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Abstract
Conventional protein:ligand crystallographic refinement uses stereochemistry restraints coupled with a rudimentary energy 
functional to ensure the correct geometry of the model of the macromolecule—along with any bound ligand(s)—within 
the context of the experimental, X-ray density. These methods generally lack explicit terms for electrostatics, polarization, 
dispersion, hydrogen bonds, and other key interactions, and instead they use pre-determined parameters (e.g. bond lengths, 
angles, and torsions) to drive structural refinement. In order to address this deficiency and obtain a more complete and ulti-
mately more accurate structure, we have developed an automated approach for macromolecular refinement based on a two 
layer, QM/MM (ONIOM) scheme as implemented within our DivCon Discovery Suite and "plugged in" to two mainstream 
crystallographic packages: PHENIX and BUSTER. This implementation is able to use one or more region layer(s), which 
is(are) characterized using linear-scaling, semi-empirical quantum mechanics, followed by a system layer which includes the 
balance of the model and which is described using a molecular mechanics functional. In this work, we applied our Phenix/
DivCon refinement method—coupled with our XModeScore method for experimental tautomer/protomer state determina-
tion—to the characterization of structure sets relevant to structure-based drug design (SBDD). We then use these newly 
refined structures to show the impact of QM/MM X-ray refined structure on our understanding of function by exploring the 
influence of these improved structures on protein:ligand binding affinity prediction (and we likewise show how we use post-
refinement scoring outliers to inform subsequent X-ray crystallographic efforts). Through this endeavor, we demonstrate a 
computational chemistry ↔ structural biology (X-ray crystallography) "feedback loop" which has utility in industrial and 
academic pharmaceutical research as well as other allied fields.

Keywords  CSAR set · X-ray crystallography · Quantum mechanics X-ray refinement · Ligand strain · high throughput 
crystallography · protonation states · tautomers · difference density Z-score · Structure guided drug discovery · Structure-
based drug discovery

Introduction

Thanks in large part to their speed and lower cost, virtual 
screening, docking, and scoring have become integral to 
the drug discovery process as these methods have become 
critical tools in the structure based drug design (SBDD) 

toolbox [1–8]. Unfortunately, these methods are often una-
ble to correctly capture and sample structural water [9–11], 
tautomeric states [12, 13], and conformational strain [14], 
which leads to problems with binding mode and binding 
affinity prediction [15–20]. Furthermore, these problems 
are compounded with scoring function errors [21, 22] and 
inaccurate protein:ligand complex structure determination 
[23–25], which together negatively impact their performance 
in industrial drug discovery efforts. In this paper, we dem-
onstrate a computational chemistry ↔ structural biology 
(X-ray crystallography) feedback loop which uses a physics-
based score function as an indicator of problems in experi-
mental structure, and we show how we can use improved 
refinement methods to address these structural problems 
(and vice versa).
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X-ray crystallography is a ubiquitous technique which 
is used throughout the SBDD process to determine the 
three-dimensional (3D) atomic structure of biomolecular 
systems which drive lead optimization and drug design. It 
is the quality of these structural models which often dic-
tates the success of high-throughput screening, docking, and 
scoring (e.g. rank ordering) of candidate drug molecules 
and subsequent lead optimization and rational drug design. 
Due to advances in data collection, processing, structure 
solution, and refinement automation, X-ray crystallography 
has become relatively routine in the pharmaceutical space. 
Unfortunately even with these advances, surveys have shown 
that protein X-ray models are still found to have significant 
atomic coordinate uncertainties and other structural errors 
which impact their use in pharmaceutical research [26, 27]. 
In particular, amino acid, ligand, and fragment R-groups 
containing amides, rings, and other similarly "flippable" spe-
cies are particularly susceptible to uncertainties in the place-
ment since light elements (e.g. nitrogen, oxygen, and carbon) 
are typically indistinguishable in macromolecular X-ray 
crystallography. Those structural errors have been known 
to negatively impact ligand binding affinity prediction [26] 
and X-ray model quality impacts the overall success of the 
SBDD effort [25, 28–30]. In addition to limitations in the 
X-ray experimental, conventional stereochemical-restraints 
used in traditional X-ray model refinement are highly 
approximate in that they do not account for interactions 
such as electrostatics, hydrogen bonds, dispersion, charge 
transfer, and polarization [31–33]. Moreover, these restraints 
consist of a detailed description of the unbound molecular 
geometry for each ligand in the structure provided in the 
form of Crystallographic Information File (CIF). Unfortu-
nately, creation of accurate CIF’s is a nontrivial task and 
often their use leads to inaccuracies in bound ligand struc-
tures [32] due to poor or incomplete a priori understanding 
of in situ bound bond lengths and angles which arises from 
the absence of intermolecular interactions in conventional 
X-ray refinement functionals [29, 34–36]. Ultimately, con-
ventionally refined structures are subject to the principle 
"garbage in/garbage out" and an incorrect ligand description 
(e.g. CIF) often leads to an inaccurate final geometry [32].

In order to address this limitation and generate X-ray 
structures which are better prepared for use in SBDD proto-
cols, in previous work, we built on our DivCon, linear-scal-
ing, semiempirical quantum mechanics (SE-QM) [37–39] 
package and we introduced an automated region quantum 
mechanics (QM) refinement technique which replaces con-
ventional stereochemical-restraints—both for the ligand(s) 
and for the surrounding active site(s)—with a far more 
complete SE-QM based energy functional "in real time" 
during refinement process [36, 39]. Outside of this (these) 
QM region(s), protein receptor residues and non-active 
site waters are treated with a molecular mechanics (MM) 

potential leading to a single QM/MM Hamiltonian, based 
on the ONIOM formalism [40], which is applied across the 
entire structure [35]. Together, this Hamiltonian is able to 
capture critical intra-molecular and inter-molecular interac-
tions, including dispersion, hydrogen bonds, electrostatics, 
polarization, charge transfer, metal coordination [3, 7, 8, 41, 
42], which are neglected in conventional X-ray crystallo-
graphic refinement workflows. With this protocol in place, 
DivCon-based X-ray refinement explicitly disregards any 
(potentially flawed) information provided by CIF yielding 
more accurate ligand and active site geometry. Specifically, 
we have demonstrated that our DivCon, QM/MM refine-
ment applied to the Astex Diverse Set [17] yields significant 
improvement not only for ligand structure but also for the 
entire protein:ligand complex structure [35].

