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Macrophages are crucial members of the mononuclear phagocyte system essential to protect the host from invading
pathogens and are central to the inflammatory response with their ability to acquire specialized phenotypes of inflammatory
(M1) and anti-inflammatory (M2) and to produce a pool of inflammatory mediators. Equipped with a broad range of receptors,
such as Toll-like receptor 4 (TLR4), CD14, and Fc gamma receptors (FcγRs), macrophages can efficiently recognize and
phagocytize invading pathogens and secrete cytokines by triggering various secondary signaling pathways. Phospholipase C
(PLC) is a family of enzymes that hydrolyze phospholipids, the most significant of which is phosphatidylinositol 4,5-
bisphosphate [PI(4,5)P2]. Cleavage at the internal phosphate ester generates two second messengers, inositol 1,4,5-trisphosphate
(IP3) and diacylglycerol (DAG), both of which mediate in diverse cellular functions including the inflammatory response.
Recent studies have shown that some PLC isoforms are involved in multiple stages in TLR4-, CD14-, and FcγRs-mediated
activation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and interferon regulatory factors
(IRFs), all of which are associated with the regulation of the inflammatory response. Therefore, secondary signaling by PLC is
implicated in the pathogenesis of numerous inflammatory diseases. This review provides an overview of our current knowledge
on how PLC signaling regulates the macrophage-mediated inflammatory response.

1. Introduction

Inflammation is part of the complex biological response of
body tissues to harmful stimuli, such as pathogens, damaged
cells, or to molecular “irritants,” and is a protective response
involving both cellular and molecular mediators [1, 2]. Ini-
tially, both pro and anti-inflammatory signals with opposing
effects are tightly regulated in a balanced status [3]. However,
a disruption of this balance can result in an excessive
inflammatory response resulting in cellular and tissue dam-
age [4–6]. From extensive study, it has long been recognized
that macrophages play a critical role in the initiation, mainte-
nance, and resolution of inflammation.

Together with dendritic cells (DCs) and monocytes,
macrophages are major components of the mononuclear

phagocyte system. Macrophages participate in all phases of
the immune and inflammatory responses [7]. Unstimulated
macrophages are typically quiescent; however, stimulation
of these cells by local micromilieu signals, however, results
in their acquiring a polarized phenotype [8] either proin-
flammatory M1macrophages or anti-inflammatory M2mac-
rophages. M1 macrophages, generally induced by LPS and
IFNγ, generate high levels of proinflammatory cytokines
[e.g., interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin
12 (IL-12), and tumor necrosis factor (TNF-α)] and oxidative
metabolites [e.g., nitric oxide (NO) and ROS]; M2 macro-
phages stimulated by a variety of stimuli (e.g., IL-4/IL-13
and glucocorticoids) are important in the resolution of
inflammation [9, 10]. Macrophages express a repertoire of
pattern recognition receptors (PRRs) such as Toll-like
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receptors (TLRs), CD14, nucleotide-binding oligomerization
domain-like (Nod-like) receptors, and RIG-I-like receptors
[11–15]. This sensor array enables them to recognize a
diverse range of ligands and to initiate quickly appropriate
responses, such as phagocytosis, and immunomodulation
through production of various cytokines [3, 14, 16]. Macro-
phages have elaborate strategies for the regulation of the
inflammatory response.

Stimuli, such as lipopolysaccharide (LPS) and cytokines,
activate macrophages by ligation of corresponding receptors,
such as Toll-like receptors (TLRs) [14]. Upon activation, a
variety of intracellular signals are triggered to promote the
production of proinflammation cytokines [e.g., IL-1β, IL-6,
and TNF-α], chemokine [e.g., macrophage inflammatory
factor (MIP-1α) and IL-8], and toxic molecules (e.g., NO
and ROS) [17, 18]. The “cytokine storm” characterized by
the hyperinduction of proinflammatory cytokines and che-
mokines is a pathogenic mechanism resulting in some
pathogens causing tissue injury and multiorgan dysfunction
[19–21]. For example, the lethal lung inflammation due to
infection by influenza virus (e.g., 1918 H1N1 and H5N1)
and porcine reproductive and respiratory syndrome virus
(PRRSV) is mainly caused by cytokine storms induced
by these viral infections [20, 22–24]. Macrophages are
the major source of proinflammatory mediators [25–27]
and are therefore implicated in the pathogenesis of numerous
inflammatory diseases.

