metastasis. In the initial phases
of the metastatic process, fibrin deposition and platelet recruit-
ment by thrombin in the intravascular environment seem to be
crucial to the survival of tumour cells that are adhered to the
endothelial layer. These events protect malignant cell elimina-
tion by NK (natural killer) cells, allowing their stable adhesion
and posterior dissemination [39,58,113,114]. Gil-Bernabé et al.
also proposed a mechanism in which TF-dependent clot forma-
tion recruits macrophages that are essential for in vivo tumour cell
survival, suggesting a crucial role for coagulation in the establish-
ment of a premetastatic niche [115]. This effect was independent
of NK cells.

Activation of PAR1 by thrombin on tumour cells has also
been linked to the facilitation of tumour metastasis [116]. Not-
ably, Bromberg et al. [117] showed that the overexpression of
PAR1 in low TF-expressing tumour cells is not sufficient to in-
crease their metastatic potential. However, the acquisition of the
pro-metastatic role of PAR1 in vivo is observed upon the co-
expression of PAR1 and TF on tumour cells. In fact, several ad-
hesion molecules, cytokines, growth factors and proteases have
been identified as downstream targets of PAR1 and have been
shown to modulate tumour cell metastasis [64].

In contrast to PAR1 inhibition, blocking PAR2 signalling in
tumour cells has a minor impact on tumour metastasis. In this
context, a non-anticoagulant monoclonal antibody that blocks
TF-mediated signalling through PAR2 exhibited no effect on
tumour cell dissemination in a breast cancer model [57]. On the
other hand, in vitro assays employing cell lines demonstrated that
PAR2 enhances migratory and invasive properties, which may be
relevant in terms of the acquisition of a pro-metastatic phenotype
in vivo [118,119].

In addition to its procoagulant role, the exposure of PS on cel-
lular membranes and membrane-derived MVs can stimulate sev-
eral anti-inflammatory responses that are involved in malignant
processes. In this context, our group demonstrated that tumour-
derived MVs also favour the establishment of melanoma meta-
stasis in a PS-dependent manner, possibly by down-regulating
the host’s inflammatory and/or anti-tumoural immune responses
[75]. Nevertheless, it is important to note that a pro-inflammatory
cargo of MVs has also been shown [69].

THERAPIES TARGETING BLOOD
COAGULATION-RELATED PROTEINS

Given the proposed role of blood coagulation proteins in tu-
mour progression, it has been hypothesized that targeting spe-
cific blood clotting proteins or PARs could serve as an adjuvant
therapy in cancer. It has been well appreciated that antibodies
that block the procoagulant function of TF attenuate metastasis
[16]. Furthermore, the role of coagulation activation in tumour
cell dissemination is supported by the antimetastatic effect of
several anticoagulants, including the thrombin inhibitor hirudin
[113,120]; and FXa inhibitors, such as NAP5 (Nematode An-
ticoagulant Protein 5) [121] and ACAP (Ancylostoma caninum
anticoagulant peptide) [122]. It is noteworthy that most of these
studies applied experimental models of metastasis, involving the
direct injection of tumour cells into the circulation. In addition,
the administration of anticoagulant agents concomitantly to or
shortly after tumour cells inoculation was shown to be required
for the ability of these molecules to inhibit metastasis. Altogether,
these observations indicate that the inhibition of coagulation may
affect the early steps of tumour spreading after intravasation, in-
cluding the escape of immune responses, arrest at microvascular
beds, and extravasation to a new organ. However, the effect of
these anticoagulants on the initial steps of tumour dissemination,
such as tumour cell detachment from the extracellular matrix,
invasion of surrounding tissues and access to the systemic circu-
lation, cannot be disregarded, and could be further examined in
spontaneous metastasis models.

Because TF is suggested to play an important role in tumour
biology, it has been postulated that the specific TF inhibitors at-
tenuate cancer progression. Our group has extensively worked
with ixolaris, a tick 140-amino acid salivary protein containing
ten cysteines and two Kunitz-like domains. Ixolaris binds to FXa
or FX as scaffolds for the inhibition of the TF/FVIIa complex, in
which the FVIIa catalytic site is inactivated, as previously demon-
strated by the inhibition of macromolecular (i.e., FX and FIX)
substrates [123]. Ixolaris does not bind to the active site cleft of
FXa. Instead, complex formation is mediated by the FXa heparin-
binding exosite [124]. In addition, ixolaris interacts with circulat-
ing zymogen FX through a precursor state of the heparin-binding
exosite [125], explaining its potent and long-lasting antithrom-
botic activity [126]. We have demonstrated that ixolaris blocks the
primary growth of human glioblastoma (U87-MG) and murine
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melanoma (B16F10) cells in animal models, and this effect is ac-
companied by a significant decrease in VEGF expression as well
as diminished tumour angiogenesis [127,128]. We further demon-
strated that ixolaris blocks PAR2-mediated signalling in human
breast tumour cells, thus accounting for the reduced production
of pro-tumoural molecules [129]. NAPc2 is a TF/FVIIa inhibitor
characterized from the haematophagous nematode Ancylostoma
caninum [130]. It displays an anticoagulant mechanism of action
that is similar to ixolaris and it inhibits primary tumour growth
and metastasis in animal models [131]. NAPc2 has been recently
evaluated in phase 1/phase 2 trial, which analysed tumour pro-
gression and metastases in metastatic colon cancer [132]. Also,
a small FVIIa inhibitor, PCI-27483, is currently under a phase 2
study in advanced pancreatic cancer patients [133]. Finally, we
have demonstrated that lufaxin, a specific FXa inhibitor, blocks
PAR2 signalling in tumour cells [134], demonstrating that this
approach may be further evaluated as the antitumour mechanism
of other molecules.

It must be emphasized that a great challenge in proposing the
use of anticoagulant molecules as adjuvants for the treatment
of cancer is the increased tendency of patients with cancer for
bleeding complications [135,136]. In this context, agents that
could dissociate coagulation and signalling-related responses in
tumour cells would be of great interest in this field.

CONCLUSION AND PERSPECTIVES

A substantial amount of data implicates TF in cancer-associated
hypercoagulable states. In addition, TF-dependent activation of
coagulation proteases and PARs seem to be crucial for tumour
growth, angiogenesis and metastasis. Thus, therapeutic strategies
targeting some effector molecules of blood coagulation activation
could attenuate their deleterious effects in cancer, certainly affect-
ing the morbidity and survival of cancer patients. Nevertheless,
additional studies are needed to identify mechanistic insights
into the role of blood coagulation activation and coagulation-
dependent signalling pathways in cancer biology, as well as
recognize potential blood coagulation targets to inhibit cancer
progression without compromising haemostasis.
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