In the present work, we applied this QM/MM refinement 
protocol to the set of structures from the Community Struc-
ture Activity Resource (CSAR) data set originally released 
in 2012 [43]. The CSAR set is a well curated set which 
includes carefully determined experimental binding affini-
ties and which was specifically developed for the purpose 
of providing structures to improve available docking/scor-
ing functions. For that reason, we chose the set to explore 
how our QM/MM refinement method enhances the quality 
of the protein:ligand geometry and how these improvements 
in quality also impact our ability to use physics-based func-
tions to predict binding affinity. Furthermore, we are able 
to demonstrate that we can use binding affinity prediction 
outliers that remain even after Phenix/DivCon (QM/MM) 
refinement to indicate those cases which we can improve 
with subsequent analysis and manual, experimental density 
driven manipulation. Finally, in order to explore the impact 
of tautomer/protomer states on binding affinity prediction, 
we applied our XModeScore [44, 45] method to the set. 
This method employs the same QM/MM X-ray refinement 
discussed above and couples it with rigorous experimental 
density analysis to determine the correct protonation states 
(or modes) of residues and bound ligands and fragments. 
We hope that these enhanced structures, available in the 
Supplementary Information, aid in the development of next 
generation docking/scoring functions.

Materials and methods

Structure preparation and refinement

The 55 X-ray coordinate and structure factor files corre-
sponding to five different kinase targets in the 2012 CSAR 
set were downloaded from the Protein Database (PDB). This 
set, listed in detail in Table 1 and Table S1, consists of cyc-
lin-dependent kinase 2 (CDK2) with 15 ligands, checkpoint 
kinase 1 (CHK1) with 16 ligands, mitogen-activated protein 
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kinase 1 (ERK2) with 12 ligands, urokinase-type plasmi-
nogen activator (uPA) with 7 ligands, and spleen tyrosine 
kinase (Syk) with 5 ligands. Hydrogen atoms were added 
to protein residues, water molecules, and ligands using Pro-
tonate3D [46] as implemented in the Molecular Operating 
Environment (MOE) v2019.0102 package from Chemical 
Computing Group, Inc.[47]. The default Protonate3D set-
tings of pH, temperature, and ion concentration (Salt) of 
7, 300 K, and 0.1 mol/L respectively were selected and all 
atoms were allowed to "Flip" so some HIS, ASN, and GLN 
residues may have flipped during the protonation process 
(see Supplementary Information for all prepared structures 
used in this paper). In cases with residues with alternative 
conformations, the default MOE protocol is to maintain the 
conformation ‘A’ and remove all other alternative states and 
this protocol was also used in the current structure prepara-
tion. It is important to note that original published CIF infor-
mation was used during ligand protonation only if the CIF 
a) is available for the relevant ligand within the library pro-
vided in the PHENIX package, and b) passes a heavy atom 
graph match and other integrity checks adopted by MOE. 
Finally, each structure was crystallographically refined using 
the ONIOM QM/MM method incorporated into PHENIX 
package [31] as described in our previous work [35, 36].

Briefly, Phenix/DivCon employs an automated two-layer 
QM/MM calculation as depicted schematically in Fig. 1. 
With this approach, any ligand(s) along with any surround-
ing active site residues are treated using the PM6 semiem-
pirical QM Hamiltonian [48, 49] and the rest of the protein 
is described with AMBERff14 MM forcefield [50]—both 
as implemented in our DivCon Discovery Suite v.DEV-671 
[39]. The two layer ONIOM QM/MM energy is computed 
using the subtractive scheme according to the following 
equation [35, 40],

where EMM
all

 is MM energy calculated for the entire system, 
EMM
region

 is the MM energy for the region, and EQM

region
 is the 

energy of the region computed with the QM method. The 
QM/MM gradients are computed using the similar expres-
sion (2).

Finally, the overall refinement target Etotal in PHENIX is 
presented as,

where Wxray and Wgeom are weights assigned X-ray data 
and geometry (stereochemistry) restraints respectively, and 
wcxscale is the additional scale factor implemented in PHE-
NIX [51]. In our work, Wgeom is typically set to one while 

(1)E
QM∕MM

ONIOM
= E

QM

region
+ EMM

all
− EMM

region

(2)∇x
QM∕MM

ONIOM
= ∇x

QM

region
+ ∇xMM

all
− ∇xMM

region

(3)Etotal = wcxscale ∗ WXray ∗ EXray +Wgeom ∗ Egeom

Wxray is a variable weight determined using an automatic 
procedure in PHENIX [52]. For QM/MM X-ray refinement 
the energy of stereochemical restraints Egeom is replaced with 
E
QM∕MM

ONIOM
 computed using Eq. (1). Gradients on each atom are 

derived as follows (4),

where 
(
∇�i

)
Xray

 , is referred to X-ray density gradients and 
∇�

QM∕MM

ONIOM
 are the ONIOM gradients determined using 

Eq. (2) meaning that all conventional-PHENIX stereochemi-
cal restraint gradients are replaced with QM/MM gradients 
[35].

To calculate these energies and gradients, for the MM 
portions of the structure, the AMBERff14 force field MM 
parameters were assigned automatically utilizing an auto-
matic molecular perception algorithm [35] implemented in 
the DivCon Discovery Suite v.DEV.671. The QM regions on 
the other hand were extended to include all protein, water, 
and cofactor (if any) residues within 3.0 Å around ligands 
that are specified in Table 1 for each PDB. For those cases 
in which PHENIX-provided restraint libraries were miss-
ing or deficient, a fresh CIF file for each ligand or cofactor 
in each structure was generated using MOE. Finally, each 
Phenix/DivCon QM/MM refinement was conducted on each 
structure using DivCon Discovery Suite build-DEV.671 [39] 
"plugin" to the Phenix version phenix-1.17-3644 package 
[31, 35]. For comparison, conventional Phenix refinements 
were also carried out with the same input files, and identical 
default phenix.refine settings were chosen for both QM/MM 
and conventional refinements.

