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Abstract: Colorectal cancer is one of the most common gastrointestinal malignancies, with high
incidence rates, a low rate of early diagnosis, and complex pathogenesis. In recent years, there has
been progress made in its diagnosis and treatment methods, but tumor malignant proliferation and
metastasis after treatment still seriously affect the survival and prognosis of patients. Therefore, it is
an extremely urgent task of current medicine to find new anti-tumor drugs with high efficiency and
safety and low toxicity. Curcumin has shown potent anti-tumor and anti-inflammatory effects and is
considered a hot spot in the research and development of anti-tumor drugs due to its advantages of
precise efficacy, lower toxic side effects, and less drug resistance. Recent studies have revealed that
curcumin has anti-tumor effects exerted on the epigenetic regulation of tumor-promoting/tumor-
suppressing gene expression through the alteration of expression levels of non-coding RNAs (e.g.,
lncRNAs, miRNAs, and circRNAs). Herein, we summarize the interaction between curcumin and
non-coding RNAs on the occurrence and development of colorectal cancer. The information complied
in this review will serve as a scientific and reliable basis and viewpoint for the clinical application of
non-coding RNAs in colorectal cancer.
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1. Introduction

Colorectal cancer (CRC) ranks third in the incidence of malignant tumors and is the
second leading cause of cancer-related death worldwide [1,2]. According to the global
cancer statistics issued by International Agency for Research on Cancer (IARC), 1.9 million
new cases (third highest incidence) and 935,000 colorectal cancer deaths (second high-
est mortality) were estimated to have occurred worldwide in 2020 [3]. The global bur-
den of colorectal cancer is expected to be more than 2.2 million new cases a year and
1.1 million deaths in 2030 [4]. In China, the incidence and mortality of colorectal can-
cer have also increased due to variations in diet and the population age structure [5,6].
Due to the lack of early specific warning signs of colorectal cancer, most patients are in
phases III and IV at the first visit and might lose the opportunity to receive effective stan-
dard treatment, resulting in a 5-year survival rate of 40% [7,8]. Therefore, it is urgent to
find new therapeutic methods and develop effective biomarkers for the early diagnosis,
treatment, and prognosis assessment of colorectal cancer to improve the survival status.
Some studies have demonstrated that epigenetic mechanisms play a key role in cancer
progression, particularly non-coding RNAs (ncRNAs) [9]. Indeed, many studies have
demonstrated that the development pathogenesis of colorectal cancer is highly influenced
by ncRNAs [10], the abnormal expression of oncogenic and tumor-suppressor molecules,
and the abnormal activation of various cell signaling pathways [11,12]. In recent years,
some important natural compounds, such as phenolics, terpenoids, and meroterpenoids,
have been confirmed to have anticancer effects by regulating the expression and function
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of ncRNAs [13]. Particularly, naturally derived polyphenols have been safely used for
many years and have shown real potential for therapeutic effects in most cancers through
the regulation of miRNAs and lncRNAs [14–16]. The initial epigenetic changes associated
with cancer may be regulated by many polyphenols [17–19], such as curcumin [20,21],
resveratrol [22,23], and so on. Among them, curcumin, with the advantages of less toxicity
and less side effects, has been clarified to be an effective compound in the treatment of
colorectal cancer. Therefore, summarizing the scientific progress of curcumin targeting
ncRNAs in colorectal cancer and understanding the inducement and molecular regulatory
mechanisms of colorectal cancer is essential in finding key targets for clinical treatment
and will also provide theoretical guidance for basic research, clinical drug selection, and
gene therapy.

1.1. Curcumin and Cancer

Curcumin, also known as diferuloylmethane, is a natural active ingredient extracted
from the rhizome of Curcuma longa [24,25]. Curcumin is an orange–yellow crystalline
powder [26,27] with minimal toxicity [28] and a kind of fat-soluble polyphenol, with
the main chain containing unsaturated aliphatic and aromatic groups [29]. It has been
approved as a food additive by the World Health Organization and the US Food and Drug
Administration [30] and has been listed as a third-generation cancer chemoprevention drug
by the National Cancer Institute of the United States due to its safety, non-toxicity, and lack
of adverse effects [31]. To date, curcumin products that are water-soluble and oil-soluble
have been developed in several forms in China [32], including capsules, tablets, ointments,
energy drinks, soaps, and cosmetics; these are widely used in many different areas, such as
health care, food, medicine and cosmetics [33].

