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Predicting subretinal fluid absorption with machine learning in 
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Background: Machine learning was used to predict subretinal fluid absorption (SFA) at 1, 3 and 6 months 
after laser treatment in patients with central serous chorioretinopathy (CSC).
Methods: The clinical and imaging data from 480 eyes of 461 patients with CSC were collected at 
Zhongshan Ophthalmic Center (ZOC) and Xiamen Eye Center (XEC). The data included clinical features 
from electronic medical records and measured features from fundus fluorescein angiography (FFA), 
indocyanine green angiography (ICGA), optical coherence tomography angiography (OCTA), and optical 
coherence tomography (OCT). A ZOC dataset was used for training and internal validation. An XEC dataset 
was used for external validation. Six machine learning algorithms and a blending algorithm were trained to 
predict SFA in patients with CSC after laser treatment. The SFA results predicted by machine learning were 
compared with the actual patient prognoses. Based on the initial detailed investigation, we constructed a 
simplified model using fewer clinical features and OCT features for convenient application.
Results: During the internal validation, random forest performed best in SFA prediction, with accuracies 
of 0.651±0.068, 0.753±0.065 and 0.818±0.058 at 1, 3 and 6 months, respectively. In the external validation, 
XGBoost performed best at SFA prediction with accuracies of 0.734, 0.727, and 0.900 at 1, 3 and 6 months, 
respectively. The simplified model showed a comparable level of predictive power.
Conclusions: Machine learning can achieve high accuracy in long-term SFA predictions and identify 
the features relevant to CSC patients’ prognoses. Our study provides an individualized reference for 
ophthalmologists to treat and create a follow-up schedule for CSC patients.
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Introduction

Central serous chorioretinopathy (CSC) is a retinochoroid 
disease that causes idiopathic serous retinal detachment, 
which is associated with one or more leakages from 
the choroid through the defects in the retinal pigment 
epithelium (RPE) outer blood-retina barrier. It primarily 
affects relatively young men of working age (1,2). CSC 
is fairly common, being considered as the fourth most 
prevalent non-surgical retinopathy associated with subretinal 
fluid (SRF) leakage in the world (3). Although SRF can 
resolve spontaneously in some cases, many patients still 
suffer permanent vision loss or significant clinical sequelae 
due to incomplete subretinal fluid absorption (SFA) (2).

CSC is usually divided into two categories: acute CSC 
and chronic CSC, based on the duration of symptoms. Most 
investigators have employed this incomplete and relatively 
rudimentary classification of CSC in their clinical studies (2). 
However, there is no clear consensus regarding the criteria 
for classification. Our lack of an established classification 
system necessitates studying the natural disease progression 
of CSC and its therapeutic management (4,5). There 
remains an absence of academically recognized treatment 
guidelines for CSC. Ophthalmologists have to make 
decisions experientially in the treatment of CSC patients.

To develop more precise care for patients, we have 
established an individualized management plan based on 
SFA utilizing big data. SFA is the most concerning issue 
for clinicians after treatment, and it is the most important 
prognostic characteristic for patients with CSC (6). The 
increase or decrease in SFA affects the therapeutic strategy 
and the follow-up intervals for patients. In our study, we 
tried to establish an intelligent prediction system to foresee 
SFA at 1, 3 and 6 months after laser treatment with big data 
that incorporates medical records and imaging features, 
which help us to clarify the prognosis of patients with CSC 
and choose a sensible treatment.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-1519).

