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This review article outlines six molecular pathways that confer resistance of

cancer cells to ionizing radiation, and describes how proton pump inhibitors

(PPIs) may be used to overcome radioresistance induced by alteration of one or

more of these signaling pathways. The inflammatory, adaptive, hypoxia, DNA

damage repair, cell adhesion, and developmental pathways have all been linked

to the resistance of cancer cells to ionizing radiation. Here we describe the

molecular link between alteration of these pathways in cancer cells and

development of resistance to ionizing radiation, and discuss emerging data

on the use of PPIs to favorably modify one or more components of these

pathways to sensitize cancer cells to ionizing radiation. Understanding the

relationship between altered signaling pathways, radioresistance, and

biological activity of PPIs may serve as a basis to repurpose PPIs to restore

key biological processes that are involved in cancer progression and to

sensitize cancer cells to radiation therapy.

KEYWORDS
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Background

About 50% of all cancer patients are medically or surgically unfit to have their tumors

resected, and require treatment with radiation therapy (1, 2). Ionizing radiation directly

or indirectly causes DNA damage to induce cancer cell death. Although an effective

treatment strategy, radiation therapy is associated with a number of side effects that may
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lead to treatment interruption. Additionally, cancer cells can

develop resistance to radiation therapy and threaten treatment

failure. Previously outlined pathways to radiation resistance

include the inflammatory, adaptive, hypoxia, DNA damage

repair, cell adhesion and developmental pathway (3).

Currently, there are limited number of radiosensitizing agents

in development or clinical practice. However, most of these

agents invariably target all cells, are very toxic, or largely

ineffective. Emerging studies are exploring for strategies to

improve the sensitivity and specificity of radiation therapy

including searching for safe and effective radiosensitizers

among new chemical entities (NCEs) and FDA-approved drug

libraries. Intriguingly, proton pump inhibitors (PPIs), FDA-

approved for the treatment of gastric reflux, have been

evaluated for their anticancer and chemosensitizing effects at

preclinical and clinical levels (4–6). Research has demonstrated

that PPIs such as pantoprazole, lansoprazole, omeprazole, and

esomeprazole possess anticancer and chemosensitizing activity.

Recently, studies have indicated that PPIs enhance the effect of

ionizing radiation to improve tumor control. This review will

explore molecular pathways that are involved in the resistance of

cancer cells to ionizing radiation and how PPIs modulate these

pathways to overcome radioresistance.
Inflammatory pathway

Radiation is known to induce the expression of several pro-

inflammatory molecules, which can augment pro-survival

pathways that ultimately lead to radioresistance. Among the

inflammatory molecules that are induced by ionizing radiation is

nuclear factor kappa B (NF-kB) (7). NF-kB is a transcription

factor for several pro-inflammatory genes and its activation can

result in the expression of pro-proliferative and anti-apoptotic

pathways to promote proliferation and increase the survival of

radioresistant cancer cells (8, 9). Additionally, NF-kB is a known

regulator of cyclooxygenase-2 (COX-2) (10) and overexpression

of COX-2 has been associated with radioresistance in oral

squamous cell carcinoma (11). Radiation is also reported to

increase the production of another inflammatory molecule,

interleukin-6 (IL-6) (12). IL-6 plays a central role in aggressive

tumor growth and treatment resistance (13, 14). In addition, IL-

6 induces production of signal transducer and activator of

transcription 3 (STAT3), an inflammatory molecule that is

known to contribute to radioresistance (15, 16).