Curcumin has a non-toxic chemical composition; almost all types of tumor mark-
ers can be regulated by it to exert an anti-tumor effect; undoubtedly, this provides a
strong theoretical basis for cancer treatment [34–37]. Studies have shown that curcumin
could exert an anti-tumor effect both in vitro and in vivo through different mechanisms,
including inhibiting the invasion, metastasis, and proliferation of tumor cells, inducing
tumor cell apoptosis and autophagy, and resisting chemotherapy resistance [38–40]. In
addition, abnormal epigenetic modification is closely related to tumorigenesis and runs
through all stages of tumors. Particularly, the precise regulation of ncRNAs based on
epigenetic regulation in various biological processes plays a vital role in the occurrence
and development of tumors. Single ncRNA can modulate the expression of multiple down-
stream target genes and associated pathways, which provides a theoretical basis for the
development of cancer therapeutic drugs. Recent studies have shown that curcumin is
widely used as an anti-tumor agent because it regulates ncRNAs based on an epigenetic
regulation mechanism [41–43]; there are benefits to using curcumin in the treatment of
colorectal cancer.

1.2. Non-Coding RNAs and Cancer

The human transcriptome contains mostly non-coding RNAs (ncRNAs) that exist in
different cell types (including normal cells and tumor cells) [44,45] and are transcribed
from DNA but not translated into proteins [46]. These are functional RNA molecules
that participate in the various stages of gene expression regulation, which include mi-
croRNAs (miRNAs) [47], long non-coding RNAs (lncRNAs) [48], and circular RNAs (cir-
cRNAs) [49]. Figure 1 shows the biogenesis and mode of action of miRNAs, lncRNAs,
and circRNAs.
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Figure 1. Representation of the biogenesis and mode of action of ncRNAs. (A). A pri-miRNA
with a double-stranded stem-loop is formed after transcription, which is cleaved by Drosha and
DGCR8 with a hairpin-based secondary structure; two nucleotides overhang at its 3′ end. Then,
pre-miRNAs are exported to the cytoplasm by exportin-5/Ran-GTP. Here, pre-miRNA forms a
mature double-stranded miRNA duplex digested by Dicer. The miRISC complex formed by the
guide strand miRNA and Ago protein represses target mRNAs by base-pairing at 3′UTR, which
prevents translation and selectively silences gene expression. (B). Mechanisms underlying long
non-coding RNA (lncRNA)-mediated regulation of gene expression. 1© Transcription regulation by
lncRNAs. 2© lncRNAs are engaged in the processing and maturation of mRNAs 3© lncRNAs interact
with proteins. 4© lncRNAs interact with RNAs. 5© lncRNAs can competitively bind to miRNAs by
acting as ceRNAs, thereby blocking the inhibition of the target gene. (C). Biogenesis of circRNAs.
a. The back-splicing circularization requires the help of complementary sequences (ALU repeats and
RCMs). b. RBP-mediated circularization. c. Lariat-driven circularization. circRNA can serve as an
miRNA sponge, which inhibits miRNAs in order to regulate the expression of target genes or interact
with proteins.

miRNAs, about 18 to 25 nucleotides in size, are small ncRNA molecules with reg-
ulatory functions [50]. In most mammals, miRNAs can destroy the stability or interfere
translation of mRNAs through complete or incomplete base pairing with the 3′ untranslated
regions (3′UTRs) of their target mRNAs, which can precisely regulate their target gene
expression process [51]. miRNAs can form a complex regulation network by regulating
related signaling pathways that have an important implication in tumor development and
chemotherapy resistance [52]. Meanwhile, the precise regulation of miRNAs also plays a
crucial role in the process of autophagy [53]. In the early stage of tumorigenesis, autophagy
can act as a tumor suppressor, which restores homeostasis and eliminates cancerous cell
components. However, in the advanced stage of tumors, autophagy may promote tumor
growth and metastasis, which may produce therapeutic resistance [54]. Compared with
normal tissues, the abnormal expression of miRNAs in cancer tissues is mainly manifested
as the downregulation or deletion of miRNAs with tumor-suppressor functions and the
overexpression of miRNAs with oncogenic functions [55]. Examples of well-characterized
tumor-suppressor miRNAs include miR-34a, miR-145, and the let-7 family; well-established
oncogenic miRNAs include miR-21 and miR-155 [56–58]. Interestingly, several miRNAs
appear to possess dual functionality, acting as both a tumor suppressor and an oncogene.
For instance, although miR-200c inhibits epithelial-to-mesenchymal transition (EMT) and
blocks the initiation of cancer metastasis, it is also frequently overexpressed in late-stage
cancers and is involved in promoting distant metastasis [59,60]. Therefore, increasing
evidence suggests that the dysregulation of miRNAs could alter the physiological pro-
cesses of cells and regulate a wide variety of biological processes, such as tumor growth,
proliferation, apoptosis, chemoresistance, migration, and invasion [61–65].