Methods

Data collection

CSC was defined as patients with leakage on their fundus 
fluorescein angiography (FFA), abnormal choroidal 
circulation such as hyperpermeability, dilated choroidal 
vessels or other abnormal microangiopathy on indocyanine 

green angiography (ICGA), and serous retinal detachment 
(SRD) as confirmed by optical coherence tomography 
angiography (OCTA) and optical coherence tomography 
(OCT). A total of 416 eyes in 401 patients and 64 eyes in 
60 patients were studied at Zhongshan Ophthalmic Center 
(ZOC) and Xiamen Eye Center (XEC), respectively, from 
January 2013 to September 2019. A definite diagnosis 
was made for all patients based on FFA and ICGA. The 
patients were followed for 1–6 months after treatment. 
Study exclusion criteria were as follows: (I) patients with 
high myopia, as defined as a refractive error (spherical 
equivalent) <−6.00 diopters, or an axial length >26.5 mm 
and (II) patients with media opacities or signal strength 
indexes who were affected. The study was conducted in 
accordance with the Declaration of Helsinki (as revised 
in 2013). The study was approved by the ethics board of 
ZOC (No. 2020KYPJ024) and individual consent for this 
retrospective analysis was waived.

A total of 6,732 imaging pictures (1,248 FFA, 1,248 
ICGA, 1,412 OCTA, and 2,824 OCT images) and 
554 imaging pictures (192 FFA and 362 OCT images) 
were collected from ZOC and XEC, respectively. FFA 
(Heidelberg Spectralis, Heidelberg, Germany) and 
ICGA (Heidelberg Spectralis, Heidelberg, Germany) 
images for each patient were included only at the 
baseline, including three images from the early, middle 
and late phases. However, for the OCTA (RTVue XR 
Avanti with AngioVue; Optovue Inc., Fremont, CA, 
USA) and OCT (Heidelberg Spectralis, Heidelberg, 
Germany) follow-up data, data from the baseline, 1, 3, and  
6 months after laser treatment were included. Measurement 
information on the FFA, ICGA, OCTA, and OCT, were 
extracted from the software of Heidelberg Eye Explorer 
(version 1.7.1.0) and Optovue (Version 2017.1.0.155). The 
clinical features (20 clinical features, e.g., the duration 
of CSC) of these CSC patients were also extracted from 
electronic medical records (details are provided in Table 
S1). For therapy information, the data from ZOC included 
conventional laser (CL) therapy (117 eyes), subthreshold 
micropulse laser (SML) therapy (80 eyes) and half-dose 
photodynamic therapy (hd-PDT) (219 eyes). The XEC 
data included CL therapy (21 eyes), 577nm SML therapy 
(14 eyes) and hd-PDT (29 eyes). According to type 3 of the 
TRIPOD statement, we developed prediction models using 
the dataset from ZOC and evaluated its performance in a 
separate dataset from XEC (7).

We treated each eye as a separate CSC case during 
data preprocessing. There were only a few values missing 

http://dx.doi.org/10.21037/atm-20-1519
http://dx.doi.org/10.21037/atm-20-1519
https://cdn.amegroups.cn/static/public/ATM-20-1519-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-1519-supplementary.pdf
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from the ZOC data, and we filled them in with the mean 
values for other cases. However, all the ICGA and OCTA 
features were missing for patients collected from XEC data. 
Considering their clinical significance and importance in 
the algorithm, we ultimately chose to fill in the missing 
features in the XEC data with the mean values for the same 
features of the ZOC data.

Construction of models

All the training and testing approaches were run on a 
workstation configured with 32-core Intel Xeon E5 CPU 
and 128 GB RAM. We used Python 3.6.8 in the Ubuntu 
16.04 system. The Python libraries we used in this study 
are as follows: Jupyter (1.1.0), Scikit-Learn (0.19.1), and 
Pandas (0.20.3). Six separate algorithms were trained, with 
a total of 165 features and state-of-the-art performance 
in each adaptive domain, and they are listed as follows: 

Decision Tree (8), AdaBoost.R2 (9), Gradient Boosting (10),  
XGBoost (11), random forest (12), and extra-trees (13). 
While selecting the optimal algorithms, we randomly 
divided the ZOC data into 10 parts, and calculated the 
decision tree, AdaBoost.R2, gradient boosting, XGBoost, 
random forest, and extra-trees by 10-fold cross-validation. 
We then selected the best three algorithms for the ensemble 
according to the prediction accuracy. After determining the 
selected algorithms, to make the most of the existing clinical 
data, we used all the data from ZOC to retrain the selected 
algorithms. The workflow is shown in Figure 1.

