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Abstract: The combination of peroxymonosulfate (PMS) activation and photocatalysis has proven to
be effective for organic contaminants treatment. However, the construction of an efficient catalytic
material is an important challenge. Herein, novel Bi2WO6/BiOCl heterojunction nanocomposites
were successfully designed and fabricated using a facile and effective strategy for bisphenol A (BPA)
photodegradation with PMS activation. The well-designed heterojunction with improvement of the
contact area and interface microstructure was obtained through in situ growth of the Bi2WO6 on the
surface of BiOCl. The Bi2WO6/BiOCl nanocomposites exhibit excellent catalytic performance in PMS
activation for BPA degradation under visible light irradiation. A possible photocatalytic reaction
mechanism was systematically revealed. The excellent catalytic performance is mainly attributed to
the strong interaction between Bi2WO6 and BiOCl, resulting in an enhanced photoabsorption and
a more efficient interfacial charge separation and transfer. This paper provides a novel strategy to
design efficient catalytic materials for organic contaminants remediation with PMS activation.

Keywords: peroxymonosulfate; BiOCl; Bi2WO6; photocatalysis; organic contaminant

1. Introduction

Peroxymonosulfate (PMS) activation processes have been recognized as promising
methods for practical environmental remediation of emerging recalcitrant contaminants [1–3].
The SO4

•− with superior oxidation ability and selectivity can efficiently degrade organic
contaminants [1]. The metal ions, composites, and carbonaceous catalyst are frequently
exploited to activate PMS [4,5]. However, concerns have been raised about the inevitable
leaching of toxic metals and secondary contamination. The combination of PMS activation
and photocatalyst has become a research focus because of their synergistic effect in the
mineralization of organic contaminants [6,7]. Unfortunately, the main challenge faced by
this technology is the lack of a highly efficient catalytic material [8,9]. Therefore, exploring
efficient and environmentally benign materials for PMS activation is highly desirable.

In recent decades, Bi-based materials have attracted increasing interest in the areas of
photocatalytic applications [10]. In particular, bismuth oxychloride (BiOCl) has attracted
significant interest due to its unique crystallographic structure, which can establish an inter-
nal electric field for interlayer charge transfer [11,12]. However, the catalytic performance
of BiOCl is restricted by the poor photogenerated charge separation ability and inactive-
ness of visible light utilization, which reduces the overall efficiency [13,14]. Therefore,
various strategies, such as surface modification, defect engineering, morphology control,
and heterojunction construction, have been widely adopted to tailor the photocatalytic
activity of BiOCl [10,13]. The photocatalytic activity of BiOCl has been improved by these
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modification methods to some extent, but BiOCl-based catalysts are still unsatisfactory for
environmental applications.

The light response and charge separation are two important factors to improve photo-
catalytic activity of semiconductors [15,16]. The construction of heterojunction composites
has been studied in order to enhance the light absorption, the charge separation efficiency,
and the lifetime of carriers [10,17]. Up to now, various BiOCl-based composites have
been developed on the basis of this fundamental mechanism, such as BiOCl/g-C3N4 [14],
BiOCl/Bi24O31Cl10 [18], and NiO/BiOCl [19]. It is well known that the heterojunction effect
is established by an electronic coupling effect produced from the interfacial interactions of
two components to enhance light-responsive capability and expedite interfacial charge car-
rier mobility [10,20]. However, the conventional large-sized materials could not construct
perfect heterojunction interfaces. Recently, interface engineering has often been applied
to explore the design of heterostructures [21,22]. The preparation process of a specific
heterojunction is expensive and complicated in the context of mass production [23–25].
Therefore, exploring a facile strategy to create efficient heterojunction photocatalysts is
highly challenging and appealing.

Herein, we have successfully designed a facile route to build Bi2WO6/BiOCl het-
erojunctions for organic pollutants degradation with PMS activation. The well-designed
heterojunction with improvement of the contact area and interface microstructure was
obtained through the growth of Bi2WO6 on the surface of BiOCl nanoplates, which showed
extremely high levels of photocatalytic activity and stability in bisphenol A (BPA) degra-
dation with PMS activation. Furthermore, the possible reaction mechanism was revealed
by radical trapping experiments, charge transportation, and band structures. These find-
ings provide an efficient approach to design novel heterojunction materials for organic
contaminants remediation.