For the last 20 years, a number of preclinical and early

clinical studies have targeted these inflammatory molecules to

induce radiosensitivity (17). In 1999, for example, Pajonk et al.

engineered an irreversible binding inhibitor of NF-kB to

demonstrate that cancer cells transformed with an NF-kB

inhibitor show significantly increased sensitivity to radiation

(18). Another study published in the British Journal of Cancer
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also demonstrated an increase in the radiosensitivity of prostate

cancer cells treated with the NF-kB inhibitor DHMEQ. The

authors found that treatment with DHMEQ reduced the ability

of NF-kB to bind to its cognate DNA and resulted in decreased

survival of cancer cells treated with radiation (19). Chen et al. (9)

compared expression profiles of radiosensitive (HK18) and

radioresistant human keratinocytes (HK18-IR), and found that

NF-kB was significantly activated in the HK18-IR cells, and was

responsible for the radioresistant phenotype in the HK18-IR cell

line. Importantly, they were able to overcome the radioresistance

in the HK18-IR cells upon expression of a dominant negative

mutant that inhibited NF-kB.
Researchers have also tested the poss ibi l i ty of

radiosensitizing cancer cells by targeting known regulators of

NF-kB including cyclooxygenase 2 (COX-2). COX-2 inhibitors

have been shown to induce radiosensitivity either by arresting

cells at the G2/M phase of the cell cycle or by inhibiting DNA

repair. In this regard, Shin et al. demonstrated that celecoxib, a

selective COX-2 inhibitor, amplifies radiation-induced G2/M

checkpoint arrest (20). In addition, celecoxib was tested in a

phase II clinical trial in combination with oxaliplatin,

capecitabine and radiotherapy for the treatment of rectal

cancer. The study found that the combination of celecoxib

with chemoradiotherapy resulted in high rates of pathologic

complete response and surgical downgrading (21).

In addition to the NF-kB pathway, other inflammatory

molecules have also been evaluated for radiosensitizing

activity. For example, a study conducted by Wu et al. found

that inhibition of IL-6 led to the sensitization of prostate cancer

cells to radiotherapy (22). More specifically, they found that

inhibition of IL-6 with an IL-6 silencing vector was able to

increase the cell killing effect of radiation in vitro, and delayed

tumor growth following radiation therapy in an animal model.

Targeting downstream of IL-6 has also been shown to be an

effective strategy to induce radiosensitivity. Pan et al, for

example, found that the STAT3 inhibitor, Stattic, was able to

induce radiosensitivity in multiple nasopharyngeal carcinoma

cell lines (23). The authors concluded that the increase in

radiosensitivity was due to Stattic’s action to control cell

proliferation and induce apoptosis. An independent study

confirmed the efficacy of Stattic in increasing radiosensitivity

in hepatocellular carcinoma cell lines in part due to its STAT3

targeting activity to control cell migration and invasion (24).

Notably, targeting each of these key molecules in the

inflammatory pathway (IL-6, STAT3, NF-kB, and COX-2)

have been reported to increase the sensitivity of cancer cells to

ionizing radiation. Intriguingly, PPIs have been shown to target

each of these biological molecules in vitro and in vivo (25–29). A

study by Huang et al. observed that treatment of gastric cancer

cells with pantoprazole resulted in a dramatic decrease in the

levels of IL-6 and a significant reduction in the activation of

STAT3 (25). Interestingly, they did not see these results in

normal human epithelial cells, suggesting that the effects of
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pantoprazole were cancer cell-specific. PPIs have also been

shown to alter levels of COX-2. In a murine model of colitis-

induced colorectal cancer, a study found that mice treated with

omeprazole had reduced COX-2 expression (27).

Moreover, several studies have reported that PPIs are able to

regulate the expression and activity of NF-kB. Handa et al. found

that treatment with omeprazole and lansoprazole significantly

decreased the activation of NF-kB in normal human umbilical

vein endothelial cells (HUVECs) (26). They also found reduction

in NF-kB translocation in HUVECs and in a gastric cancer-

derived cell line that had been inflamed with H.pylori (26).

Finally, Geeviman et al. (28) reported that pantoprazole

d e c r e a s e d N F - k B s i g n a l i n g i n g l i om a c e l l s .

Compartmentalization study of NF-kB showed that cells

treated with pantoprazole only had relatively low levels of NF-

kB in the cytosol, but NF-kB in vehicle-treated cells was found in

higher levels in both the nucleus and the cytosol. Furthermore,

the authors used luciferase assay to demonstrate that the cancer

cells had decreased levels of NF-kB regulated genes (e.g. COX-2,

iNOS, cyclin D). Ultimately, treatment with pantoprazole was

shown to arrest cells in G0/G1 phase of the cell cycle and induce

apoptosis. In a study of normal human monocytic (THP-1) cells,

lansoprazole was shown to inhibit several pro-inflammatory

molecules including NF-kB (29).