For each of the above algorithms, we used a grid search  
w i t h  c r o s s - v a l i d a t i o n  t o  s e l e c t  t h e  s u i t a b l e 
hyperparameters (14).

The ensemble learning method was applied to obtain 
a model with good fitting ability and generalization 
performance for tasks such as classification and regression and 
model averaging is a common and effective approach (14,15).

Figure 1 Overall Study Workflow. Workflow diagram showing the training overview for the SFA prediction model.
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Evaluation of models

To evaluate the performance of our models, the accuracy in 
predicting SFA at 1, 3 and 6 months after laser treatment 
were validated. The baseline data were used to predict 
SFA at 1, 3 and 6 months after treatment. To obtain more 
accurate predictions, when predicting SFA at 3 months after 
treatment, we trained the model using the baseline and 
1-month data; to predict SFA at 6 months after treatment, 
we trained the models using the baseline, 1-month and 
3-month data. A 10-fold cross-validation was applied to 
evaluate the performance of the models.

Simplified model

We constructed a simplified prediction model using 
relatively few clinical data and OCT features to make 
our study more accessible for clinical use. The remaining 
features were determined according to the relative 
importance obtained during the establishment of the 
original algorithms (Figures S1-S6), and the difficulty in 
imaging feature acquisition. Table S2 shows all the training 
features of the simplified model. For the simplified model, 
the training steps are the same as those in the original 
models.

Statistical analysis

Accuracy (ACC) is to evaluate the predictive effectiveness of 
the model. Values are shown as means ± SDs.

Results

A total of 480 eyes in 461 patients aged 28 to 71 years 
old (43.56±6.64) were addressed during our study. The 
demographic information for the training and validation 

datasets are shown in Table 1. Table 2 shows the accuracies 
of predicting SFA during all the algorithm tasks. Among the 
original models, random forest had the best performance 
in the internal validation, and XGBoost performed best 
at external validation. For the simplified models, gradient 
boosting had the best performance for internal validation, 
and the blending algorithm performed best at external 
validation.

During the internal validation, random forest performed 
best in predicting SFA, with accuracies of 0.651±0.068, 
0.753±0.065 and 0.818±0.058 at 1, 3 and 6 months, 
respectively. In the external validation, XGBoost performed 
best in predicting SFA, with accuracies of 0.734, 0.727, and 
0.900 at 1, 3 and 6 months, respectively. The simplified 
model showed a comparable level of predictive power. In 
the internal validation, gradient boosting performed best at 
predicting SFA, with accuracies of 0.630±0.057, 0.780±0.043 
and 0.818±0.074 at 1, 3 and 6 months, respectively. During 
the external validation, the blending model performed best 
at predicting SFA, with accuracies of 0.656, 0.758, and 0.900 
at 1, 3 and 6 months, respectively.

In the cross-validation, random forest achieved high-
accuracy predictions with areas under the curve (AUCs) 
ranging from 0.35 to 0.80 for 1 month, from 0.63 to 0.89 
for 3 months, and from 0.92 to 1.00 for 6 months. In the 
external validation, XGBoost provided high-accuracy 
predictions with AUCs ranging from 0.76 to 1.00 for  
1 month, from 0.27 to 0.72 for 3 months, and from 0.98 to 
1.00 for 6 months (Figure 2). The simplified model exhibited 
an analogous prediction accuracy with AUCs ranging from 
0.57 to 0.81 for 1 month, from 0.23 to 0.97 for 3 months, 
and from 0.88 to 1.00 for 6 months in the cross-validation, 
and AUCs ranging from 0.72 to 1.00 for 1 month, from 0.27 
to 0.66 for 3 months, and from 0.98 to 1.00 for 6 months 
in the external validation (Figure 3). The distributions of 
prediction results and ground truth in each task are revealed 