(4)
(
∇�i

)
total

= � ∗ ΩXray ∗
(
∇�i

)
Xray

+ Ωgeom ∗ ∇�
QM∕MM

ONIOM

Fig. 1   Schematic view of the QM/MM two-layer (ONIOM) concept 
depicting two ligand QM regions with the balance of the receptor 
treated as a MM layer. This method can support any number of QM 
regions and may even treat the entire structure as a QM structure
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Tautomer/protomer state determination

After completing the first round of X-ray crystallographic 
refinement using Phenix/DivCon, our XModeScore [44, 45] 
method was subsequently employed to determine the most 
likely tautomer/protomer state in the context of the experi-
mental density and a second set of ONIOM QM/MM refine-
ments were completed with these new states. Briefly, the 
XModeScore procedure utilizes two components: the post-
QM/MM refinement local ligand strain energy (LLSE)—cal-
culated in this case using the aforementioned PM6 Hamilto-
nian—and the Z-score of the experimental (X-ray) difference 
density called ZDD discussed in [53]. When LLSE and ZDD 
are determined for the set of tautomers/protomers (or flip-
states, binding modes, etcetera), the XModeScore of the 
i-tautomer form can be calculated according to (5),

where m is the mean value and s is the standard deviation of 
the corresponding array of data (ZDD or LLSE). Therefore, 
the protomer/tautomer with the highest Scorei corresponds 
to the tautomeric form ‘i’ that best fits both LLSE (calcu-
lated energy) and ZDD (experimental density) criteria. The 
details of how these two criteria are summarized below.

Local ligand strain energy

The LLSE, as opposed to the global ligand strain, is used in 
XModeScore in order to measure the relative ligand strains 
based on the very small, localized conformational changes 
due changes in tautomer/protomer states, rotamer flip states, 
and so on. The LLSE or EStrain is the difference between the 
energy of the protein-bound ligand conformation and the 
isolated ligand conformation and is computed according to 
the Eq. (6),

where ESinglePoint is the single-point energy computed for the 
ligand X-ray geometry, and EOptimized is the energy of the 
optimized ligand that or the local minimum [54]. All LLSE 
calculations in this project were calculated using the PM6 
Hamiltonian [48, 49] as implemented in DivCon.

Ligand strain is generally thought of as a measure of 
how much strain the ligand must accept or accommodate 
in order to bind with the protein of interest. Colloquially, 
in our experience, we think of strain being caused by three 
different components: Method Induced Strain (MIS) which 
is the strain attributed to the refinement method itself (e.g. 
inaccurate CIF parameters, pair potential approximations, 
protein:ligand interactions, and so on); Docking Induced 

(5)Scorei = −

{
ZDDi − �ZDD

�ZDD

+
LLSEi − �LLSE

�LLSE

}

(6)EStrain = ESinglePoint − EOptimized

Strain (DIS) which is the strain associated with initial 
placement of the ligand within the experimental density; 
and Target Induced Strain (TIS) or—ideally—a minimal, 
naturally occurring strain caused by interactions between 
the protein and ligand. Often it is difficult to "tease out" 
which components are causing the greatest impact on the 
calculation of ligand strain. For example, in practice when 
calculating ligand strain, TIS and MIS often appear to over-
lap significantly: is the calculated strain naturally occurring 
or is it due to inaccuracies in protein:ligand pair poten-
tial and so on? Given the fact that the present study does 
not involve re-docking or other hand re-placement of the 
ligand unless otherwise indicated, the final reported strain 
is generally limited to the same radius of convergence of the 
(published) input ligand coordinates. Therefore, we did not 
endeavor to answer this question and instead we focused on 
how much an improved potential (i.e. QM/MM in this case) 
alone addresses the strain with the assumption being that any 
remaining strain is primarily a mixture of (naturally occur-
ring) TIS and (artificial) DIS. In fact, in cases where higher 
than expected local ligand strain is reported upon comple-
tion of QM/MM X-ray refinement, this is likely an indicator 
that additional sampling is warranted and underscores how 
these tools can be used in support of the aforementioned 
computational chemistry ↔ structural biology (X-ray crys-
tallography) feedback loop.

Z‑score of the difference density (ZDD)

In 2012, Tickle [53] described a novel quality indicator—the 
real-space Z-score of difference density or ZDD—in order 
to measure the accuracy of an X-ray model. ZDD is in con-
trast to the conventional Real Space Correlation Coefficient 
(RSCC) which correlates with both accuracy and precision 
of the model and is therefore often unable to measure model 
inaccuracy. A detailed mathematical description of ZDD can 
be found in [44, 53], but briefly, the Z-score for a point dif-
ference density value is expressed by Eq. (7),

where �(Δ�(r)) is the standard deviation of the difference 
density and corresponds to the random error of the model 
and is pure precision, while the Z-score of the difference 
density is a measure of the residual, non-random error and 
is pure accuracy. In order to limit the noise found in the final 
value, we assume that the difference density Z values should 
approach a normal distribution of random errors with zero 
mean and unit standard deviation. The presence of negative 
peaks or positive peaks, which significantly deviate from the 
expected distribution, indicates one or more problems with 
the model. One can then calculate the standard chi-square 

(7)Z(Δ�(r)) =
Δ�(r)

�(Δ�(r))



439Journal of Computer-Aided Molecular Design (2021) 35:433–451	

1 3

(c2) statistic for a subset of the negative density values and 
the positive density values, and find the subset of values of 
x2
(i)

 which maximize the probability pmax over k,

where the function P is the lower normalized gamma func-
tion representing the cumulative distribution function 
(CDF) of �2

k
 . The second function, I, is also computed as 

the complement and this becomes the normalized incom-
plete beta function (CDF of a normal order statistic) [55] 
which accounts for the ‘multiple comparisons’ correction 
[56]. The ZDD is then evaluated as the two-tailed normal 
Z-score which corresponds to the maximal value pmax over k 
of the cumulative probability of �2

k
 derived from (8),

where the function F is the CDF of the normal distribution, 
2F(|Z|) − 1 is the CDF of the half-normal distribution of the 
absolute value of a normal variate Z, and F−1 is the inverse 
function or the value of Z corresponding to a given prob-
ability. Once these calculations are performed, we obtain a 
set of negative density values and a set of positive density 
values. The ZDD− corresponds to incorrectly positioned 
atoms while the ZDD+ is due to missing atoms. In order 
to calculate ZDD, the ZDD- and ZDD+ metrics are taken 
together as defined in (10).

Finally, with LLSE and ZDD in place, in order to cal-
culate XModeScore, multiple tautomer/protomer states are 
generated and crystallographically refined (using QM/MM 
refinement) and the LLSE and ZDD are calculated for each 
state. As with the refinement settings noted above, the XMo-
deScore jobs were based on the QM/MM X-ray refinements 
with the QM regions defined using a 3 Å radius.