Overall, given the promise of inhibiting the inflammatory

pathway to overcome radioresistance, and the ability of PPIs to

modulate these inflammatory molecules, subsequent work

should focus in determining whether PPIs are able to

modulate cancer inflammation and enhance the sensitivity of

cancer cells to ionizing radiation in vitro and in vivo.
Adaptive pathway

Adaptive radioresistance occurs when initial exposure to

radiation induces mechanisms of radioresistance. After an initial

exposure to radiation, cancer cells can undergo biological

changes that allow them to become resistant to subsequent

radiation exposure. One of the changes that confers resistance

to radiation is the cells’ ability to increase the amount of cyclin

D1. Cyclin D1 regulates the transition of cells from the G1 into S

phase, and high level of cyclin D1 is correlated with poor

prognosis and negative cancer outcomes (30, 31).

Increased levels of cyclin D1 is also observed after exposure

to low doses of radiation (32), leading to the speculation that

cyclin D may be responsible for the radioresistance observed

following initial exposure to ionizing radiation. Ahmed et al.

(33) found that when cyclin D was knocked-down using small

interference RNA (siRNA), the tested cells (i.e. normal human

keratinocytes) were not able to acquire radioresistance even

when they were primed with a low dose of radiation. The

authors reasoned that an increase in cyclin D1 expression
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caused radioresistance in part because cytoplasmic cyclin D1

binds to the pro-apoptotic protein and Bcl-2 partner Bax. The

interaction between Bax and Bcl-2 is important for the

maintenance of mitochondrial membrane potential and

mitochondrial apoptosis. By contrast, pretreatment with low

dose radiation prevents loss of mitochondrial membrane

potential that follows exposure to higher doses of radiation.

However, dysregulation of cyclin D1 exacerbates loss of

mitochondrial membrane potential even when cells are

pretreated with low dose radiation. Mechanistic studies

revealed that cyclin D1’s effect in mitochondrial apoptosis,

rather than its role in cell cycle, is responsible for its

contribution to radioresistance. Recent studies have targeted

cyclin D1 as a strategy to overcome radiation resistance in

tumors (34).

Importantly, PPIs have been shown to reduce levels of cyclin

D1. Assessment of mucosal samples from 60 Barrett’s esophagus

patients found significantly fewer alterations in cell cycle

proteins in patients placed on PPI therapy than those on

alternate antacids such as histamine receptor antagonists

(H2RAs). Notably, patients on PPIs showed decreased levels of

cyclin D1 (35). Additional studies found that the expression of

cyclin D1 is significantly reduced in pancreatic and colorectal

cancer cells treated with PPIs (36). Given their FDA-approval,

the pleiotropic effect of PPIs to maintain the expression of Bax

and to decrease cyclin D1 levels may be an attractive strategy to

overcome the resistance of cancer cells to radiation therapy. By

decreasing cyclin D1, PPIs are expected to restore the Bax-Bcl2

balance and allow mitochondrial apoptosis upon exposure of

cancer cells to ionizing radiation.

In addition to its role in inflammatory pathway, NF-kB is

also involved in adaptive pathway. The ability of PPIs to decrease

the level of NF-kB may therefore have a pleiotropic effect in

sensitizing cancer cells to radiation therapy. Previous work has

shown that radiation-induced expression of NF-kB is a

significant contributor to radioresistance. For example, a study

by Cao et al. (37) demonstrated that the expression of human

epidermal growth factor receptor 2 (HER2) in breast cancer cells

is induced by radiation, and that NF-kB is necessary for the

transcriptional activation of HER2. HER2, a common oncogene

in breast cancer, turns on pro-survival signaling networks that

are responsible for aggressive and radioresistant cancer

phenotype (38).
Hypoxia pathway

Hypoxia is a significant barrier that confounds the

effectiveness of radiation therapy in part because the cytotoxic

effect of ionizing radiation depends on the generation of reactive

oxygen species (ROS) (39) . Hypoxia act ivates the

phosphatidylinositol-3-kinase (PI3K)/AKT pathway, which
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regulates activation of hypoxia inducible factor 1 a (HIF-1a), a
protein important for cell survival in an oxygen-deprived