Table 1 Patient demographics

Variable
1 M prediction 3 M prediction 6 M prediction

ZOC data XEC data ZOC data XEC data ZOC data XEC data

Patients 401 (63 females) 60 (11 females) 308 (46 females) 30 (5 females) 244 (37 females) 19 (2 females)

Eyes 416 64 322 33 258 20

Age (years) 43.19±6.44 43.86±7.06 42.87±6.44 43.21±7.51 42.96±6.48 41.70±6.73

VA (logMAR) 0.28±0.21 0.29±0.16 0.28±0.21 0.27±0.16 0.28±0.22 0.28±0.17

Visual acuity (VA) values are presented as the means ± standard deviations at baseline in different groups (in logarithm of minimum angle 
of resolution [logMAR] units). ZOC, Zhongshan Ophthalmic Center; XEC, Xiamen Eye Center.

https://cdn.amegroups.cn/static/public/ATM-20-1519-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-1519-supplementary.pdf
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Table 2 Accuracy of the subretinal fluid absorption predictions during internal and external validation tests

Variable
1 M (ACC, %) 3 M (ACC, %) 6 M (ACC, %)

Baseline Baseline + 1 M Baseline + 1 M + 3 M

Algorithm learner

Internal validation

Decision tree 0.563±0.054 0.712±0.050 0.767±0.095

Adaboost 0.603±0.066 0.749±0.089 0.748±0.057

Gradient boosting 0.623±0.054 0.755±0.052* 0.791±0.072

XGBoost 0.628±0.045 0.752±0.056 0.810±0.059

Random forest 0.651±0.068* 0.753±0.065 0.818±0.058*

Extra-trees 0.645±0.044 0.740±0.059 0.795±0.079

Blending algorithm 0.647±0.067 0.749±0.058 0.810±0.066

External validation

Decision tree 0.563 0.515 0.800

AdaBoost 0.719 0.576 0.750

Gradient boosting 0.703 0.697 0.850

XGBoost 0.734* 0.727* 0.900*

Random forest 0.703 0.636 0.900*

Extra-trees 0.734* 0.636 0.900*

Blending algorithm 0.703 0.697 0.900*

Simplified model

Internal validation

Decision tree 0.536±0.053 0.687±0.048 0.764±0.069

AdaBoost 0.613±0.069 0.725±0.072 0.779±0.057

Gradient boosting 0.630±0.057 0.780±0.043* 0.818±0.074*

XGBoost 0.625±0.049 0.768±0.066 0.811±0.074

Random forest 0.634±0.048 0.762±0.067 0.811±0.063

Extra-trees 0.635±0.038* 0.737±0.057 0.814±0.081

Blending algorithm 0.632±0.056 0.759±0.047 0.811±0.070

External validation

Decision tree 0.563 0.515 0.850

AdaBoost 0.563 0.636 0.800

Gradient boosting 0.609 0.727 0.900*

XGBoost 0.578 0.697 0.900*

Random forest 0.672* 0.667 0.900*

Extra-trees 0.641 0.667 0.900*

Blending algorithm 0.656 0.758* 0.900*

*, the best learners in all cases. ACC, accuracy of the SFA prediction at 1, 3 and 6 months after laser treatment compared with the ground 
truth. The results were stratified according to the follow-up periods and the points input into the algorithms.
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Figure 2 Prediction performance in the internal and external validation tests on the full model. Panels A, B, and C, CM of the classification 
in the internal validation test. Panels D, E, and F, ROC of the internal validation test. Panels G, H, and I, CM of the classification in 
the external validation test. Panels J, K, and L, ROC of the external validation test. CM, confusion matrix; ROC, receiver operating 
characteristic curve.
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Figure 3 Prediction performance in the internal and external validation tests on the simplified model. Panels A, B, and C, CM of the 
classification in the internal validation test. Panels D, E, and F, ROC of the internal validation test. Panels G, H, and I, CM of the 
classification in the external validation test. Panels J, K, and L, ROC of the external validation test. CM, confusion matrix; ROC, receiver 
operating characteristic curve.
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in the confusion matrixes (CM) of Figure 2 and Figure 3. As 
shown in the receiver operating characteristic curve (ROC 
curve) and the CM, the SFA prediction at 6 months after 
treatment was the most accurate. Figures S1-S6 show the 
importance of features in the SFA predictions at 1, 3 and  
6 months.