LncRNAs, more than 200 nucleotides in length, are a group of transcription prod-
ucts regulated by RNA polymerase II [66]. LncRNAs can be classified according to their
relevance to protein-coding genes. Additionally, there are certain subgroups, such as over-
lapping lncRNAs, which contain a protein-coding gene in their intron; divergent lncRNAs
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that are transcribed from the opposite direction of an adjacent protein-coding gene; in-
tronic lncRNAs, whose total nucleotide sequence fits with the intron of a protein-coding
gene; intergenic lncRNAs, whose nucleotide sequence is associated with two genes; and
lncRNAs in antisense transcript form, which reside between exons of other transcripts
at the antisense strand [67]. Based on their important roles in the regulation of gene ex-
pression, they participate in several physiologic and pathologic processes, including the
development of cancer [68]. Even though many lncRNA-coding genes have histone mod-
ification signatures distinct from mRNA-coding genes, these non-coding RNAs are also
produced and transcribed by RNA polymerase II, such as protein-coding RNAs (mRNAs).
After being transcribed, lncRNAs are processed through 5′ end-capping, intron splicing, 3′

end-polyadenylation, and intracellular transportation, similar to mRNAs [69]. The avail-
able evidence indicates that lncRNAs could interact with macromolecules such as DNA,
RNA, and proteins to mediate the regulation of gene transcription and post-transcriptional
processes such as endogenous gene expression, mRNA splicing and modification, and
protein translation, which influence tumorigenesis and development [70–72]. Additionally,
lncRNAs could be used as competitive endogenous RNAs (ceRNAs) to absorb miRNAs
and affect both target mRNA translation and protein synthesis [73]. As mentioned above,
lncRNAs may act as tumor-promoting or tumor-suppressing genes and potential diagnostic
and prognostic markers of the progression and chemoresistance of colorectal cancer.

circRNAs, a new type of ncRNAs [74,75], are formed in a covalently closed continuous
loop through the ligation of the 5′ and 3′ ends of linear RNAs [76]. This structural feature
makes circRNAs resistant to digestion by ribonucleases (such as exonuclease R (RNase
R) and exonuclease), with higher stability and longer half-life than linear mRNAs. CircR-
NAs are largely generated from exonic or intronic sequences, and reverse complementary
sequences or RNA-binding proteins (RBPs) are necessary for circRNA biogenesis [77,78].
In addition, studies have also found that circRNAs are mostly composed of exons, and a
few are formed by intron circularization, which is highly conserved in evolution among
species [79] and has timing specificity in certain tissue cell sources and different develop-
mental stages [80]. Recent studies have revealed that circRNAs have a variety of functions,
including acting as a miRNA sponge (ceRNA), interacting with proteins, regulating alter-
native splicing, and transcribing parental genes [81–84]. circRNAs have been found to act
as miRNA sponges and are involved in the occurrence and development of a variety of
cancers through the circRNA–miRNA–mRNA axis. circRNAs specifically absorb miRNAs
to regulate their expression and indirectly control the expression of proteins. After miRNAs
and lncRNAs, circRNAs have become a new hotspot in the field of ncRNAs in recent
years [85]. In addition, the differential expression of circRNAs in tumors is thought to
play an important role in the malignant behavior of various tumors, such as cell cycle,
cell proliferation, apoptosis, invasion, and chemotherapy resistance; this has given us a
novel recognition that circRNAs could be used as new tumor biomarkers and therapeutic
targets [86].

In addition, a large number of studies have shown that the dysregulation of ncRNAs
contributes to the development of cancer drug resistance by modulating the expression
of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-
to-mesenchymal transition (EMT), and the cell cycle [87,88]. Notably, ncRNAs are well
known as crucial regulators of autophagy through the regulation of ATGs and autophagy-
associated signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein
kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, which ulti-
mately mediates chemoresistance and radioresistance [89,90]. This provides an important
breakthrough for the role of ncRNAs in the treatment resistance of malignant tumors and
also highlights the interaction between molecules.

Overall, there is increasing evidence that the abnormal expression of ncRNAs is
involved in the pathology of various tumors. The miRNAs, lncRNAs, and circRNAs
involved in colorectal cancer could exhibit either tumor-suppressing or -promoting effects,
which may be useful in the diagnosis and targeted therapeutics.
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2. Curcumin and Colorectal Cancer Therapy Based on Non-Coding RNAs’
Epigenetic Regulation
2.1. Curcumin against Colorectal Cancer Mediated by miRNAs

Many studies have demonstrated that the occurrence, development, treatment, and
prognosis of colorectal cancer are all involved with miRNAs in varying degrees [91,92].
miRNAs can regulate the expression of their target oncogenes or cancer suppressor genes
to affect the various biological processes of cancer, including cell proliferation, apoptosis,
cell cycle, and metastases, in the occurrence and development of malignant tumors [93].
Some studies have indicated that curcumin could exert anti-colorectal cancer effects by
targeting differentially expressed miRNAs [94,95]. The miRNAs regulated by curcumin in
colorectal cancer are summarized in Table 1.

Table 1. Curcumin modulates miRNAs in colorectal cancer.