Calculated (predicted) protein:ligand binding 
affinity

To evaluate the theoretical binding affinity between each 
ligand and its corresponding protein target, we employed 
the Generalized-Born Volume Integral/Weighted Sur-
face Area (GBVI/WSA) score function [57] as imple-
mented in MOE2019.01. In all cases in which this score 
is discussed in this work, the score as calculated on each 

(8)

pmax = maxkp

(
χ2
k
≤

N∑

i=k

x2
(i)

)

≫ maxkP

(
1∕2

N∑

i=k

x2
(i)
; (N + 1 − k)∕2

)
I

(
2Φ

(
x(k)

)
− 1; k − 1, N + 1 − k

)

(9)ZDD = −F−1
((
1 − pmax

)
∕2

)

(10)ZDD = max(abs(ZDD−), ZDD+)

protein:ligand pose "in place" without performing any 
docking or subsequent MOE-based structure minimi-
zation. The AMBER10 potential coupled with atomic 
charges and ligand parameters calculated using Extended 
Hückel Theory (Amber10:EHT) as implemented in MOE 
was used for all MOE-based calculations. It is notable that 
the GBVI/WSA score function was chosen instead of a 
quantum mechanics-based score function, like QMScore 
[58], to demonstrate that X-ray structures determined with 
Phenix/DivCon (a QM/MM functional) may be used—
without modification—with a classical/traditional score 
function. For the sake of comparison, the alternative score 
functions available in the MOE v2019.0102 platform were 
also summarized including London dG (LDG), ASE Score 
(ASE), Affinity dG (ADF), and Alpha HB (AHB).

Overall crystallographic structure quality metrics: 
MolProbity score and Clashscore

MolProbity is included as a module in the PHENIX pack-
age and the method incorporates several model validation 
tools encompassing multiple quality criteria [59]. Spe-
cifically, the MolProbity score (MPScore) is a logarithm-
based score which combines three key component metrics 
including Ramachadran plot statistics, rotamer outliers, 
and clashscore [60]. The lower the MPScore the better 
the model. The Clashscore, which is a sub-score of the 
MPScore, is also reported and corresponds to the number 
of clashes per 1000 atoms. The Clashscore is determined 
through nonbonded atom contacts and is calculated within 
the program Probe using a rolling probe algorithm [61]. 
A clash is counted when the Probe-generated dot surface 
around one atom overlaps with the dot surface surrounding 
another atom by an amount greater than 0.4 Å [27]. The 
higher the number of clashes, the more the model may be 
adopting a "high energy" or unlikely conformation [59].

Results and discussion

QM/MM vs conventional X‑ray refinement of CSAR 
set

Protein (target) structure quality metrics

As shown in Supplementary Table S2, the application of 
the QM/MM method only insignificantly affects R-factors 
that measure the overall agreement between the crystal 
model and the experimental structure factors. For example, 
average Rfree after QM/MM and conventional refinements 
for the CSAR set are virtually identical (0.206 ± 0.01 and 
0.205 ± 0.01, respectively), and the average QM/MM Rwork 
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of 0.173 ± 0.008 is only marginally higher than the value 
after the conventional refinement (0.170 ± 0.007). This 
observation would suggest that there is slightly less crys-
tallographic model overfitting in the QM driven refine-
ments, but overall, this is congruent with our previous 
research [36] and it shows that the QM/MM refinement 
does not damage the models being considered and these 
models are in fact X-ray structures. The MolProbity score 
and clashscore are used to characterize of the overall qual-
ity of protein structures [29, 35, 59, 62], and these met-
rics show that the Phenix/DivCon refinement is superior 
and addresses clashes which the conventional refinement 
does not appear to address (Table 1). In particular, the 
clashscore of QM/MM refined structures (0.72 ± 0.23) 
is, on average, 2 × lower (better) than after the conven-
tional refinement (1.56 ± 0.37). A recent survey of PDB 
structures [63] indicates that the average clashscore of all 
structures deposited after 2010 is about 5 with the range 
of 1–99% of all clashscore values being from 0 to 50. It 
is notable that in our previous work we observed a larger 
(4.5-fold) improvement in clashscore for the Astex set as 
a result of QM/MM refinement as compared to the con-
ventional protocol [35]. Such a discrepancy can likely be 
attributed to the nature of these two sets. While the Astex 
set is a highly diverse protein set, the CSAR benchmark 
is a curated set which only contains 5 different protein 
targets bound to a variety of ligands. Furthermore, given 
the stated goals of the original investigators who devel-
oped the CSAR set, they may have been more cognizant 
of potential clashes and addressed them prior to publica-
tion (even within the confines of the original, conventional 
refinement process they had at their disposal).

Ligand structure quality metrics

The local ligand strain method is used to explore refined 
ligand structural models [24, 29, 64, 65], and LLSE is 
used to evaluate the quality of the region refinement [35, 
36, 66]. In the present study, we find that the average 
local ligand strain energies calculated over 55 ligands 
of the CSAR set after Phenix/DivCon refinement is 
10.45 ± 3.28 kcal/mol and this observation is similar to the 
average found in our previous work (9.95 ± 3.77 kcal/mol) 
for the Astex set after our QM/MM refinement [35]. The 
average local ligand strain energy of the CSAR ligands 
after the conventional refinement is 28.53 ± 5.76 kcal/mol 
or about 2.8-fold higher than in the QM/MM Phenix/Div-
Con refinement. Again this finding is consistent with the 
previously observed average improvements in the ligand 
strain energy by ~ 3.5-fold after QM driven refinements 
in our previous studies [36]. The strain energy histogram 
(Fig. 2) shows a clear peak for QM/MM strain energies 

that covers the bins 1–3 that comprise 44 QM structures 
in the range from 0 to 15 kcal/mol. The strain energy dis-
tribution of PHENIX refined ligands have a peak around 
20 kcal/mol with a long tail that covers the range up to 
50 + kcal/mol. Given that this ~ threefold improvement in 
strain is solely attributable to the use of QM/MM refine-
ment, the balance of the LLSE is likely due to a mixture of 
DIS and TIS and subsequent efforts could include ligand 
(and active site) sampling to further minimize the strain.

In our previous results with the Astex Diverse Set, we 
showed that ligand ZDD remained essentially unchanged 
between QM-driven refinement and conventional refine-
ment [35]; however, the current study with the CSAR set 
shows better distribution of the ligand ZDD values after the 
Phenix/DivCon refinement. The histogram for ZDD (Fig. 3) 
indicates that the population of the 1st bin (0–2 ZDD units) 
contains 1.5 times more QM/MM refined structures versus 
Phenix alone. Furthermore, the average ZDD for the ligands 
in QM/MM-refined structures (3.23 ± 1.37 units) is two 
times lower (better) than after the conventional refinement 
alone (6.55 ± 2.01 units). As an example, consider the refine-
ment of CDK2 in complex with inhibitor 60 K (PDB entry 
4FKU). The difference density map after the conventional 
refinement exhibits both positive and negative peaks around 
the phenyl ring of the ligand (Fig. 4b) resulting in a ZDD of 
14.0. When Phenix/DivCon refinement was performed how-
ever, this process leads to an appropriate shift and rotation of 
the ligand such that those peaks are properly accommodated 
and removed by the model. As a result, the difference density 
peaks around the phenyl ring are not observed on the QM/
MM difference map (Fig. 4a) leading to a corresponding 
ZDD decrease (improvement) to 4.7.