Members of the phospholipase C (PLC) family are thus
involved in intracellular and intercellular signal transduction.
Accumulated evidence has demonstrated that the PLC sig-
naling inhibitor U73122 attenuates both acute and chronic
inflammation mediated by macrophages both in vivo and
in vitro [28–30], linking PLC signaling to macrophage-
mediated inflammation. The involvement of PLCβ, γ, and
δ in macrophage-mediated inflammation has been exten-
sively studied, and herein the corresponding mechanisms
are summarized and discussed.

2. The Spectrum of Expression of PLC
Isoenzymes in Macrophages

PLC family enzymes are activated by numerous factors
such as neurotransmitters, growth factors, histamine, and
hormones, as reviewed by Nakamura and Fukami [31].
PI(4,5)P2 is the preferred substrate of PLC. Hydrolysis of
PI(4,5)P2 leads to the generation of IP3 into the cytoplasm
and DAG in the membrane. IP3 triggers the release of
Ca2+ from intracellular stores, and DAG mediates the activa-
tion of protein kinase C (PKC). The activation of PKC and
calcium signaling in turn activate downstream signaling
[31, 32]. Concomitantly, PI(4,5)P2 also directly regulates a
variety of cellular functions, including phagocytosis [33].

Protein kinase C (PKC) is a family of protein serine/thre-
onine kinases that are involved in the phosphorylation of
serine and threonine amino acid residues on other proteins,
or other members of this family [34]. The PKC isoforms
are divided into 3 subfamilies based on their activation
requirements: classical PKCs (calcium dependent) (PKCα,
βI, βII, and γ), novel PKCs (calcium independent) (PKCδ,

ε, η, and θ), and atypical PKCs (PKC-ζ and λ/ι) [35, 36].
According to the literature, eight PKC isoforms (PKCα, βI,
βII, δ, ε, η, ζ, and λ) are expressed in macrophages [37].
Though macrophages do not express detectable PKCθ, its
expression is upregulated in response to LPS/IFNγ stimula-
tion [38], suggesting that PKCθ expression in macrophages
is inducible by certain inflammatory stimuli. It has been
known that PKC inhibitors reduce LPS-stimulated cytokine
secretion by macrophages, linking PKC activation to TLR4
signaling. It has been further evidenced that PKCα, δ, ε,
and ζ are directly involved in multiple steps in TLR4 path-
ways, as well as in the downstream activation of inflam-
mation pertinent signaling, such as MAPK and NF-κB
[36, 39, 40]. PKCθ and PKCε also activate NF-κB-depen-
dent pathways in muscle cells to promote expression of
proinflammatory cytokines and chemokine [41]. PKCε
regulates NF-κB-mediated NO production by macrophages
in response to LPS stimulation [42]. Classical PKCs are crit-
ical components that control IRF-3-dependent gene expres-
sion downstream of TLR3 and TLR4 [43]. The role of PKC
isoforms in TLR-dependent signaling transduction has been
summarized in Figure 1. In view of the diversity of the PKC
family and that PKC signaling is regulated by PLC enzymes,
this further emphasizes the importance of PLC signaling in
macrophage-mediated inflammation.

Currently, there are a total of 6 classes of PLC isoenzymes
discovered in mammals including the PLCβ, γ, δ, ε, η, and ζ.
Each class of PLC is composed of many isotypes with distinct
functions, domains, and regulatory mechanisms [44]. Based
on the structure, they are further subdivided into 13 isoforms
including PLCβ1–4, γ1-2, δ1, δ3-4, ε, ζ, and η1–2 [31]. The
structures of these PLC isoforms show conserved domains
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Figure 1: The expression of PKC isoforms in macrophages and
their role in TLR-mediated inflammatory response. Among them
eight, PKC isoforms (PKCα, βI, βII, δ, ε, η, ζ, and λ) are expressed
in macrophages. PKCα, δ, ε, and ζ are directly related to TLR-
induced inflammatory response. PKCθ expression in macrophages
cannot be detected, but its expression can be induced by LPS/
IFNγ stimulation.
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such as the X and Y domains that are responsible for catalytic
activity, as well as regulatory specific domains including the
PH domain, the C2 domain, and EF hand motifs involved
in various biological functions of PLC isoenzymes [44, 45].
PLC isoforms are distinct in their activation mode, expres-
sion levels, cellular localization, and tissue distribution link-
ing to a specific function for each isoform.