In Vitro/
In Vivo Cell Line Modulated by

Curcumin Target Gene Relevant
Mechanism

Biological Effects After
Administration Refs.

In vitro/
in vivo

Rko, HCT116,
HT-29, SW620

miR-21 ↓
miR-21-3p,
miR-21-5p ↓

PDCD4
PTEN
ATG10, APAF1

Suppress AP-1
binding to the
promoter, p-Akt

Inhibits tumor growth,
migration, invasion,
metastasis. Promotes
autophagy, apoptosis

[96–98]

In vitro SW480 miR-130a ↓ — Wnt/β-catenin
pathway Inhibits proliferation [99]

In vitro/
in vivo

HCT116, SW480,
HCT116p53−/−

miR-34a ↑
miR-27a ↓

CDK4, CDK6,
cMyc, FBXW7,
Cyclin D1

Deregulation of
miRNAs
—

Inhibits proliferation,
tumor growth,
chemoresistant.
Promotes cell cycle
arrest, apoptosis

[100]

In vitro HCT-116 miR-491 ↑ PEG10 Wnt/β-catenin
pathway

Inhibits proliferation
and promotes apoptosis [101]

In vitro HCT116−5FUR,
SW480-5FUR

miR-141, miR-101,
miR-200b, miR-429,
miR-200c ↑

—
ZEB1 BMI1 — Inhibits EMT [102]

In vitro HCT-116, L-OHP miR-409-3p ↑ ERCC1 —
Inhibits migration and
invasion; promotes
apoptosis.

[103]

In vitro RKO, SW480 miR-20a, miR-27a,
miR-17 ↓

ZBTB4, ZBTB10,
Sp1, Sp3, Sp4, — Inhibits proliferation [104]

In vitro/
in vivo

SW620, HCT116,
HCT116wt,
HCT116 p53−/−

miR-34a ↑
miR-34c ↑ Notch-1 — Inhibits proliferation,

promotes apoptosis [105]

In vitro/
in vivo SW480 miR-145 ↑

(Nano-CUR) — —

Interferes with tumor
growth,
inhibits proliferation,
migration

[106]

In vitro/
in vivo

HCT116, LoVo,
HT29-MTX

miR-31 (PS-TP-miR-
31i/Cur
NPs)

— —
Inhibits cell
proliferation, tumor
growth

[107]

In vitro

HT-29, HCT-116,
LoVo, SW480,
DLD-1
CRL-1790

miR-137 ↓ GLS GLS–gluamine
Metabolism

Increases cell death,
anti-chemoresistance [108]

In vitro HT-29
miR-21, miR-155,
miR221/222 ↓
miR-34a, miR-126 ↑

— — Promotes apoptosis [109]

Note: Arrows “↓, ↑” represent the expression levels of miRNAs regulated by curcumin in CRC. “↑”: upregulated,
“↓”: downregulated.
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miR-21 is considered one of the important tumor-promoting genes, and its abnormally
high expression is closely related to the proliferation and invasion of different tumor
cells. For example, curcumin inhibits the invasion and metastasis of colon cancer cells
(Rko and HCT116) by specifically targeting and downregulating the level of oncogenic
miR-21 [96]. Moreover, some studies have revealed that curcumin blocks the binding of
activator protein-1 (AP-1) in the promoter region of miR-21, promoting the expression
of tumor suppressor programmed cell death protein 4 (PDCD4), which is suppressed by
miR-21 in phorbol-12-myristate-13-acetate (PMA) stimulated colorectal cancer [97,110].
This, to a certain extent, explains the targeted inhibition and regulation of curcumin on
miR-21. Interestingly, Shao et al. found that after treating human colorectal cancer cell
HCT116 with curcumin, the level of apoptosis and autophagy were dose-dependent on
curcumin and decreased the expression of miR-21-3p and miR-21-5p, which increased
the expression of ATG10 and APAF1 and promoted autophagy and apoptosis in HCT116
cells [98].

Conversely, miR-491, as a tumor suppressor, is aberrant underexpressed in colorectal
cancer cells. It not only inhibits the proliferation of colorectal cancer cells but also prevents
the invasion of these malignant cells [111,112]. It was observed that the expression of
miR-491 was increased after exposing colorectal cancer cells to curcumin, which could
downregulate the expression of PEG10 subsequently by binding to its 3′-UTR [101]. This
pathway sensitizes colorectal cancer cells to apoptosis and inhibits proliferation. However,
curcumin induces the downregulation of miR-27a and upregulation of miR-34a, resulting in
cell cycle arrest and apoptosis in colorectal cancer cells. Previous studies have shown that
combined with acetyl-11-keto-β-boswellic acid (AKBA), curcumin could effectively inhibit
mouse xenograft tumor growth by further downregulating the expression of miR-27a and
the overexpression of miR-34a [100].