2. Experimental Section
2.1. Preparation of Materials

The BiOCl nanoplate was constructed via a hydrothermal method. In general, 2 mmol
of cetyltrimethylammonium chloride (CTAC) was added to 20 mL of deionized water, and
added into 2 mmol of Bi(NO3)3•6H2O aqueous solution (40 mL) drop by drop. After 2 h of
stirring, the resulting solution was poured into a 100 mL Teflon-lined autoclave and treated
at 120 ◦C for 12 h. Then, the samples were washed several times with ultrapure water.

The Bi2WO6/BiOCl heterojunction was constructed by in situ growth strategy. Briefly,
0.26 g of BiOCl nanoplate dispersed ultrasonically in 60 mL of water for 1 h. A certain
amount of Na2WO4·2H2O was added into the suspension. After being stirred for another
2 h, the suspension were poured into a 100 mL Teflon-lined autoclave and treated at 120 ◦C
for 12 h. The precipitation was obtained after being washed with ultrapure water.

A series of Bi2WO6/BiOCl heterojunctions with different weight percentages of
Bi2WO6 (13%, 25%, 47%, and 75%) were prepared under the identical experimental con-
ditions and denoted as BC-1, BC-2, BC-3, and BC-4, respectively. Pure Bi2WO6 was also
fabricated through the same process with Bi(NO3)3•6H2O instead of BiOCl.

2.2. Materials Characterization

The X-ray powder diffraction (XRD) patterns were carried out by PANalytical pow-
der X-ray diffractometer. Raman spectra of the samples were obtained on LabRAM HR
Raman spectroscopy (HORIBA, Longjumeau, France). Field-emission scanning electron
microscopy (FE-SEM) images were recorded by a JSM-7800F microscope (Tokyo, Japan).
The transmission electron microscope (TEM) and EDX spectrometry were collected with a
Talos F200S microscope (Thermo Fisher Scientific, Waltham, MA, USA). X-ray photoelec-
tron spectroscopy (XPS) were collected with a photoelectron spectroscope (Thermo Fisher
Escalab 250Xi, Waltham, MA, USA). The UV-vis diffuse reflectance spectroscopy spectra
(UV-vis DRS) were obtained with a Shimadzu UV-3600 spectrophotometer (Shimadzu,
Kyoto, Japan). The N2 adsorption–desorption measurement was measured using ASAP
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2020 (Micromeritics Instrument Corp, Norcross, GA, USA). The time-resolved fluorescence
decay spectra and photoluminescence (TRPL) spectra was tested by FLS-920 fluorescence
spectrometer (Edinburgh Instruments, Edinburgh, UK). The electrochemical impedance
spectroscopy (EIS), photocurrent response, and Mott–Schottky curves were tested on a
CHI-660E electrochemical workstation (CH Instruments, Shanghai, China) with Ag/AgCl,
Pt plate, and 0.5 M Na2SO4 aqueous solution as reference electrode, counter electrode, and
electrolyte, respectively.

2.3. Activity Evaluation

The activity evaluation of samples was conducted through the photodegradation
of BPA with PMS activation under irradiation by 300 W Xe lamp with a 400 nm cut-off
filter. Briefly, 50 mg of the sample was dispersed into a BPA solution (50 mL, 10 mg/L)
under stirring for 30 min in the dark. After adding a specific amount of PMS, the lamp
was triggered. The concentration of PMS was 1 mmol/L. The BPA residual concentration
was analyzed using high-performance liquid chromatography (Agilent 1260, Santa Clara,
CA, USA) with a C-18 column and UV wavelength at 276 nm. The mobile phase was 70%
methanol and 30% water, the flow rate was 1.0 mL/min.

3. Results and Discussion
3.1. Characterizations of Catalysts

Figure 1 presents the XRD patterns of the samples. The peaks of pure BiOCl are well
assigned to the tetragonal phase (JCPDS no. 06-0249), implying the high purity of BiOCl
nanoplates [13,14]. The peaks of Bi2WO6 are assigned to the orthorhombic phase (JCPDS
No. 39-0256) [26,27]. The main peaks of the nanocomposites could be well assigned to
the tetragonal BiOCl. The diffraction peaks of Bi2WO6 intensified with increasing mass
content of Bi2WO6, evidencing the formation of the Bi2WO6 in the nanocomposites. These
results confirm that Bi2WO6/BiOCl nanocomposites were successfully prepared.