The spectrum of the expression of PLC isoforms in mac-
rophages is phenotype-specific. It has been reported that in
the case of human macrophages (derived from peripheral
blood mononuclear cells), PLCβ1–4, γ1-2, δ1, and η1-2 are
expressed in unstimulated macrophages, PLCβ1–3, γ1-2, δ1
and 3, and η1-2 are expressed in M1 macrophages, and
PLCβ1–3, γ1-2, δ3, and η1-2 are expressed in M2 macro-
phages. In addition, these PLC isoforms showed different
subcellular localization in differently polarized macrophages
[46]. The distinct expression spectrum and subcellular local-
ization of these PLC isoforms reflect the diverse roles that
they play in the regulation of the inflammatory response.

3. The Role of PLCβ in Macrophage-Mediated
Inflammatory Response

Macrophages express all the four PLCβ isoforms orches-
trating the Ca2+ signaling [47, 48], for example, the clostrid-
ium difficile ToxB-stimulated Ca2+ signaling in macrophages
is enhanced via PLCβ-4 signaling, but depressed by the
PLCβ-3 signaling [49]. Ca2+ and Erk1/2 signaling play
important roles in the regulation of inflammatory response.
PLCβ is involved in the activation of Erk1/2 signaling in
macrophages. It has been demonstrated that the glyceryl
ester of prostaglandins activates Erk1/2 signaling in a dose-
dependent manner through a pathway that requires PLCβ
signaling [50].

Cell adhesion is required for monocyte differentiation
into macrophages. In human cytomegalovirus- (HCMV-)
infected monocytic THP-1 cells, the viral protein US28
promotes adhesion to the endothelial cells via the activation
of PLCβ/PKC signaling cascade. Therefore, it is possible that
PLCβ signaling may promote the differentiation of mono-
cytes to macrophages via cell adhesion [51]. U73122 is a
pan inhibitor for PLC isoforms. We have demonstrated that
U73122 inhibits PMA-induced human promonocytic U937
cell adhesion, as well as the differentiation into macrophages
[29]. These two independent studies indicated that PLC
signaling regulates cell adhesion and the differentiation of
monocytes to macrophages.

It has been reported that LPS suppresses PLCβ-2 and β-1
expression in macrophages in an MyD88-dependent man-
ner, and the suppressed PLCβ-2 plays an important role in
switching M1 macrophages into an M2-like state [52, 53],
suggesting that PLCβ-2 signaling is closely involved in mac-
rophage polarization.

PLCβ signaling broadly regulates the expression of
proinflammatory cytokines or chemokines in diverse cell cul-
tures. The binding of HIV-1 envelope glycoprotein gp120 to
CCR5 leads to PLCβ-1 nuclear localization which promotes
the release of chemokine CCL2 by macrophages [54], sug-
gesting that activation of PLCβ-1 signaling stimulates the

expression of CCL2 in macrophages. PLCβ-3 regulates IL-8
expression in bronchial epithelial cells via TLR-mediated
activation of calcium signaling and NF-κB pathway [55].
However, whether PLCβ-3 regulates cytokine expression in
macrophages has not been reported.

In summary, in macrophages, PLCβ-1 signaling regulates
the expression of CCL2, and PLCβ-2 signaling regulates cell
polarization, while PLCβ-3 and PLCβ-4 signaling regulates
Ca2+ signaling with opposite effect.