Furthermore, epithelial–mesenchymal transition (EMT) is an initial stage of the metas-
tasis process and is closely related to tumor chemotherapy resistance in cancer. EMT
tumor cells gain the ability of apoptosis resistance and maybe result in tumor resistance
to radiotherapy and chemotherapy, which seriously affects the prognosis of cancer pa-
tients [113]. Notably, miRNAs play critical roles in the regulation of EMT [114,115]. There is
an experiment that described that curcumin increased the expression of tumor-suppressor
miRNAs (such as miR-34a, miR-200c, miR-141, miR-429, and miR-101) by enhancing the
chemosensitivity of colorectal cancer cells to 5-fluorouracil (5-FU); thereby, the prevention
of EMT can inhibit the metastasis of colorectal cancer cells [102]. Kara et al. found that
abnormally high expressions of miR-130a are associated with chemotherapy resistance
and lead to poor clinical chemotherapy outcomes in patients with colorectal cancer [116].
Curcumin mediates the downregulation of miR-130a and can promote the activation of
the Wnt/β-Catenin signaling pathway in colorectal cancer; this enhances chemosensitiv-
ity and inhibits the proliferation of mouse colorectal cancer cells [99]. Additionally, Han
et al. reported that curcumin could reverse the resistance of colorectal cancer cells to oxali-
platin (L-OHP) chemotherapy by affecting ERCC1, the expression of which is mediated
by miR-409-3p [103]. Moreover, a recent study proved that curcumin could overcome
cisplatin resistance by inhibiting miR-137-mediated glutamine metabolism [108]. There-
fore, curcumin may become an ideal drug candidate for anti-chemotherapy resistance in
colorectal cancer.

In conclusion, curcumin precisely regulates the physiological functions of its target
genes by regulating the expression of miRNAs, affects various stages of colorectal cancer,
including occurrence, development, treatment, and prognosis, and is of great significance
when exploring new therapies for the treatment of colorectal cancer.

2.2. Curcumin against Colorectal Cancer Mediated by LncRNAs

LncRNAs, as effective marker molecules, have been used in the diagnosis and prog-
nosis of many cancers. The abnormal expression of some lncRNAs is involved in various
processes, such as regulating the growth and metastasis of tumor cells [117]. Curcumin
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could significantly change the proliferation, migration, and invasion of colorectal cancer
cells by regulating lncRNAs [118]. Furthermore, the mechanism of lncRNAs that interact
with curcumin to moderate signal transduction needs to be further explored. Therefore,
in this section, we will discuss the intervention effect between curcumin and lncRNAs in
colorectal cancer and its anti-colorectal cancer mechanism.

A recent study found that the upregulation of lnc NBR2 (neighbor 2 of BRCA1 lncRNA)
could inactivate the mTOR signaling pathway while opening another positive feedback
pathway to enhance AMPK potentiation by energy metabolism stress so as to inhibit the
proliferation of colorectal cancer cells. Curcumin could significantly increase the expression
of lnc NBR2 in this process. The inhibitory effect of curcumin on colorectal cancer cells
disappeared when lnc NBR2 was knocked down. These data demonstrate that the anti-
tumor mechanism of curcumin in colorectal cancer is dependent on the activation of lnc
NBR2 and AMPK signaling [119].

LncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) is located at
the KCNQ1 cluster on human chromosome 11p15.5 and is highly associated with the
development of cancer [120]. It has been observed that KCNQ1OT1 is highly expressed in
colorectal cancer cells, and its potential mechanism could act as a sponge for miR-497 (a Bcl-
2 inhibitory miRNA) [121]. Zheng et al. have reported that curcumin significantly inhibits
the proliferation and promotes the apoptosis of colorectal cancer cells in a dose-dependent
manner based on the lncKCNQ1OT1–miR-497–Bcl-2 axis. In contrast, overexpression of
KCNQ1OT1 could reverse the anti-proliferative function of curcumin and increase Bcl-2
levels to promote cisplatin resistance in colorectal cancer cells [122].

Cellular senescence is a proliferative arrest bioprocess by potentially cancer-promoting
factors, and it can limit the outgrowth of pre-cancerous cells [123]. Lnc PANDAR (promoter
of CDKN1A antisense DNA damage-activated RNA) is located at chromosome 6p21.2.
Notably, its upregulation inhibited the activation of pro-apoptotic genes (NOXA, PUMA,
and FAS) that could induce cellular senescence. The depletion of lnc PANDAR could delay
senescence through the stimulated gene expression of CCNB1, CDK1, and CDC25C and
increase apoptosis in colorectal cancer cells [124,125]. Similarly, a recent study proved that
simply silencing lnc PANDAR expression could not change the proliferation, apoptosis,
and senescence processes of colorectal cancer cells, whereas low-does curcumin combined
with the silencing of lnc PANDAR could promote apoptosis and delay cellular senescence
in colorectal cancer cells. It was indicated that this effect may be mediated by the induction
of PUMA (p53 upregulated modulator of apoptosis) expression, which has a significant
reference value for the treatment of colorectal cancer [126].