Nanomaterials 2021, 11, x FOR PEER REVIEW 3 of 16 
 

 

a Talos F200S microscope (Thermo Fisher Scientific, Waltham, MA, USA). X-ray photoe-
lectron spectroscopy (XPS) were collected with a photoelectron spectroscope (Thermo 
Fisher Escalab 250Xi, Waltham, MA, USA). The UV-vis diffuse reflectance spectroscopy 
spectra (UV-vis DRS) were obtained with a Shimadzu UV-3600 spectrophotometer (Shi-
madzu, Kyoto, Japan). The N2 adsorption–desorption measurement was measured using 
ASAP 2020 (Micromeritics Instrument Corp, Norcross, GA, USA). The time-resolved flu-
orescence decay spectra and photoluminescence (TRPL) spectra was tested by FLS-920 
fluorescence spectrometer (Edinburgh Instruments, Edinburgh, UK). The electrochemical 
impedance spectroscopy (EIS), photocurrent response, and Mott–Schottky curves were 
tested on a CHI-660E electrochemical workstation (CH Instruments, Shanghai, China) 
with Ag/AgCl, Pt plate, and 0.5 M Na2SO4 aqueous solution as reference electrode, counter 
electrode, and electrolyte, respectively. 

2.3. Activity Evaluation 
The activity evaluation of samples was conducted through the photodegradation of 

BPA with PMS activation under irradiation by 300 W Xe lamp with a 400 nm cut-off filter. 
Briefly, 50 mg of the sample was dispersed into a BPA solution (50 mL, 10 mg/L) under 
stirring for 30 min in the dark. After adding a specific amount of PMS, the lamp was trig-
gered. The concentration of PMS was 1 mmol/L. The BPA residual concentration was an-
alyzed using high-performance liquid chromatography (Agilent 1260, Santa Clara, CA, 
USA) with a C-18 column and UV wavelength at 276 nm. The mobile phase was 70% 
methanol and 30% water, the flow rate was 1.0 mL/min. 

3. Results and Discussion 
3.1. Characterizations of Catalysts 

Figure 1 presents the XRD patterns of the samples. The peaks of pure BiOCl are well 
assigned to the tetragonal phase (JCPDS no. 06-0249), implying the high purity of BiOCl 
nanoplates [13,14]. The peaks of Bi2WO6 are assigned to the orthorhombic phase (JCPDS 
No. 39-0256) [26,27]. The main peaks of the nanocomposites could be well assigned to the 
tetragonal BiOCl. The diffraction peaks of Bi2WO6 intensified with increasing mass con-
tent of Bi2WO6, evidencing the formation of the Bi2WO6 in the nanocomposites. These re-
sults confirm that Bi2WO6/BiOCl nanocomposites were successfully prepared. 

 
Figure 1. XRD patterns of BiOCl, Bi2WO6, and Bi2WO6/BiOCl nanocomposites. Figure 1. XRD patterns of BiOCl, Bi2WO6, and Bi2WO6/BiOCl nanocomposites.

Figure 2 shows the Raman spectra of samples. The pure BiOCl nanoplates exhibited
the two peaks at 144 and 199.8 cm−1 due to the Bi-Cl stretching mode in BiOCl [12,28].
For pure Bi2WO6, the strong peak at 309 cm−1 is associated with the translational modes
of Bi3+ and WO6

6−. A weak peak centered at 410 cm−1 is assigned to WO6 bending (Eu)
modes [29,30]. The broad band at 721 cm−1 is mainly assigned to the asymmetric stretching
vibration of W plane and O [23,31]. The peaks at 798 and 824 cm−1 are associated with
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antisymmetric and symmetric Ag modes of O-W-O, respectively [23,29,30]. The charac-
teristic peaks of Bi2WO6 and BiOCl are both shown in the spectra of the nanocomposites.
Furthermore, the peaks intensity of Bi2WO6 gradually increased with increasing content of
Bi2WO6, evidencing the presence of Bi2WO6 in the nanocomposites. The results explicitly
confirm that the coexistence of BiOCl nanoplates and Bi2WO6 in the nanocomposites.
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The morphology of the samples was observed using FE-SEM. As shown in Figure 3a,
pure BiOCl nanoplates displayed an ultrathin plate structure with a size ranging from
500 nm~2 µm. The high-magnification SEM image (Figure 3b) reveals the plate had
a smooth surface with thickness of about 20 nm. Furthermore, BC-3 nanocomposite
preserved a wrinkled plate structure assembled from ultrathin nanosheets (Figure 3c).
Figure 3d clearly shows that the surfaces of the plates became rough, which can be ascribed
to the growth of Bi2WO6 on the surface of BiOCl. This result reveals that Bi2WO6 has been
successfully grown on the surface of BiOCl.