4. The Involvement of PLCγ in Macrophage-
Mediated Inflammatory Response

There are two main isoforms of PLCγ expressed in humans,
PLCγ-1 and PLCγ-2, which regulate the development and
functions of various hematopoietic cells [56, 57], for example,
PLCγ1 regulates T cell activation and development through
interaction with T cell receptor (TCR), and PLCγ-2 regulates
development and maturation of B cells via interaction with
pre-B cell receptor (BCR), reviewed by Nakamura and
Fukami [31]. PLCγ-1 and PLCγ-2 are activated downstream
of receptor (RTK) and nonreceptor tyrosine kinases, with
tyrosine phosphorylation of PLCγ as the major mechanism.
However, there is a novel mechanism towards the activation
of PLCγ-2, which depends not on protein tyrosine phosphor-
ylation, but on Rac GTPases [57–59]. Ubiquitously expressed
PLCγ-1 is mainly activated by growth factors, including
platelet-derived growth factor (PDGF), vascular endothelial
growth factor (VEGF), epidermal growth factor (EGF), and
fibroblast growth factor (FGF) [60]. PLCγ-1 binds to the
tyrosine-phosphorylated receptors of EGF via its SH2
domain and downstream proteins via the SH3 domain [61].
We have recently identified that the exposure of macro-
phages to the proinflammatory cytokines TNF-α and IL-1β,
as well as to influenza virus H1N1, leads to activation of
PLCγ-1 in macrophages, which expands the spectrum of
upstream stimulators for PLCγ-1 signaling [30]. Influenza
virus H1N1 infection activates PLCγ-1 signaling through
EGR receptor (EGFR) in alveolar epithelial cell line (A549
cells) [62]. But whether EGFR or the other RTKs act as an
upstream activator for PLC signaling in macrophages is
largely unknown. PLCγ-2, being predominantly expressed
in hematopoietic cells, is activated by immune cell (T cell,
B cell, and Fc) receptors associated with multiprotein com-
plexes [60]. So PLCγ-1 and PLCγ-2 may be differentially
activated to perform diverse functions.

Upon stimulation by LPS, TLR4 signaling induces pro-
inflammatory cytokine production. Generally, TLRs regu-
late TLR-specific gene expression through the recruitment
of distinct combinations of TLR/IL1R (TIR) domain-
containing adaptor proteins, such as myeloid differentiation
primary response gene 88 (MyD88), Toll/IL-1 receptor
domain-containing adaptor protein (TIRAP), TIR domain-
containing adaptor inducing IFN-β (TRIF), TRIF-related
adaptor molecule (TRAM), and sterile α- and armadillo
motif-containing protein (SARM) to form a signalosome,
which activates downstream signals [63]. TLR4 is unique
among these TLRs in its ability to utilize all of the TIR
domain-containing adaptors and mediate activation of
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both MyD88-dependent and MyD88-independent (TRAM–
TRIF-dependent) pathways [64–66], which are required to
stimulate proinflammatory cytokine production in macro-
phages. In MyD88-dependent pathway, both MyD88 and
TIRAP are required to activate NF-κB and MAPK cascades
and proinflammatory cytokine production [67, 68]. The
MyD88-independent signaling events are controlled by TRIF
and TRAM and induce IRF3-dependent type I interferon
production [65, 69]. So in TLR4-mediated signaling, distinct
adaptors are recruited to form diverse complexes which acti-
vate various downstream inflammatory signaling.

The involvement of PLCγ signaling in TLR4-mediated
inflammation has been well identified. Currently, it is clear
that PI(4,5)P2 plays an important role in TLR4 signaling.
Mechanistically, TIRAP localizes to the plasma membrane
by binding to PI(4,5)P2; there it recruits TLR4 and MyD88
to PI(4,5)P2-rich sites on the plasma membrane to form
the TLR4 signalosome [69]. The distinct cellular localization
of TLR4 complex leads to optional activation of MyD88-
dependent or MyD88-independent signaling. Once TLR4
complex resides at the plasma membrane, the MyD88-
dependent NF-κB signaling is activated. Subsequently, the
TLR-4 is delivered to the endosome compartment where
MyD88-independent IRF3 signaling is activated [70]. The
critical role that PI(4,5)P2 plays in TLR4 signaling is in
linking TLR4 to PLCγ which controls the metabolism of
PI(4,5)P2 [71]. Mechanisms for the regulation of LPS-
induced TLR4 endocytosis and IRF3 activation by PLCγ-2
have been established: IP3, the cleavage product of
PI(4,5)P2 by PLCγ-2, binding to IP3 receptors (IP3Rs) in
the endoplasmic reticulum results in the release of Ca2+.
The increased cytosolic Ca2+ is required for translocation of
TLR4 from the plasma membrane to endosomes, where
TRIF-dependent IRF3 activation takes place. In contrast,
LPS-induced activation of NF-κB pathway did not require
PLCγ2-IP3-Ca2+ cascade [71]. Thus, signaling that affects
TLR4 endocytosis could regulate TRIF-dependent signaling
from endosome.