In addition, an in vitro study revealed that lnc MALAT1 (metastasis-associated lung
adenocarcinoma transcript 1 lncRNA) has an abnormally high level of expression in col-
orectal cancer tissues. Curcumin combined with si-MALAT1 could significantly reduce its
expression and inhibit the cell activity, migration, and invasion of SW480 (colorectal cancer
cell) [127]. Through polymeric hybrid nanoparticles (CSNPs), combining curcumin with
siCCAT1 (Lnc CCAT1 small interfering RNA) could effectively inhibit the proliferation
and migration of HT-29 cells (colorectal cancer cells) and induce a high apoptosis rate in
a synergistic manner [128]. Hence, nanoparticles packaged with overexpressed/silenced
Lnc RNAs and collaboratively transported with curcumin may provide a better and more
promising strategy for colorectal cancer treatment. As a consequence, the above-mentioned
results have gradually provided new evidence for the basic research of lncRNAs combined
with curcumin for the treatment of colorectal cancer. The data are shown in Table 2.
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Table 2. Curcumin modulates lncRNAs in colorectal cancer.

In Vitro/
In Vivo Cell Line Modulated by

Curcumin Relevant Mechanism Biological Effects after
Administration Refs.

In vitro HCT116, SW480 NBR2 ↑ Activates of AMPK
pathway Inhibits proliferation [119]

In vitro/
In vivo HCT8 DDP cells KCNQ1OT1 ↓ Sponge of miR-497

increases Bcl-2 expression

Inhibits proliferation,
promotes apoptosis,
chemoresistant

[122]

In vitro DLD-1, SW620,
HCT116 PANDAR ↓ PUMA upregulation Promotes apoptosis [125]

In vitro/
In vivo DLD-1 PANDAR ↓ Induces PUMA Promotes apoptosis, reduces

cell aging [126]

In vitro SW480 MALAT1 ↓
(Si-MALAT1)

Downregulated c-myc,
cyclinD1, β-catenin

Inhibits cell viability,
migration, invasion [127]

In vitro/
In vivo HT-29 CCAT1 ↓

(Si-CCAT1-CSNP) — Inhibits proliferation,
migration, induces apoptosis [128]

Note: Arrows “↓, ↑” represent the expression levels of lncRNAs regulated by curcumin in CRC. “↑”: upregulated,
“↓”: downregulated.

2.3. Curcumin and Anti-Tumor Effect Mediated by CircRNAs

circRNAs have great potential research value in the occurrence, development, diagno-
sis, prognosis, and treatment of tumors. Recent studies have revealed that phytochemicals
such as curcumin could further exert anti-tumor effects by regulating circRNAs that are
engaged in biological processes, including tumor cell proliferation, apoptosis, migration,
invasion, autophagy, chemosensitivity, and radiosensitivity [129]. Considering the pivotal
roles of circRNAs combined with drugs in cancer, we found that curcumin could regulate
the occurrence and development of various tumors through circRNAs acting on different
signaling pathways. The research results of the role of circRNAs in various tumors under
the action of curcumin in the past 12 years are summarized in Table 3.

Table 3. Curcumin modulates circRNAs in various cancers.

In Vitro/
In Vivo Cell Line Modulated by

Curcumin Relevant Mechanism Biological Effects after
Administration Refs.

In vitro/
In vivo

H1650, H1299,
H460, A549,
16HBE (NSCLC)

circ-PRKCA ↓
circ-PRKCA/miR-
384/ITGB1
pathway

Inhibits viability, colony
formation, migration,
invasion, promotes apoptosis

[130]

In vitro/
In vivo

THLE-2, HuH-7,
HCCLM3 (HCC) circ-ZNF83 ↓

JAK2/STAT3 pathway
circZNF83/miR-324-
5p/CDK16
axis

Inhibits proliferation, cell
cycle, migration, invasion,
promotes apoptosis

[131]

In vitro/
In vivo

SKOV3, A2780,
IOSE-80
(Ovarian cancer)

circ-PLEKHM3 ↑
circ-PLEKHM3/miR-
320a/SMG1
axis

Inhibits proliferation and
promotes apoptosis [132]

In vitro/
In vivo

CAKI-1, ACHN,
(RCC) circ-FNDC3B ↓

circ-FNDC3B/miR-138-
5p/IGF2
axis

Inhibits proliferation,
promotes apoptosis [133]

In vitro CNE-2 (NPC) circRNA-102115 circRNA-102115/miR-
335-3p/MAPK1 Enhances radiosensitization [113]

In vitro CNE-2 (NPC) circRNA network miRNA sponge regulated
EGFR, STAT3, GRB2 Enhances radiosensitization [134]

[135]

Note: Arrows “↓, ↑” represent the expression levels of circRNAs regulated by curcumin in various cancers. “↑”:
upregulated, “↓”: downregulated.