environment. Studies have shown that inhibition of the PI3K/

AKT pathway results in reduced expression of HIF-1a and

sensitization of hypoxic cells to apoptosis (40). In a study by

Burrows et al, it was found that the PI3K pathway was overly

active in thyroid carcinomas, and that inhibiting this pathway in

an anoxic environment reduced clonogenic survival (41).

Hypoxia also modulates angiogenesis and cell proliferation

to influence response to radiation. For example, hypoxia induces

HIF-1a, which is a potent stimulator of angiogenesis (42). In

addition, PI3K and AKT regulate the expression of vascular

endothelial growth factor (VEGF) to control angiogenesis (43).

Inhibiting PI3K has been shown to downregulate VEGF (44) and

control the angiogenic response stimulated by hypoxia.

Pharmacological regulation of this gene network is expected to

promote radiosensitization and increase tumor control.

PPIs have been shown to downregulate the PI3K/AKT/HIF-

1a pathway (4, 45). This downregulation may oppose hypoxic

cells from developing resistance to radiation (46, 47). A recent

study found that esomeprazole decreased protein levels of PI3K,

AKT, mammalian target of rapamycin (mTOR), and HIF-1a in

multiple gastric cancer cell lines (45). This study linked the

pharmacological regulation to the control of mTOR through the

Tuberous Sclerosis Complex Subunit 1 and 2 (TSC1 and TSC2).

In this pathway, TSC1/TSC2 bind with Rheb-GTP to control

mTOR Complex 1 (mTORC1) activation. Esomeprazole dose-

dependently decreased levels of TSC1/2 and Rheb leading to

reduction of mTOR. The downregulation of mTOR led to the

suppression of V-ATPase through a negative feedback loop. The

authors concluded that the reduction of V-ATPase led to

inhibition of the PI3K/AKT/mTOR/HIF-1a signaling pathway

and, consequently, to favorable treatment outcomes. These

findings are particularly interesting since both PI3K and

mTOR inhibitors have been shown to control oxygen tension

and reverse hypoxia (41, 46).
DNA damage repair pathway

The repair of damaged cellular DNA is a physiological

process deployed by normal cells to ensure proper cell division

including faithful replication of their genetic material. This

process also prevents normal cells from accumulating

mutations and becoming malignant. However, these pathways

are also utilized by cancer cells to increase their fitness and evade

immune defense mechanisms. Conversely, several anticancer

drugs target DNA damage repair pathways to increase

mutation burden in order to control the growth and

expansion of cancer cells. At molecular level, when DNA

breaks occur, PI3 Kinases initiate the damage repair signaling

pathway, leading to the activation of downstream targets
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including the histone protein gH2AX, checkpoint kinase 2

(CHK2), breast cancer gene 1 (BRCA1) and the tumor

suppressor protein p53. When p53 is stabilized by

phosphorylation, it can upregulate the expression of p21 and

induce G1 cell cycle arrest (48, 49). When CHK2 and BRCA1 are

upregulated, they arrest cells in the S and G2/M checkpoints

(50). When cancer cells are subjected to radiation, DNA damage

is induced through base modification and strand breaks. The

strand breaks occur in a single DNA strand or in both strands.

The single-strand break repair pathway fixes single-strand

breaks, while homologous recombination (HR) and non-

homologues end joining (NHEJ) repair double-strand breaks.

Targeting these DNA strand-break repair mechanisms may be

an effective strategy to enhance the tumoricidal effect of ionizing

radiation. A comprehensive review was published on this topic

in 2019 (51).