Fig. 2   Histogram of Ligand Strain Energy (LLSE) distributions for 
ligands from 55 CSAR structures refined using QM/MM method and 
conventional PHENIX. The lower the LLSE the less strain the ligand 
must accommodate to fit within its associated active site
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Impact of improved refinement on binding affinity 
prediction

In addition to standard crystallographic and chemical 
metrics described above, we used the GBVI/WSA score 
available in MOE to evaluate the impact of these improved 
structures on our ability to accurately predict binding affin-
ity. While correlating predicted binding affinities with 
experimental binding affinities is a trivial (if often fraught) 
task in SBDD, it has not generally used in the context of 
structure evaluation. For each of the five CSAR targets 
considered (CDK2, CHK1, ERK2, uPA, and Syk) and for 
each of the X-ray refinements performed, the correlations 
between experimental binding affinity (− logK) and com-
putationally predicted GBVI/WSA scores were explored 
and these results are presented in Figs. 5, 6, 7, and 8 (lines/
dots/equations/correlations shown in Red compared to 
those in Black which correspond to the QM/MM and con-
ventional refinements respectively) and summarized in 
Table 1. The ERK2 and CHK1 sets exhibit the highest 
correlation among the CSAR proteins based on QM/MM 
refined structures (Red dots/lines on Figs. 5, 6, 7, and 8) 
with R2 ranging between 0.75 and 0.76. On the other hand, 
the five structures of the Syk set produce only poor cor-
relation with the experimental values but the R2 (0.27) 
after the QM/MM refinement is still higher as compared 
to the conventionally refined set (0.05). Nevertheless, the 
Pearson correlation coefficient remains negative (− 0.51) 
even for the QM refined structures, and we decided not to 
pursue this data set any further. The R2 values for uPA are 
similar after the two types of refinements and CHK1 shows 
a moderate  improvement when refined with QM/MM 
(Figs. 7 and 8). The most significant differences between 
Phenix/DivCon and conventionally refined structures 
are observed for the CDK2 and ERK2 sets (Figs. 5 and 6). 
For conventional structures of the CDK2 set, Fig. 5 (Black 

dots/lines) shows a scattered relationship between GBVI/
WSA score and experimental binding affinity with virtu-
ally no correlation to the experimental − logK (R2 = 0.25). 
After QM/MM refinement however, the relationship yields 
a clear trendline with a significant R2 correlation of 0.60 
(Red dots/lines on Fig. 5). The analysis of the model ver-
sus density for the 15 CDK2 structures indicates that the 
average ZDD (4.9 units) for QM/MM structures is 2 × 
lower (better) than that of the conventional structures 
(9.1 units). For example, these structural changes lead to 
improved ZDD’s for the CDK2 structure 4FKU (Fig. 4). 
When performing  a  predicted  vs. experimental affin-
ity outlier analysis, one of the worst offenders is 4FKS 
(Fig. 5) with the residual of 1.36. A superimposition of 
the refined structures indicates a different orientation of 
the benzyl moiety after QM/MM X-ray refinement (Fig. 9) 
which results in a significantly lower (better) ZDD around 
the ligand (3.86 units) compared to the ZDD yielded by 
the conventional refinement (16.63 units). This improved 
X-ray model leads to a decrease of GBVI/WSA score from 
− 5.70 to − 7.50 kcal/mol which shifts the predicted value 
of 4FKS practically to the trendline leading to the sig-
nificantly improved correlation (0.60 versus 0.25). This 
improvement in binding affinity prediction is observed 
based on QM/MM refinement alone.    

Impact of structure modification

Up to this point in the discussion, any improvements in 
predicted versus experimental binding affinity correlation 
are attributable solely to the addition of a more complete 
functional (i.e. PM6/AMBERff14) to the X-ray refine-
ment processes and no other "by hand" modification of 
the structures was performed. One could say that these 
improvements are reached within limited radius of con-
vergence inherent to an optimization/refinement process. 
However, given the improved models leading to improved 
correlations, outliers which remain after refinement can be 
indicative of structural issues which can be "fed back" to 
the X-ray crystallography effort. Once we are sure that the 
structures are chemically correct within the limits of the 
starting model placement, outliers can often be attributed 
to actual structural problems in the model. We therefore 
used the correlations shown in Figs. 5, 6, 7, and 8 (black 
lines/dots for conventional refinement and red lines/dots 
for QM/MM refinement) and noted those cases which 
diverged appreciably and manually studied each case to 
see if there were obvious structural problems (e.g. miss-
ing bridging waters, questionable "flip" states, misplaced 
atom positions, and so on) in the original PDB model. For 
the sake of simplicity, we focused on the protein structure 
regions around the ligand (the active site of each model) 
and obvious structural defects which were clearly justified 

Fig. 3   Histogram of Ligand Z-score of the difference density (ZDD) 
distributions for ligands from 55 CSAR structures refined using QM/
MM method and conventional PHENIX. The lower the ZDD the 
more accurate the model versus the experimental density
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by positive/negative peaks of the difference electron den-
sity even after QM/MM refinement and we did not per-
form any further sampling (e.g. model building, simulated 
annealing, docking, etcetera). These cases are explored in 
detail in the sections below and are depicted in Figs. 5, 
6, 7, and 8 (lines/dots/equations/correlations shown in 
Green).

uPA structures

An analysis of the uPA correlation plots for structures after 
the QM/MM refinement (Fig. 7) indicates that 4FUD and 
4FU9 are the worst outliers on the graph. Unfortunately, the 
electron density map of the 4FUD outlier provides no clear 

opportunities to modify the input structure. On the other 
hand, as depicted in Fig. 10a, there are several questionable 
peaks of electron difference density observed even after the 
initial QM/MM refinement of 4FU9. First, the small peak of 
the positive difference density around the atom N18 suggests 
that there is an alternative protonation state of the ligand 
675. This conclusion was later confirmed by XModeScore 
(see below). Second, the water molecule (Wat526) in the 
vicinity of the ligand exhibited a large peak of the negative 
electron density, and hence we can likely exclude this water 
molecule from the model. Third, the succinate molecule, 
Sin304, which comes from the crystallization buffer, was 
added to the model with the occupancy 0.5. However, a sig-
nificant amount of positive electron density was observed 
around that molecule suggesting that we should increase 
the occupancy of Sin304 to 1.0. When these changes were 
made, the new QM/MM refinement leads to a better differ-
ence density distribution in the binding pocket (Fig. 10b), 
and ZDD around the ligand 675 decreases (improves) from 
2.2 to 1.3 units, and the GBVI/WSA score for the ligand 675 
decreases from − 7.11 to − 6.40 kcal/mol. This shift leads to 
a significant improvement in correlation for the uPA set (the 
R2 moves from 0.61 to 0.74). Furthermore, the residual of 
the 4FU9 data point improved from − 0.75 to − 0.15.