There is a study that indicated that curcumin targets the expression of ITGB1 by
downregulating circ-203 PRKCA and adsorbing miR-384, thereby inhibiting the occurrence
and development of non-small cell lung cancer (NSCLC) [130]. Zhao et al. have proved
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that curcumin analog GL63 can inactive the JAK2/STAT3 signaling pathway by mediating
the circ-ZNF83/miR-324-5p/CDK16 axis, thereby inhibiting the development of hepatic
cellular cancer (HCC) [131]. In addition, a recent study found that curcumin could inhibit
the proliferation and promote the apoptosis of ovarian cancer cells by regulating the circ-
PLEKHM3/miR-320a/SMG1 axis [132]. This offers a better explanation for the mechanism
of circRNAs regulating the occurrence and development of cancer to a large extent as well
as provides great insight for us to explore the role of curcumin based on circRNAs for
future research.

Meanwhile, we found evidence for the potential role of some circRNAs as diagnostic
markers for colorectal cancer, as shown in Table 4. In vitro and in vivo experiments showed
that overexpression of the tumor suppressor circ-RHOBTB3 could significantly inhibit the
invasion and metastasis of colorectal cancer cells by binding to the HuR (ELAVL1) protein
and downregulating its expression, thereby reducing the expression of the downstream
target gene PTBP1 [136]. Circ-3823 [137], circ-IL4R [138], and circ-N4BP2L2 [139] were
significantly overexpressed in colorectal cancer cells, which indicates a poor prognosis
in colorectal cancer patients. They act as a tumor-promoting gene by competitively bind-
ing miRNAs to eliminate the inhibitory effect of miRNAs on downstream target genes
regulating the proliferation, migration, invasion, and apoptosis of colorectal cancer cells.
These circRNAs may become new diagnostic markers or potential treatment targets for
colorectal cancer.

Table 4. Roles of circRNAs in colorectal cancer.

In Vitro/
In Vivo Cell Line circRNAs in

CRC Target Gene Relevant Mechanism Biological Effects Refs.

In vitro/
In vivo

RKO, HCT116,
SW480, SW620,
DLD-1, HT29,
Colo320, HCE8693

circ-RHOBTB3 ↓ PTBP1, FUS
ADARB2

circ-
RHOBTB3/HuR/PTBP1
protein ubiquitination

Restrains metastasis,
invasion [136]

In vitro/
In vivo HCT116, SW480 circ-3823 ↑ TCF7

circ-3823/miR-30c-
5p/TCF7
miRNA sponge
m6A modification

Promotes proliferation,
metastasis,
angiogenesis

[137]

In vitro
FHC, HCT116,
DLD1, LoVo, SW620,
HT29, SW480

circ-IL4R ↑ PHLPP1
circ-IL4R/PI3K/AKT,
miRNA sponge,
protein ubiquitination

Promotes proliferation,
migration, invasion [138]

In vitro/
In vivo

HT-29, SW480,
HCT-116, LoVo,
NCM460

circ-N4BP2L2 ↑ CXCR4

circ-N4BP2L2/miR-
340-5p/
CXCR4
(miRNA sponge)

Promotes proliferation,
migration, invasion.
Promotes tumor
growth, metastasis

[139]

In vitro/
In vivo

HT290, HCT116,
SW480, SW620, FHC circ-CUL2 ↓ PPP6C

circ-CUL2/miR-208a-
3p/PPP6C
(miRNA sponge)

Inhibits proliferation
ability, induces
apoptosis, autophagy

[140]

In vitro/
In vivo

HT-29, LoVo, SW480,
HCT-116, NCM460 circ-PTK2 ↑ YTHDF1 circ-PTK2/miR-136-

5p/YTHDF1

Promotes proliferation,
migration, invasion,
chemoresistance

[141]

Note: Arrows “↓, ↑” represent the expression levels of circRNAs in CRC. “↑”: upregulated, “↓”: downregulated.