The LPS-binding protein CD14, together with TLR4 and
MD-2, forms a multireceptor complex on the cell membrane
[72]. CD14 controls the LPS-induced endocytosis of TLR4.
LPS-induced clustering of CD14 triggers PI(4,5)P2 genera-
tion in macrophages [73], which may result in the activation
of PLCγ2-IP3-Ca2+ cascade. The increase in cytosolic
Ca2+, released from intracellular calcium stores, promotes
the translocation of TLR4 from the plasma membrane to
endosomes and so results in the activation of downstream
inflammatory signaling. In addition, the CD14-dependent
endocytosis pathway is regulated by several cytosolic
regulators. Among them, the tyrosine kinase Syk and its
downstream effector PLCγ-2 have been identified. The
stimulation of Syk/PLCγ-2 signaling by CD14 triggers an
influx of Ca2+ from the extracellular environment, which
promotes internalization of TLR4 [72, 74]. So the endocy-
tosis of TLR4 in response to CD14 clustering is partially
regulated by the increased concentration of cytosolic
Ca2+ originating either from intracellular calcium stores
or the extracellular environment, which emphasizes the
important role of Ca2+ in TLR4-mediated inflammation.

In addition, these results support the idea that PLCγ-2 regu-
lates the inflammatory response by controlling the cytosolic
level of Ca2+. Apart from Ca2+, PKC signaling is also involved
in TLR4 signaling in macrophages. It has been reported that
the infection of both P. aeruginosa and K. pneumoniae
activates TLR4/PLCγ cascades which in turn activates the
PKCα/Jun N-terminal protein kinase (JNK)/NF-κB axis
and eventually induces the production of proinflammatory
cytokines [75].

The generation of intracellular ROS in macrophages
plays an important role in inflammation pertinent signaling
transduction. The minimally oxidized LDL (mmLDL) stimu-
lates ROS generation in macrophages through activation of
NADPH oxidase 2 (Nox2), which is a suggested pathogenic
mechanism for the development of atherosclerosis. It has
been evidenced that mmLDL induces generation of ROS in
macrophages through sequential activation of TLR4/Syk/
PLCγ-1/PKCα/Nox2 cascade and thereby stimulates expres-
sion of proinflammatory cytokines IL-1β, IL-6, and RANTES
[76, 77]. These studies indicate that PLCγ-1 regulates
inflammatory response by the activation of PKCα, which is
different from the role of PLCγ-2-dependent regulation of
cytosolic Ca2+. Interestingly, we have recently shown that
influenza virus H1N1 infection activates PLCγ-1 signaling
and triggers ROS expression in human macrophages dU937
cells, which can be blocked by the PLC inhibitor U73122
[30]. Taken together, these two independent results reveal
that PLCγ signaling regulates the generation of an important
messenger ROS.

Phagocytosis by macrophages is a process that involves
engulfment and clearing of invading microbial pathogens,
concomitantly stimulating an inflammatory response leading
to upregulation of inflammatory genes, such as TNF-α, IL-
1β, and IL-12. The mechanism for FcγR-mediated phagocy-
tosis has been extensively investigated. The ingestion of
IgG-opsonized targets is initiated by the engagement and
clustering of FcγRs, which induce receptor tyrosine phos-
phorylation and subsequent activation of multiple down-
stream signaling pathways to promote the development of
the phagocytic cup and the extension of pseudopods. The
sequential process including cup formation, phagosome
internalization, and phagolysosome formation is critical
steps in the process of phagocytosis [78]. The translocation
of PKCε to phagosome is a critical step to regulate the rate
of FcγR-dependent phagocytosis [79]. Diverse mechanisms
regarding as to how FcγR-dependent phagocytosis is regu-
lated by PLCγ signaling have been revealed, for example,
PLCγ-1 is consistently concentrated at phagosomes and pro-
vides DAG to facilitate PKCε localization to the phagosome
[80]; Syk-dependent as well as Bruton’s tyrosine kinase-
(Btk-) and Tec-dependent activation of PLCγ-2 affects early
and later stages of phagocytosis, respectively [78].