CDK2 structures

As shown in Fig. 5, the structures 4EK5 and 4FKO yield 
binding affinity predictions (GBVI/WSA score) which 
deviate significantly from the prediction versus experiment 
trendline for both conventional refinement and QM/MM 
refinement and yield residuals of 0.69 and − 0.95 respec-
tively. Upon further review of the QM/MM X-ray refined 
structure 4EK5, the alternative ’A’ conformations of the side 
chains of the residues Leu32, Lys33, and Lys89 (which the 
reader will recall are kept by default during the structure 
preparation step) are not in the agreement with the elec-
tron density. Instead, the alternative ’B’ conformations in 
the deposited 4EK5 structure show a better agreement with 
density. Also, two water molecules (Wat581 and Wat631) 
show no electron density peaks to justify their placement. A 
similar situation is observed in the QM/MM refined 4FKO 
in which the ’B’ conformations of the side chains of the resi-
dues Val29, Leu78, Lys89, and Met91 were fit to the density, 
and Wat599 does not have a supporting density peak. These 
changes were subsequently made to the input structures, and 
new Phenix/DivCon X-ray refinements were performed lead-
ing to significant changes in the final structures. In particu-
lar, in the structure 4EK5, the amid group of the ligand 03 K 
becomes more coplanar with the phenyl group to which it 
is connected (the corresponding torsion angle is − 11.1° in 
the new-QM/MM X-ray refined structure as compared to its 
value of − 16.5° in the original-QM/MM refined structure). 

Fig. 4   The σA-weighted mFo-DFc difference electron density map 
drawn at 3σ level around the ligand (ligand ID 60  K) in the PDB 
structure 4FKU refined with QM/MM (a) and conventional (b). The 
σA-weighted 2mFo-DFc electron density map is contoured at 1 σ. C 
is provided as an overlay of the two conformations
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Such a rotation might be attributed to the removal of Wat631 
in the vicinity of the amid group which may have reduced 
a steric barrier. In both structures, the ZDD of each ligand 
decreases (improves) in the new-QM/MM structure while 
the strain energy remains relatively unchanged. Changes in 
the GBVI/WSA score were in the range 0.2–0.5 while the 
overall correlation R2 for the CDK2 set increased from 0.60 
to 0.71. The residuals 4EK5 and 4FKO also improve to 0.49 
and − 0.54 respectively.

Impact of protomer/tautomer selection: 
XModeScore results

The XModeScore method [4445] incorporates both a sta-
tistical analysis of the difference density distribution and 
the local ligand strain energy in order to correctly deter-
mine "flip" states and protomer/tautomer states of ligands. 
As a final step in the process, each of the QM/MM refined 

Fig. 5   The regression lines 
of the correlation between 
experimental affinity (− logK) 
and computationally predicted 
GBVI/WSA scores for the 15 
protein:ligand CDK2 com-
plexes for PHENIX structures 
(Black), QM/MM structures 
(Red), hand-modified QM/MM 
structures (Green), and QM/
MM refined structures with 
XModeScore chosen tautom-
ers (Blue). Points involving 
structures discussed in the paper 
are labeled

Fig. 6   The regression lines of 
correlation between experi-
mental affinity (− logK) and 
computationally predicted 
GBVI/WSA scores for the 12 
protein:ligand ERK2 complexes 
for PHENIX structures (Black), 
QM/MM structures (Red), and 
QM/MM refined structures with 
XModeScore chosen tautom-
ers (Blue). Points involving 
structures discussed in the paper 
are labeled



444	 Journal of Computer-Aided Molecular Design (2021) 35:433–451

1 3

structures in the previous step (with any manual modifica-
tions noted) were submitted to XModeScore analysis in 
order to determine proper tautomer/protomer states. The 
final XModeScore results for all CSAR structures are given 
in Supplementary Table S3. The results for several CSAR 
sets presented below demonstrate how the correct choice of 
ligand tautomer/protomer impacts the predictability of the 
GBVI/WSA score function. See Figs. 5, 6, 7, and 8 (lines/

dots/equations/correlations shown in Blue correspond to 
XModeScore results).

CDK2 structures

As indicated in Table 2, the default protonation states for 
ligands in 11 out or 15 CDK2 structures prevail as the best 
tautomeric forms as determined by XModeScore. However, 

Fig. 7   The regression lines of 
correlation between experimen-
tal affinity (− logK) and compu-
tationally predicted GBVI/WSA 
scores for the 7 protein:ligand 
uPA complexes for PHENIX 
structures (Black), QM/MM 
structures (Red), hand-modified 
QM/MM structures (Green), 
and QM/MM refined structures 
with XModeScore chosen tau-
tomers (Blue). Points involving 
structures discussed in the paper 
are labeled