The TEM and HRTEM images of the BC-3 nanocomposite are shown in Figure 4.
An ultrathin plate morphology of the BC-3 nanocomposite can be clearly observed from
Figure 4a,b. The HRTEM image (Figure 4c) clearly reveals the clear lattice fringes. The
lattice spacing was confirmed to be 0.272 nm, corresponding to (2 0 0) plane of orthorhom-
bic Bi2WO6 [32,33]. Moreover, the elemental mapping (Figure 4d) and EDX spectrum
(Figure 4e) present the uniform distribution of Bi, O, Cl, and W elements in the nanocom-
posite. Those observations explicitly demonstrate that the in situ growth method resulted
in a strong interfacial contact and a large contact area between the Bi2WO6 and BiOCl.

The XPS spectra of the samples are illustrated in Figure 5. As exhibited in Figure 5a,
the survey scan spectra indicate that BC-3 nanocomposites are mainly composed of Bi,
O, Cl, and W elements. From the Bi 4f spectra of pure BiOCl (Figure 5b), the peaks of
Bi 4f5/2 and Bi 4f7/2 at 164.9 and 159.6 eV indicate bismuth existed in the form of Bi3+,
respectively [13,34]. Notably, the Bi 4f7/2 and Bi 4f5/2 in the BC-3 nanocomposites were
located at about 164.6 and159.3 eV, respectively [35,36]. These shifts can be attributed
to the chemical bonding actions among the components. The Cl 2p3/2 and Cl 2p1/2 in
BiOCl (Figure 5c) were located at 198.2 and 199.9 eV, which are characteristic positions of
the Cl− [11,28]. These peaks changed to 198.0 and 199.7 eV after the construction of the
Bi2WO6/BiOCl heterojunction, respectively. The XPS spectrum of O 1s in BiOCl (Figure 5d)
displayed peaks at 531.0 and 530.1 eV, attributed to the lattice and surface oxygen [35,37,38].
Additionally, the O 1s spectrum of BC-3 nanocomposite was divided into three peaks
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at 531.0, 530.1, and 529.8 eV, corresponding to Bi-O, W-O, and hydroxyl groups, respec-
tively [30,34]. From W 4f spectrum of BC-3 nanocomposite (Figure 5e), the peaks of W 4f at
37.5 and 35.4 eV are characteristic of the W6+ cations in Bi2WO6 [39,40]. The results indicate
a strong interfacial contact between BiOCl and Bi2WO6 in Bi2WO6/BiOCl nanocomposites.
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The UV-vis DRS of the samples is displayed in Figure 6a. The pure BiOCl exhibited a
strong absorption in UV light regions and an absorption edge of around 370 nm, consistent
with the literature reports [28,41]. Obviously, pure Bi2WO6 has an absorption edge of
around 460 nm [42,43]. The Bi2WO6/BiOCl nanocomposites presented clear visible light
absorption. Moreover, the absorption intensity gradually enhanced with increasing Bi2WO6
content. Furthermore, the band gap energy of the samples was studied (Figure 6b) [18,30].
The band gap energy values of pure BiOCl, Bi2WO6, BC-1, BC-2, BC-3, and BC-4 were 3.31,
2.66, 2.74, 2.68, and 2.62 eV, respectively, which demonstrates that the band gap energy of
Bi2WO6/BiOCl nanocomposite decreased with the increasing content of Bi2WO6. These
results demonstrate that a strong interface interaction between BiOCl and Bi2WO6 in the
nanocomposites is effective to improve the visible light response.
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3.2. Photocatalytic Activity Evaluation