Discussion

To our knowledge, no study has previously generated a 
machine learning model for predicting SFA in CSC patients. 
Our prediction models can foresee the patient’s condition 
six months in advance. However, recent predictions within 
three months are relatively imprecise. Generally, short-term 
targets should be more accurate than long-term targets 
for applying artificial intelligence in disease prognosis 
prediction (16). This may be due to the lower limitation of 
the courses in the inclusion criteria; as the baseline data for 
CSC patients vary greatly, and the short-term consistency 
of patient prognosis is low. Usually, at six months after 
treatment, the SFA rates of CSC patients were much higher 
than at one and three months, which makes prediction tasks 
easier (17,18). Last but not least, for prognosis predictions 
of complex fundus disease, we still need to accumulate 
follow-up data to improve our models.

By predicting SFA in patients, we can better understand 
the progression of CSC, choose cost-effective therapies 
and manage the follow-up more efficiently. The increasing 
use of FFA, ICGA, OCTA, and OCT in studying CSC has 
greatly improved our understanding of its pathogenesis 
and imaging characteristics. However, there is still no clear 
consensus regarding the criteria for classification and the 
guidelines for treatment. Our predictive system provides 
a reference for clinicians to choose therapies. We can 
input the information related to the patients and different 
therapies, and then the models will give us the probability 
of presenting SFA in six months. This is a new strategy 
for mining big data, and it enables us to achieve precise 
treatment without considering the specific classification of 
the disease. Based on the prediction models established in 
this study, we could choose a more efficient method such as 
hd-PDT in patients with consistent SRF, and we can also 
choose a more economical therapy such as SML for patients 
with SRF that is easily absorbed.

More than helping clinicians choose reasonable therapies, 
the models also help define the factors that are relevant to 
the CSC prognosis. In the analysis of feature importance, 
we found that in addition to the therapies chosen by 

clinicians, the baseline characteristics on the retina and 
lifestyle also exert a significant impact on SFA, including 
the SRF height, the central macula thickness (CMT), the 
double-layer sign (DLS), and the scores on the Pittsburgh 
Sleep Quality Index and Hamilton Anxiety Scale (19,20). 
The findings can help us analyze the relevant factors that 
lead to different prognoses in CSC patients with the same 
treatment and guide patients to pay attention to influencing 
these factors in their daily life.

To make our study applicable to different scenarios, we 
constructed a simplified prediction model according to the 
relative importance obtained in the original models and the 
accessibility of the imaging features; the model is trained 
with only 11 clinical features and OCT features. This 
advantage can be further appreciated in applications by 
hospitals in underdeveloped areas without FFA, ICGA, and 
OCTA. In a clinical setting, FFA, ICGA, and OCTA are 
not necessary at certain stages, in most cases.

Limitations

There are some limitations in our present study. To 
improve the accuracy of the short-term predictions within 
three months, we need to incorporate the duration of 
the disease into the inclusion criteria. More data on CSC 
patients are necessary to improve the accuracy of the SFA 
prediction models. In addition, data for external validation 
is unicentric, and more real-world tests are needed for 
improved accuracy.

Conclusions

In summary, our study showed that multidimensional 
patterns of clinical and imaging features are predictive 
factors of SFA in CSC patients. The prediction models 
provide us with a whole new strategy to counsel patients 
from an individual-based perspective, and they serve as 
references for ophthalmologists who can choose efficient 
therapies and make follow-up schedules.
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