Fig. 8   The regression lines of 
correlation between experimen-
tal affinity (− logK) and compu-
tationally predicted GBVI/WSA 
scores for the protein target 
CHK1 for PHENIX structures 
(Black), QM/MM structures 
(Red), and QM/MM refined 
structures with XModeScore 
chosen tautomers (Blue). Points 
involving structures discussed 
in the paper are labeled
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for four structures (4FKP, 4FKQ, 4FKW and 4FKG), 
XModeScore results show that the best tautomer is differ-
ent from the one in the initially protonated structures. For 
example, the best tautomer of the ligand LS5 (PDB 4FKP) 
is different by the deprotonation of the nitrogen atom of the 
amino(imino)methylamino group that change GBVI/WSA 
score by − 0.1 kcal/mol. Similar magnitudes of the change 
for the scoring function are observed for 4FKQ and 4FKW 
(Tables 1, 2). The largest structural changes are observed for 
the ligand 4CK in 4FKG. The default protonation resulted 

in the protonated carboxyl group –COOH; however, the 
preferred state of 4CK as determined by XModeScore has 
a negatively charged carboxyl group which leads to an 
XModeScore of 1.94 while the default state is assigned a 
worse score of − 1.08. The tautomer with the unprotonated 
carboxyl shifts towards Lys89 during the new-QM/MM 
X-ray refinement, and with some changes in the side chain 
conformation of Lys89, a stronger H-bond is formed with 
a OAC4CK-NZLys89 distance of 2.82 Å (versus 3.08 Å in the 
original-QM/MM refined version with the default tautomer). 
The interaction diagram for the ligand 4CK (Fig. 11) graphi-
cally depicts the strong H-bond mentioned above as well as 
a more ordered water structure around the tautomer with the 
unprotonated carboxyl group. Furthermore, the ZDD score 
is slightly better for the "winning" tautomer, and the cal-
culated binding affinity (GBVI/WSA score) increased from 
− 6.76 kcal/mol in the original-QM/MM refined structure 
to − 7.07 kcal/mol in the new-QM/MM refined structure. 
Taking into account the new GBVI/WSA score values for 4 
structures mentioned above the CDK2 set exhibits slightly 
better correlation (R2 = 0.73) versus the previously noted 
R2 = 0.71 with the default protonation. It should be noted 
that the manually manipulated structures were also included 
in this analysis (Fig. 5: Blue dots/lines).

Fig. 9   The σA-weighted mFo-DFc difference electron density map 
drawn at 3σ level around the ligand (ligand ID 46  K) in the PDB 
structure 4FKS refined with QM/MM (green) (a) and conventional 
(yellow) (b), as well as the superimposition of the two structures (c). 
The σA-weighted 2mFo-DFc electron density map is contoured at 1σ 

Fig. 10   Positive (green) and negative (red) peaks of the σA-weighted 
mFo-DFc difference electron density map around the ligand (ligand 
ID 675) and Wat526 in the binding pocket of the protein target uPA 
in the PDB structure 4FU9 refined with QM/MM before (a) and after 
(b) the manual fit. The σA-weighted 2mFo-DFc electron density map 
is contoured at 1 σ
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Table 2   Final strain energy, 
ZDD and GBVI/WSA score 
values for the best tautomers 
as determined by XModeScore 
that are different from the 
default protonation states after 
QM/MM and conventional 
PHENIX refinements

PDB ID Ligand Phenix/DivCon (QM/MM) PHENIX

Strain Energy ZDD GBVI/WSA Strain Energy ZDD GBVI/WSA

4FKG 4CK 6.53 1.70  − 7.07 21.60 1.97  − 6.86
4FKQ 42K 8.16 4.43  − 8.18 27.36 3.31  − 8.45
4FKW 62K 13.23 4.74  − 9.01 26.51 5.75  − 9.05
4FKP LS5 10.29 2.73  − 7.66 28.21 14.92  − 6.67
4FU8 2UP 6.65 0.78  − 5.29 14.22 3.01  − 5.49
4FUC 239 9.23 1.97  − 7.54 15.18 2.24  − 7.50
4FSR HKC 7.01 0.44  − 7.77 18.01 0.84  − 7.64
4FTC H6K 4.03 2.17  − 7.09 20.71 6.30  − 6.86
4FV7 E94 10.9 2.21  − 9.47 46.56 3.61  − 10.43

Fig. 11   Ligand Interaction diagram for the ligand ID 4CK in the PDB structure 4FKG after the QM/MM and conventional PHENIX refine-
ments. Arrows added to underscore significant structural and interaction changes

Fig. 12   The σA-weighted mFo-
DFc difference electron density 
map peaks drawn at 3σ level 
around the ligand (ligand ID 
239) in the PDB structure 4FUC 
refined with QM/MM for the 
default (a) and XModeScore 
best tautomers (b). The σA-
weighted 2mFo-DFc electron 
density map is contoured at 1 σ
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uPA structures

As was discussed above we changed the tautomeric state of 
the ligand 675 in the structure 4FU9 based upon the manual 
examination of the electron density map alone (Fig. 10). 
XModeScore calculations confirm that this tautomer—
with the fully protonated amino(imino)methyl group—is 
the most favorable one (Fig. 10b) having an XModeScore 
of 1.28 while the default ligand state depicted on Fig. 10a 
has the score of − 2.43. Furthermore, according to XMo-
deScore results, the best tautomer of the ligand 2UP in the 
structure 4FU8 also represents the state with the fully pro-
tonated the amino(imino)methyl group. The Phenix/DivCon 
refinement using this ligand protonation led to the change of 
GBVI/WSA score from − 5.52 to − 5.29 kcal/mol (Tables 1, 
2). Finally, in the structure 4FUC we discovered that the 
default protonation state of the ligand 239 with the charged 
NH+

3
 group has a worse XModeScore score than that of 

the uncharged state having the NH2 group. While the latter 
ligand state weakens the H-bond interaction between the 
ammonia group and Asp50 (the distance N38239-OD2Asp50 
equals to 2.95 Å in the new-QM/MM structure versus 2.79 Å 
in the original-QM/MM structure), the new-QM/MM refine-
ment shows that it exhibits better agreement with the experi-
mental density as evidenced by a smaller ZDD value (1.97 
units) compared to its magnitude in the original-QM/MM 
structure (4.42 units) (Fig. 12). Furthermore, a large residual 
negative density peak seen only in the structure with the 

NH+
3
 group protonation supports that conclusion. Overall, 

the correlation R2 coefficient for the uPA set shifted signifi-
cantly from 0.74 to 0.81 when the updated GBVI/WSA score 
values for these two structures are substituted for the original 
values in the correlation analysis (Fig. 7: Blue dots/lines).

CHK1 structures

Finally, for the CHK1 set, two structures (4FTC and 
4FSR) were found to have alternative tautomer states 
which yield better XModeScore’s versus than the original 
states (Table 2, Fig. 8). Specifically, for ligand H6K of 
PDB 4FTC, the hydrogen atom should be placed on the 
other nitrogen of pyrazole ring. Both the ZDD value and 
strain energy associated with the new tautomer is lower 
(Tables 1, 2) and the GBVI/WSA score became more nega-
tive by 0.2 kcal/mol. It is notable that the original proto-
nation state of H6K matches the deposited CIF for this 
ligand. Overall, using the tautomers determined by XMo-
deScore for 4FTC and 4FSR led to a slightly improved 
correlation for the CHK1 set (the R2 went from 0.75 to 
0.77).