The catalytic properties of the samples were examined by BPA degradation with PMS
activation. Figure 7 shows the variations in BPA concentrations under various systems.
The control experiment revealed that PMS could hardly degrade the BPA molecule. The
removal rates of BPA were approximately 31.1% and 41.4% by the pure BiOCl and Bi2WO6
with PMS activation under visible light irradiation, respectively. As exhibited, the removal
rate of BPA reached 97.4% by BC-3 under the same condition. Obviously, the removal rate
of about 10.1% demonstrates that BC-3 cannot activate the PMS molecule without light
irradiation. These results suggest that BC-3 exhibits an enhancement performance in BPA
degradation with PMS activation under visible light irradiation.
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Furthermore, the effects of Bi2WO6 in the Bi2WO6/BiOCl nanocomposite on the BPA
degradation with PMS activation were investigated, and the results are shown in Figure 8.
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As the content of Bi2WO6 increased from 0 to 75.0%, the removal efficiency firstly increased
and then decreased. Notably, the BC-3 nanocomposite showed the highest photocatalytic
activity for PMS activation. This can be attributed to the successful construction heterojunc-
tions between the Bi2WO6 and BiOCl, accelerating the charge separation. However, the
excessive Bi2WO6 might decrease the interface effect. The kinetic behavior of the samples
for BPA degradation was investigated. The reaction kinetics could be fitted well by the prin-
ciple of kinetics pseudo first-order reaction [44,45]. The rate constants for BPA degradation
by BiOCl, Bi2WO6, BC-1, BC-2, BC-3, and BC-4 with PMS activation were 0.010, 0.017, 0.024,
0.040, 0.102, and 0.044 min−1, respectively. So, the BC-3 displayed better photocatalytic
activity than pure BiOCl and Bi2WO6, evidencing the synergistic effect between BiOCl and
Bi2WO6. These results suggest that the content of Bi2WO6 is important to optimize the
catalytic activities of the nanocomposites.
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The stability and reusability of the catalysts are crucial for their practical applica-
tions [10,31]. Thus, the catalytic stability of the Bi2WO6/BiOCl nanocomposites was
explored through the recycling reaction of BPA degradation. From Figure 9, a slight
decrease in the catalytic activity of the BC-3 nanocomposite was observed after four cy-
cles, illustrating that the nanocomposites have robust stability to activate PMS for BPA
degradation and great potential in their practical application.

3.3. Photocatalytic Reaction Mechanisms

To explore the underlying mechanism, the active radical species generated in the
photocatalytic process were tested by radical trapping experiments with benzoquinone
(BQ), methanol (MeOH), isopropanol (IPA), and ethylenediamine tetraacetic acid disodium
salt (EDTA) as radical scavengers, respectively [2,6,26]. Figure 10 shows that the degra-
dation efficiency of BPA was slightly reduced with the addition of IPA, indicating that
•OH has a negligible effect on BPA degradation. Furthermore, the degradation of BPA
could be significantly limited by EDTA and BQ. Therefore, the holes (h+) and superoxide
radical (•O2

−) play pivotal roles in BPA degradation. Furthermore, the degradation of BPA
was partially limited by methanol, which could be attributed to the rapid conversion of
sulfate radicals. Therefore, the h+, SO4

•−, and •O2
− are important active radicals in the

degradation process.
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Figure 10. The radical trapping experiment in the PMS activation by BC-3 nanocomposite for BPA
degradation. Reaction condition: initial BPA concentration of 10 mg/L, PMS dosage of 1 mmol/L,
catalyst addition of 1 g/L.

Generally, the specific surface area is a key factor influencing the catalytic ability
of the catalyst [10,19]. Hence, N2 adsorption–desorption measurements were taken to
reveal BET surface area and pore structure. The nitrogen sorption isotherms (Figure 11a)
revealed that all the samples belonged to type IV isotherms with H3 loops, illustrating
mesoporous structures [31,40]. The pore size distribution curves illustrate the coexistence
of abundant mesopores and macropores (Figure 11b). The BC-3 nanocomposites showed
larger specific surface area than pure BiOCl (5.394 m2/g), but lower than pure Bi2WO6
(Table 1). Therefore, the specific surface areas and pore size distributions are not the main
reason for the enhanced photocatalytic performance of the samples.
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Table 1. The SBET and average pore size of pure BiOCl, Bi2WO6, and BC-3 nanocomposite.