Poly(ADP-ribose) polymerase (PARP) is a protein involved

in all three of these pathways of DNA strand-break repair (52–

54). Recently, Wang et al. (55) published a study demonstrating

that PPIs suppress NHEJ in breast cancer cells by decreasing

fatty acid synthase mediated PARP expression. They used a host

cell reactivation (HCR) assay to measure the NHEJ and HR

events and found that the PPI lansoprazole reduced NHEJ in

these cells. They found that treatment of the breast cancer cell

line MCF7 with lansoprazole resulted in arrest of the cells in the

G1 phase of the cell cycle, while treatment of another breast

cancer cell line MDA-MB-468 caused an S phase arrest. The

authors further investigated the ability of PPIs to enhance the

effect of cancer therapies that rely on DNA damage, and found

that they were able to augment the efficacy of both

chemotherapy and radiation. Moreover, the study included

retrospective analysis of 6754 breast cancer patients separated

into groups on the basis of PPI therapy. Encouragingly, it was

found that PPIs added to standard of care improved overall

survival and reduced recurrence rate compared to standard of

care alone. Similarly, a study from our lab demonstrated that the

combination of radiation and PPI was more effective in

controlling cancer cell growth than treatment with radiation

alone. We also found that the combination treatment resulted in

more DNA double-strand breaks, as shown by an increase in the

DNA double-strand break marker, gH2AX, than in cancer cells

treated with radiation alone (56).
Adhesion pathway

Cancer cells adherent to extracellular matrix (ECM) have a

better chance of survival after irradiation than cells that are non-

adherent (57). Cell adhesion-mediated radioresistance occurs in

many cancer types that affect the colon, cervix, lung, prostate,

pancreas, and head and neck (58). Researchers studying this

phenomenon found that overexpression of epithelial cell
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adhesion molecule (EpCAM) in prostate cancer cells is

associated with chemoresistance and radioresistance (59).

Interestingly, knockdown of EpCAM using siRNA in several

prostate cancer cells has been shown to increase sensitivity to

both chemotherapy and radiation. An in vivo study also showed

that knockdown of EpCAM in a prostate cancer cell line prior to

engraftment into mouse models led to increased radiosensitivity

and prolonged survival of the tumor-bearing animals (60).

Additional studies have compared the expression of other

adhesion molecules in radioresistant and radiosensitive breast

cancer cell lines and found that the resistant cancer cells have

increased expression of intercellular adhesion molecule-1

(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-

1) (61).

Notably, PPIs have been shown to reduce cancer cell

adhesion and downregulate the expression of several adhesion

molecules (62, 63). Specifically, treatment of gastric cancer cells

with pantoprazole has been shown to inhibit EpCAM to

modulate cell proliferation and enhance chemosensitivity (64).

Additional studies in primary airway cells also demonstrated the

downregulation of chemotherapy-induced ICAM-1 and VCAM-

1 levels using esomeprazole (65).

In addition to changes in the expression of EpCAM, ICAM-

1 and VCAM-1, abnormal interaction between integrins and the

ECM also plays important role in the development of

radioresistance. Cell-cell contacts, as well as interaction of cells

with growth factors, integrins and ECM is mediated by the focal

adhesion kinase (FAK), a non-receptor tyrosine kinase that

localizes to focal adhesions to influence cell migration. Eke

et al. showed that b1 integrin signaling mediated through FAK

was associated with radioresistance in head and neck cancer cell

lines (66). Additionally, FAK overexpression has been shown to

prevent radiation-induced mitochondria-dependent apoptosis

(67). A study demonstrated that this FAK-mediated control of

cell function is pH-dependent, and interaction at cell adhesion

sites is enhanced in an acidic pH (68). Accordingly, the low pH

and enhanced interaction of FAK in cancer cells was found to

enhance the migration of cancer cells. PPIs have been shown to

buffer the acidic pH of the tumor microenvironment (69) and

targeting tumor acidity with PPIs may mitigate the development

of FAK-mediated radioresistance.
Developmental pathway

Lastly, the developmental pathway plays an important role

in increasing resistance to radiotherapy. In this regard, the

hedgehog signaling, mostly known for its role in cell

differentiation during development, has been reported to allow

the maintenance of a cancer stem cell population (70, 71).