Impact of scoring function choice on binding affinity 
results

For simplicity and brevity, all of the analyses in the present 
work focused on the impact of X-ray refinement using the 

Table 3   The overall correlation 
R2 for four CSAR target sets 
calculated based on 5 score 
functions GBVI/WSA, LDG, 
ASE, ADG, and AHB

The percent change in correlation (R2) after QM/MM refinement as compared with conventional PHENIX 
refinement is given in parenthesis. Highest values in correlation and percent improvement are highlighted 
in bold

Phenix/DivCon (QM/MM) PHENIX

GBVI LDG ASE ADG AHB GBVI LDG ASE ADG AHB

CDK2 0.60(140) 0.46(35) 0.25(92) 0.31(29) 0.64(10) 0.25 0.34 0.13 0.24 0.58
ERK2 0.76(65) 0.53(47) 0.41(17) 0.56(33) 0.75(27) 0.46 0.36 0.35 0.42 0.59
uPA 0.60(2) 0.73(11) 0.35(13) 0.21(50) 0.59(11) 0.59 0.66 0.31 0.14 0.53
CHK1 0.75(15) 0.48(17) 0.34(10) 0.33(6) 0.40(21) 0.65 0.41 0.31 0.31 0.33

Table 4   The overall correlation 
R2 for four CSAR target sets 
calculated based on 5 score 
functions GBVI/WSA, LDG, 
ASE, ADG, and AHB for 
the hand modified (a) and 
XModeScore (b) chosen 
structures

The percent change in correlation (R2) after QM/MM refinement as compared to the conventional PHENIX 
refinement is given in parenthesis
Highest values in correlation and percent improvement are highlighted in bold

GBV LDG ASE ADG AHB

CDK2 0.71 (184)a, 
0.73(192)b

0.48 (41), 
0.52(53)

0.28 (115), 0.27 
(108)

0.35 (46), 0.47 
(96)

0.67 (16), 0.67 
(16)

ERK2 0.81 (76)b 0.53 (47) 0.42 (20) 0.57(36) 0.76 (29)
uPA 0.74 (25)a, 0.81 

(37)b
0.78 (18), 0.80 

(21)
0.38 (23), 0.41 

(32)
0.24 (71), 

0.28(100)
0.60 (13), 0.61 

(15)
CHK1 0.77 (18)b 0.49 (20) 0.34 (10) 0.34 (10) 0.42 (27)
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default/recommended score function in MOE: GBVI/WSA. 
Tables 3 and 4 are also included in order to provide the 
analogous results using the alternative score functions avail-
able in MOE and to compare the various functions available 
in the platform. We generally observe that GBVI/WSA pro-
vides the most consistent performance in two ways: GBVI/
WSA is more likely to yield significant correlations for 
each case, and it appears to be more sensitive to the impact 
of improved structure. There are some cases in which the 
London dG (uPA) and Alpha HB (CDK2 and ERK2) score 
functions also perform well. However, often these func-
tions perform similarly regardless of what manipulations are 
performed suggesting that—if our goal is to have a strong 
computational chemistry ↔ structural biology (X-ray crys-
tallography) "feedback loop"—these other scores may be 
less useful.

Conclusions

There are many structural metrics used to evaluate the qual-
ity of protein structures and hence the performance of a 
given crystallographic method. These metrics include over-
all R factors (Rfree and Rwork), MolProbity statistics [59], 
local ligand strain energy as well as more sophisticated 
computed Z-score of the difference density or ZDD [44]. 
Using these metrics, we have demonstrated that Phenix/Div-
Con (QM/MM) X-ray refinement [35, 36] yields superior 
quality protein:ligand complex structures as compared to 
conventional PHENIX refinement when challenged with the 
X-ray models available in popular and well curated Com-
munity Structure Activity Resource (CSAR) benchmark set. 
Furthermore, we have shown that XModeScore [44, 45]—
which couples model strain with model experimental den-
sity agreement—can be used to successfully determine the 
correct tautomer/protomer states of the ligands (and active 
sites) of interest. In this work we also showed that when 
provided with more accurate QM/MM refined X-ray mod-
els, we can use conventional score functions (such as the 
GBVI/WSA score function found in MOE) to "flag" X-ray 
models for further crystallographic consideration. Specifi-
cally, we used the correlation between the experimentally 
determined binding affinities of the ligands available in 
the CSAR protein set and the predicted GBVI/WSA scores 
calculated based on the refined structures as an additional 
metric to indicate those cases which provide opportunities 
for further X-ray density-driven manipulation. Upon sub-
sequent QM/MM refinement, these new X-ray structures 
give rise to better predicted versus experiment correlation 
coefficients suggesting that not only were these structures 
more accurate (as measured by the aforementioned crystal-
lographic metrics), but they were more chemically descrip-
tive of the key protein:ligand interactions important to the 

SBDD effort. Through this protocol, we have shown that 
score function predictability, and likely by extension overall 
SBDD performance, can be greatly enhanced by choosing 
the correct conformations of the receptor side chains, posi-
tions of water molecules as well as the correct protonation/
tautomeric state of the ligand. With the proper, QM/MM 
based refinement tools, this synergistic approach can be 
replicated within industrial and academic pharmaceutical 
laboratories.

Going forward, we will continue the development 
of the Phenix/DivCon (and BUSTER/DivCon) method 
through the addition of two key improvements. First, the 
QM method used exclusively in the present work was the 
PM6 Hamiltonian as originally published [48, 49] and sub-
sequently implemented by QuantumBio staff in the Div-
Con Discovery Suite. We will explore the impact of the 
PM6-D3H4 hydrogen bonding and dispersion correction 
approach added to PM6 by Řezáč and Hobza [67, 68]. Sec-
ond, since the initial ligand positions were not resampled 
and all X-ray refinement was performed on the original 
ligand poses (unless otherwise indicated), the refinements 
as presented were limited to the same radius of conver-
gence of the published structure. Therefore, only the local 
ligand strain energy or LLSE is reported in order to better 
gauge the impact of the change of functional alone. In 
future work, in order to mitigate the docking (placement) 
induced strain and to more accurately measure the global 
ligand strain, this approach will be coupled with the Mov-
ableType Conformational Search (MTCS) and Docking 
(MTDock) fast free energy methods recently implemented 
in QuantumBio’s software [69–71].

Supplementary information

All resulting PDB and MTZ files are provided in the fol-
lowing file: https​://downl​oads.quant​umbio​inc.com/media​
/tutor​ials/MT/csar_paper​.tar.gz.
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