Peptidoglycan (PGN), the major cell wall component
of Gram-positive bacteria, is able to stimulate proinflam-
matory cytokine production in macrophages. Normal
human plasma from uninfected people contains low titer
of anti-PGN IgG [81]. The anti-PGN IgG and FcγRs are
the key mediators of systemic inflammation in Gram-
positive bacteria-induced sepsis [81, 82]. The binding of
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PGN to anti-PGN IgG triggers FcγR-mediated phagocytosis,
which consequently leads to an inflammatory response [81].
In this mechanism, the phagocytosis of PGN-IgG-FcγR com-
plex in macrophages is triggered by Ca2+ release from intra-
cellular Ca2+ stores controlled by PLCγ-2 signaling [82, 83],
suggesting that the regulation of intracellular calcium signal-
ing by PLCγ-2 is involved in IgG-FcγR-mediated phagocyto-
sis and cytokine production.

5. PLCδ Controls Phagocytosis

The PLCδ1-PH domain negatively regulates FcγRII-medi-
ated cell spreading and phagocytosis through destabilizing
PI(4,5)P2 availability in macrophages [84]. In addition, it
has been reported that LPS stimulation reduces PLCδ1
expression at both mRNA and protein levels, an effect which
would allow upregulation of the TLR4-induced proinflam-
matory cytokine production and FcγR-mediated phagocy-
tosis [85]. These studies suggest that PLCδ1 negatively
regulates TLR4/FcγR-mediated inflammatory response in
macrophages. The roles of the other PKCδ isoforms includ-
ing PKCδ3 and PKCδ4 in macrophage-mediated inflamma-
tion are not yet defined.

6. The Involvement of PLCε in Inflammatory
Response Has Been Characterized In Vivo,
but Not in Macrophages

PLCε is involved in a variety of signaling pathways and con-
trols different cellular functions. Its role in carcinogenesis has
been documented. With a PLCε knockout mice model
(PLCε−/−), PLCε has been identified as a novel tumor sup-
pressor [86]. Also with this mouse model, it has been revealed

that the airway inflammation induced by cigarette smoke
in vivo was partially mediated by PLCε signaling [87]. The
PLCε has also been convincingly demonstrated to regulate
Ca2+ signaling in β cells and cardiomyocytes [88]. However,
whether PLCε is expressed in macrophages, as well as it is
having any role in the macrophage-mediated inflammatory
response, has not been identified.

7. Conclusions and Perspectives

Evidence accumulating from multiple studies has indicated
that the PLC enzymes which functionally rely on the
hydrolysis of PI(4,5)P2 to produce IP3 and DAG with
subsequent modulation of calcium and PKC signaling reg-
ulate macrophage-mediated inflammatory response. The
macrophage inflammatory response, such as the expres-
sion of inflammation-related genes and endocytosis, is
controlled by calcium and/or PKC signaling. The PKC family
contains ten isoforms with individual regulatory mechanism
(summarized in Figure 1). Intracellular Ca2+ levels regulate
multiple signaling pathways. In addition, the PLC family
contains at least 13 members with specific activity for each
one. Diversity of PKC family and the versatile Ca2+ signaling
networks confers PLC enzyme multiple functions in the reg-
ulation of inflammatory response. Therefore, PLC enzymes
are promising targets for the development of novel anti-
inflammatory drugs.

Macrophages express various receptors, such as TLRs,
CD14, and FcγRs, which have been identified as important
upstream activators of PLC signaling (summarized in
Figure 2). These receptors, such as CD14 and TRL4, may
independently or collaboratively regulate the same or distinct
PLC isoforms. In addition, some PLC isoforms may have
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Figure 2: Schematic of macrophage-mediated inflammatory response through PLC signaling. PLCβ1-2, PLCγ1-2, and PLCδ shown in black
indicated that these PLC isoforms are expressed in macrophages and are involved in macrophage-mediated inflammatory response. PLCβ3
and PLCδ3 shown in blue indicated that their involvement in inflammatory response has been identified in epithelial cell but not in
macrophages. PLCβ4, PLCδ4, PLCζ, and PLCη1-2 shown in red indicated that whether they are involved in inflammatory response has
not been identified. PLCε shown in green indicated that the involvement of inflammatory response has been identified with mouse model,
in vivo. But whether it regulates inflammatory response in macrophages has not been identified.
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opposite or synergistic effects on the same downstream
signaling, for example, the concentration of intracellular
Ca2+ is increased by PLCβ-4 signaling, but decreased by
PLCβ-3. These studies indicate the complexity of the PLC-
dependent signaling in the inflammatory response, and fur-
ther research on PLC-dependent functions will contribute
towards our understanding of the underlying mechanism of
some inflammatory diseases.
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