Cancer stem cells have been reported to contribute to the

overall resistance of cancer cells to chemotherapy and
Frontiers in Oncology 05
radiation (72, 73). A study by Gan et al. found that hedgehog

signaling contributes to radioresistance in head and neck

squamous cell carcinoma cell lines (74) and inhibitors of the

pathway have been demonstrated to result in improved tumor

control (75–77). Intriguingly, it has been shown that PPIs can

inhibit hedgehog signaling (78) and that they may represent a

novel strategy to prevent the hedgehog pathway from

maintaining cancer stem cells and radioresistance.

In addition, the Wnt/b-catenin and Notch signaling are

development-related pathways that are pathologically involved

in cancer progression and radioresistance. For example, a study

found that Wnt was upregulated in cancer cells that survived

radiation therapy in a model of glioblastoma. It was also found

that pharmacological inhibition of the Wnt pathway decreased

the survival of glioblastoma cells and revealed Wnt as a viable

therapeutic target (79). A study of human gastric

adenocarcinoma cells demonstrated that inhibition of V-

ATPases with the PPI pantoprazole impairs the Wnt/b-catenin
signaling pathway resulting in anti-proliferative and anti-

invasive effects (80).

Similarly, studies of the Notch pathway have reported that

components of this pathway are often overexpressed in cancer. A

study that tested the efficacy of a clinically-approved Notch

inhibitor found that regulation of this pathway in combination

with radiation therapy was able to improve survival outcomes

and slow tumor growth in xenograft models in vivo (81). Here, it

is important to note that just like the Wnt/b-catenin signaling,

the V-ATPase pumps have been shown to be required for

activation of the Notch signaling (82). Since PPIs are known

to inhibit V-ATPases, the Notch pathway presents another

oppo r t un i t y t o c on t r o l t umo r p rog r e s s i on and

radioresistance (83).
Tumor acidic microenvironment
and cancer

Since the PPIs possess anticancer activity against several

cancer cell types (4), it is conceivable that a common feature of

cancer cells such as the acidic tumor microenvironment are

potential PPI targets in addition to or instead of the six pathways

discussed above. Because cancer cells are highly proliferative,

they use glycolysis as their main source of energy in support of

their growth and expansion. As a result, they convert the glucose

to lactate in a phenomenon known as the “Warburg effect”. This

in turn causes accumulation of protons [H+] in intracellular

compartments. To control the intracellular and extracellular pH,

cancer cells express various proton pumps including the V-

ATPases. The sustained acidic tumor microenvironment

induces molecular changes in the tumor to enable the cells

survive low pH and acquire resistance to chemotherapeutic

drugs and radiation. For example, the acidic tumor
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microenvironment plays a key role in uncontrolled proliferation,

metastasis, and chemoresistance (84–86). In addition, the acidic

tumor microenvironment adversely affects cytotoxic T cells and

limits anti-tumor immunity to promote evasion of the immune

system (87). In particular, the V-ATPases, which can be targeted

by PPIs (88), are expressed in several cancer cell types and are

known to promote resistance to anticancer therapy (89–91). By

contrast, targeting V-ATPases reduces extrusion of protons and

inhibits tumor growth and metastasis (92). In addition, the

buffered tumor microenvironment that follows inhibition of

t h e p r o t on pumps a l l ow s t h e a c cumu l a t i on o f

chemotherapeutic drugs and sensitizes cancer cells to the

anticancer drugs (93). These data sets suggest that proton

pumps such as V-ATPases are involved in driving

chemorad iores i s tance , and the ir inh ib i t ion us ing

pharmacological or genetic tools increases the sensitivity of

cancer cells to chemoradiotherapy. Paradoxically, however,

PPIs are reported to interfere with the efficacy of some

chemotherapeutic drugs through drug-drug interaction.