Sample SBET(m2·g−1) Average Pore Size (nm)

BiOCl 5.394 3.292
Bi2WO6 46.202 3.792

BC-3 16.129 3.704

The separation efficiency and kinetic barrier of Bi2WO6/BiOCl were revealed by EIS
and photocurrent response. Sensitive and reproducible photocurrent responses of the
sample under on/off visible light irradiation can be observed from Figure 12a. The BC-3
nanocomposite had higher photocurrent responses than pure BiOCl and Bi2WO6, illustrat-
ing an efficient charge transmission [30,42]. Furthermore, Figure 12b shows that the arc
radius of the BC-3 nanocomposite was smaller than pure BiOCl and Bi2WO6, which sug-
gests a lower charge transfer resistance [16,31]. Thus, the heterojunction interface between
BiOCl and Bi2WO6 could provide a driving force for charge separation and transfer.
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nanocomposites.

The TRPL spectra was used to further identify the charge transfer dynamics. As
depicted in Figure 13, the curves are fitted well based on a two exponential decay func-
tion [25,31,46]. The average PL lifetimes of pure BiOCl, Bi2WO6, and BC-3 nanocomposite
were calculated to be 1.44, 1.18, and 1.62 ns, respectively. Obviously, the average lifetimes
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of BC-3 nanocomposites are longer than those of pure BiOCl and Bi2WO6, which further
indicates the most efficient migration of photoexcited charges [25,31]. As a result, a notable
synergetic effect between BiOCl and Bi2WO6 can optimize the electronic structure and
suppress the recombination of charge carriers, thus promoting the catalytic performance.
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The Mott–Schottky plots of the samples are shown in Figure 14. The flat-band potential
(Efb) could be determined based on the Mott–Schottky curves [16,47]. The positive slope of
the curves suggests that the BiOCl and Bi2WO6 are n-type semiconductor. Notably, the Efb
values of BiOCl and Bi2WO6 were determined to be −0.47 and −0.98 V (vs. Ag/AgCl),
respectively. Therefore, the CB potential values of the BiOCl and Bi2WO6 were −0.25
and −0.76 V (vs. NHE, pH = 7), respectively [23,31]. Based on these results, the valence
band (VB) positions were determined to be 3.06 and 1.90 V. These results indicate that the
construction of a heterostructure interface between the BiOCl and Bi2WO6 can significantly
improve photoinduced carrier separation efficiency and photocatalytic efficiency due to
the matching energy levels.
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Based on the above analysis, the possible mechanism for BPA degradation is portrayed
in Figure 15. The heterojunction structure is obtained at the interface between BiOCl and
Bi2WO6. Under light irradiation, Bi2WO6 is excited to form electrons and h+ [38,43]. The
photogenerated electrons flow to the heterojunction interface, then to the CB of the BiOCl.
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The accumulation of electrons at the CB of the BiOCl reduce O2 and PMS in the solution to
generate •O2

− and SO4
•− radicals [5,48]. Meanwhile, the generated h+ in the VB of BiOCl

can easily accumulate at the surface of Bi2WO6 to directly degrade organic pollutants [40].
The •OH cannot be produced by h+ in the VB of Bi2WO6 due to its low oxidizing capacity,
whereas a small amount of •OH is formed by the contribution of •O2

− or PMS [26,42].
This result agrees well with the reactive species trapping experiments.
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4. Conclusions

In summary, novel Bi2WO6/BiOCl heterojunction nanocomposites were successfully
designed and fabricated by a facile and effective strategy. The heterojunction was fabricated
by in situ growth of Bi2WO6 on the surface of BiOCl. The Bi2WO6/BiOCl nanocomposites
possess excellent performance in PMS activation for BPA degradation under visible light
irradiation. The Bi2WO6/BiOCl composite with 75.0% of Bi2WO6 exhibited the optimal
catalytic performance. A possible photocatalytic mechanism for BPA degradation with
PMS activation over Bi2WO6/BiOCl nanocomposites was systematically investigated.
The improved catalytic performance of the Bi2WO6/BiOCl is attributed to the strong
interaction between the Bi2WO6 and BiOCl, resulting in an enhanced photoabsorption
and a more efficient charge interfacial separation and transfer. This work might provide
new inspiration for designing efficient composites for the environmental remediation of
organic contaminants.
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