Throughout the last decade of research, we have identified a series of circRNAs [142]
as biomarkers of oncogenic/tumor-suppressive genes that exert anti-colorectal-cancer
functions. Although the regulation of these functional molecules of circRNAs has gradually
entered public view, the research on circRNAs has just begun. These circRNAs may provide
new evidence for future research on the mechanism of colorectal cancer occurrence and
development. Whether those circRNAs are responsible for the treatment of colorectal
cancer and how circRNAs regulate the biological effects of tumor cells after the curcumin
intervention have still not been studied. There is still plenty of room to explore the effect of
curcumin on colorectal cancer through circRNAs.
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3. Discussion

Curcumin can interact with multiple molecular targets through a variety of complex
molecular mechanisms to inhibit the growth of tumor cells and achieve anti-colorectal-
cancer and chemotherapy sensitization effects. Compared with traditional chemotherapy
drugs, curcumin has higher safety levels and is widely used as an ingredient in dietary
formulations for the prevention of colorectal cancer. Related clinical trials have been
launched. The evidence listed above identifies the mechanism of ncRNAs as potential
targets of curcumin for colorectal cancer treatment, summarized in Figure 2. As an explicit
regulatory mechanism, miRNAs regulate target mRNAs through complete or incomplete
base pairing with 3′UTRs (Figure 2-i), lncRNAs interact with DNAs, RNAs, and proteins
to regulate transcription and post-transcriptional processes (Figure 2-ii); circRNAs inter-
act with proteins to regulate the alternative splicing and transcription of target genes
(Figure 2-iii). In particular, current studies on ncRNAs regulated by curcumin have
been mainly focused on the ceRNA mechanism, also known as the molecular sponge
effect, which mainly involves the lncRNAs/circRNAs–miRNAs–mRNAs–proteins path-
way. Briefly, target genes can be silenced by miRNA binding. However, ceRNAs, including
lncRNAs and circRNAs, can regulate target gene expression by competitively absorbing
miRNAs. The mutual regulation between these transcripts (mRNAs and ncRNAs) plays
an important role in the occurrence and development of colorectal cancer and mediates
biological processes, including colorectal cancer cell proliferation, apoptosis, metastasis,
and chemoresistance (Figure 2-iv). As a new research tool or idea, ceRNAs have also been
crossed, penetrated, and merged with research in drug-related fields, such as in research
on curcumin. We found that curcumin has shown a significant anti-tumor effect in the
epigenetic regulation of ncRNAs according to the research progress in the past 12 years.
Curcumin could affect the development of colorectal cancer by targeting oncogenes such
as miR-130a/miR-137, miR-20a/miR-27a, miR-21, and miR-221/222 or tumor-suppressor
genes such as miR-101/miR-409-3p, miR-200b/miR-200c, and miR-34a/miR-34c; its anti-
colorectal cancer effect is essentially through the indirect regulation of target genes or
signaling pathways. Treated by curcumin, Lnc NBR2, Lnc KCNQ1OT1, Lnc PANDAR,
and Lnc CCAT1 could prove to be potentially effective target molecules in the treatment
progress of colorectal cancer. Whether a large number of differentially expressed circRNAs,
such as circ-3823, circ-IL4R, and circ-CUL2 in colorectal cancer, could become effective
targets for curcumin in the treatment of colorectal cancer remains to be further clarified
(Figure 2-v). In summary, these findings could provide favorable evidence for exploring
the role of curcumin in the treatment of colorectal cancer via non-coding RNAs, which
may provide new directions for the treatment and prognosis of colorectal cancer patients.
Non-coding RNAs can be potential therapeutic targets for the occurrence and development
of colorectal cancer, and curcumin-targeted non-coding RNAs have good biomarker and
reference significance for the treatment of colorectal cancer.

However, the efficacy, reliability, and sensitivity of ncRNAs as biomarkers and ther-
apeutic targets for colorectal cancer need further basic research and clinical application.
Although different types of ncRNAs have been identified to be involved in the curcumin
treatment of colorectal cancer, the existing research has the following issues: (I) The reg-
ulation relationship between ncRNAs and curcumin can be found via gene knockdown
and overexpression; however, whether this kind of relationship, which exists in a single
cell, can be realized in the complex system of the human body still needs to be verified via
further clinical trials. (II) Whether curcumin can inhibit the occurrence and development
of colorectal cancer through the targeted and precise regulation of the copy number, sub-
cellular localization, and protein binding ability of non-coding RNAs is worthy of further
exploration. Additionally, the low stability, low oral bioavailability, and dose-dependent
pharmacological effects of curcumin limit its clinical application in cancer therapy and
industrialization [143]. Nevertheless, curcumin is a potential candidate compound for anti-
tumor drugs due to its clear biological activity and relatively simple molecular structure.
The development of a new and more efficient drug delivery system of curcumin will guide
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its significance in the research on targeting ncRNAs and provide a new prospect for human
cancer treatment [144–146]. Therefore, for better detection and effective cancer treatment,
molecular diagnostic methods combined with drug treatments such as curcumin need to be
researched in-depth to enrich their significance and contribute to their clinical application.

Figure 2. Mechanism of curcumin-targeted regulation of non-coding RNAs against colorectal cancer.
Dotted lines represent different regulation methods; boxes represent different ncRNAs regulated
by curcumin.

Undeniably, more differentially expressed miRNAs, lncRNAs, and circRNAs associ-
ated with colorectal cancer need to be further explored. We look forward to more studies
on curcumin regulating ncRNAs in colorectal cancer.
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