Examples of these drugs include capecitabine, methotrexate

and irinotecan (94). More recent studies indicate that PPIs

may also interfere with immunotherapy through disruption of

the gut microbiome and consequent disruption of antitumor

immune response to checkpoint inhibitors (95, 96). Overall, the

anti-tumor effect of PPIs appears to be associated with the

inhibition of V-ATPases and the molecular pathways

described above, while the pro-tumor effect of PPIs is likely

associated with induction of plasma gastrin levels and disruption

of the gut microbiota. Therefore, these opposing effects need to

be taken into consideration when combining chemotherapy

and/or immunotherapy with radiation in the presence of PPIs.

In addition, the role of proton pumps other than V-ATPases in

the sensitization of cancer cells to anticancer therapy needs to be

cursorily examined. The clinical use of drugs targeted to these

pumps should facilitate the evaluation of these drugs as

anticancer, chemosensitizers and/or radiosensitizers. For

example, new potassium-competitive acid blockers (P-CABs)

such as vonoprazan are in clinical use for the treatment of reflux

esophagitis and gastroduodenal ulcers. Although it may be too

early to assess their anticancer potential through retrospective

data analysis at this point, the coming few years are likely to

provide sufficient data for large database studies to address

questions related to the generalizability of proton pumps for

oncologic indications.
Repurposing PPIs for cancer care

It has been over 30 years since the first PPI was approved by

the FDA for the treatment of gastroesophageal reflux disease.

Ever since, a number of preclinical and clinical studies have

indicated that PPIs possess extra-intestinal activities including
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anticancer, chemosensitizing and radiosensitizing effects.

Preclinically, PPIs have shown substantial anticancer,

chemosensitizing and radiosensitizing activities that extend

beyond gastric and esophageal cancers. Some of the cancer

types that showed promising effect upon the addition of PPIs

include pancreatic (97), colorectal (27, 98), ovarian (99), prostate

(100), breast (101, 102), lung (56), melanoma (103), lymphoma

(104), myeloma (105), osteosarcoma (106) and leukemia (107).

This broad anticancer activity of PPIs is likely related to the

pleotropic effect of the drug targeting cancer cell growth-,

metastasis-, and autophagy- related gene networks (4).

Clinically, a number of trials are either completed or

underway to test the efficacy of PPIs as anticancer drugs.

Currently, there are 84 completed or ongoing trials (www.

clinicaltrials.gov) that include the administration of at least

one PPI to cancer patients. Some of these studies include

combination of high dose PPIs with chemotherapeutic drugs

such as docetaxel and cisplatin in metastatic breast cancer; drug-

drug interaction studies with molecularly-targeted therapies

such as regorafenib and lapatinib; and enhancing neoadjuvant

chemotherapy. It remains to be seen which of these studies will

be able to meet their primary endpoints to guide future clinical

trials and standard of care. The prospective clinical trials and the

extraordinary number of PPI use by prescription and over-the-

counter provide substantial safety data about the acute and

c h r o n i c e f f e c t s o f P P I s . I n t h i s r e g a r d ,

pharmacoepidemiological studies indicate that chronic use of

PPIs is associated with risk of infection, osteoporosis,

hypomagnesemia, vitamin B12 deficiency, as well as renal- and

hepato- toxicities. Therefore, the repurposing of PPIs for

oncologic indications including radiosensitization and

chemoradiosensitization is likely going to require careful

monitoring of participating cancer patients.
Conclusion

We have outlined several mechanisms by which cancer cells

develop resistance to radiation therapy. We have also provided

mechanistic insights on how PPIs may overcome the

radioresistance (Figure 1). A number of studies have

demonstrated that PPIs possess anticancer activity including

sensitization of cancer cells to chemotherapy. Emerging studies

indicate that PPIs may also enhance the effect of ionizing radiation

to improve tumor control. We urge that the wide safety margin and

pleotropic effect of PPIs should be leveraged to sensitize cancer cells

to radiation and chemoradiation therapy. Such an intervention with

PPIs is expected to increase the therapeutic index by reducing

radiation-induced normal tissue toxicity and improving tumor

control (108). Given that PPIs are FDA-approved drugs, they

have the potential to be fast-tracked into the clinic. In parallel,

mechanistic studies should interrogate the aforementioned and
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additional molecular pathways to specifically delineate how PPIs

sensitize cancer cells to ionizing radiation.
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