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The global coronavirus disease 2019 (COVID-19) pandemic has demonstrated the range
of disease severity and pathogen genomic diversity emanating from a singular virus
(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). This diversity in disease
manifestations and genomic mutations has challenged healthcare management and
resource allocation during the pandemic, especially for countries such as India with a
bigger population base. Here, we undertake a combinatorial approach toward scrutinizing
the diagnostic and genomic diversity to extract meaningful information from the chaos of
COVID-19 in the Indian context. Using methods of statistical correlation, machine learning
(ML), and genomic sequencing on a clinically comprehensive patient dataset with
corresponding with/without respiratory support samples, we highlight specific
significant diagnostic parameters and ML models for assessing the risk of developing
severe COVID-19. This information is further contextualized in the backdrop of SARS-
CoV-2 genomic features in the cohort for pathogen genomic evolution monitoring.
Analysis of the patient demographic features and symptoms revealed that age,
breathlessness, and cough were significantly associated with severe disease; at the
same time, we found no severe patient reporting absence of physical symptoms.
Observing the trends in biochemical/biophysical diagnostic parameters, we noted that
the respiratory rate, total leukocyte count (TLC), blood urea levels, and C-reactive protein
(CRP) levels were directly correlated with the probability of developing severe disease. Out
of five different ML algorithms tested to predict patient severity, the multi-layer perceptron-
based model performed the best, with a receiver operating characteristic (ROC) score of
0.96 and an F1 score of 0.791. The SARS-CoV-2 genomic analysis highlighted a set of
mutations with global frequency flips and future inculcation into variants of concern (VOCs)
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and variants of interest (VOIs), which can be further monitored and annotated for
functional significance. In summary, our findings highlight the importance of SARS-
CoV-2 genomic surveillance and statistical analysis of clinical data to develop a risk
assessment ML model.
Keywords: COVID-19, SARS-CoV-2, genomic surveillance, risk stratification, machine learning, healthcare
INTRODUCTION

Since December 2019, a novel coronavirus, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has been
observed to cause coronavirus disease 2019 (COVID-19).
Thereafter, we have observed 254 million COVID-19 cases,
5.12 million deaths, 4 SARS-CoV-2 variants of concern
(VOCs), 5 variants of interest (VOIs), and 11 other variants
under monitoring. In India, we have witnessed 0.465 million
deaths due to COVID-19 until mid-November 2021 (WHO
Coronavirus (COVID-19) Dashboard). During the second
surge of COVID-19 by the 21A (Delta) variant (Dhar et al.,
2021; Mlcochova et al., 2021), India witnessed the effects of an
overburdened healthcare infrastructure. Similarly, in many parts
of the world, the COVID-19 pandemic has caused distress and
resulted in mortalities that are not only direct consequences of
the disease but also as associated consequences of an
overburdened medical infrastructure (Xie et al., 2020; Usher,
2021; Singh, 2021).

Patient severity of COVID-19 ranges from being
asymptomatic to symptomatic and a fraction resulting in
mortality, with nearly 1.3% patients succumbing to the disease
in India (Johns Hopkins Coronavirus Resource Center).
Thereby, a majority of the patients exhibited varying levels of
intermediate severity. These patients reported symptoms ranging
from cough, fever, breathlessness to chest pain and loss of
movement (Huang et al., 2020). Effective triage of these
patients reaching a healthcare facility at the early phases of the
disease when the symptoms are mild is crucial for effective
healthcare management. This can help in improved resource
allocation such as hospital beds, respiratory support, and
targeted drugs. Furthermore, it can also help in administering
drugs that are effective only at a particular severity stage (Beigel
et al., 2020).

The novel coronavirus, similar to other coronaviruses, has
been observed primarily to be spreading via fomites and direct
human-to-human interactions. Transmission through the fecal-
oral route and intrauterine vertical transfer have also been
reported for SARS-CoV-2, as the pathogen has been
demonstrated to stabilize in human digestive tract. Fecal
matter and wastewater have been shown to contain active viral
particles, which are shed even after the upper respiratory tract
turns negative for viral RNA (Rana et al., 2021). This has led to
initiatives of wastewater surveillance for SARS-CoV-2 to
complement the naso/oropharyngeal sampling-based genomic
surveillance. Similar to other RNA viruses, SARS-CoV-2 exists in
the global population as a group of similar strains due to its rate
of mutation acquisition. This ability to acquire mutations and
gy | www.frontiersin.org 2
thereby gain clinically and epidemiologically significant
functions is a global concern during this pandemic (Barr and
Fearns, 2016; Kanakan et al., 2020). To track this evolution of
SARS-CoV-2 and flag the emergence of novel mutations, many
countries have initiated integrative SARS-CoV-2 genome
surveillance initiatives. This includes the COVID-19 Genomics
Consortium in the UK (COVID-19 Genomics UK Consortium),
SARS-CoV-2 Sequencing for Public Health Emergency
Response, Epidemiology, and Surveillance (SPHERES) in the
United States (SPHERES|CDC), and the Indian SARS-CoV-2
Genomics Consortium (INSACOG) (INSACOG|Department of
Biotechnology). Such combined efforts of sequencing have
facilitated SARS-CoV-2 genome sequences from their
respective regions for functional insights (GISAID - Initiative).
This aids in the early detection of potential gain-of-function
mutations and tracking the selection of these mutations in
emerging SARS-CoV-2 strains. Based on subsequent functional
annotations of these mutations through the combination of in
silico and in vitro experiments, SARS-CoV-2 strains have been
classified according to the risks they pose to global health as
VOCs and VOIs (Oude Munnink et al., 2021).

Pathological findings of COVID-19 have been implicated in
the prediction of their severity capacity in many different studies
using various approaches. The statistical significance of many
such factors has been reported in different population cohorts.
Studies have highlighted the statistical significance of the
pathological findings of COVID-19 (Hu et al., 2020; Li et al.,
2020; Yang et al., 2020; Zhou et al., 2020), including Indian
cohorts (Gupta et al., 2020; Khan M. et al., 2020). Similarly,
machine learning (ML)-based models have been built for
COVID-19 using cohorts from North America (Cheng et al.,
2020a; Khan A. I. et al., 2020), South Korea (Kim et al., 2020),
and China (Wu et al., 2020; Karthikeyan et al., 2021). Due to the
overwhelming host genetic, immunological, environmental, and
healthcare factors, population-level differences in COVID-19
manifestations have been observed (Sorci et al., 2020; Lo et al.,
2021; Maurya et al., 2021; Ong et al., 2021; Zhang et al., 2021),
therefore necessitating the development of a severity prediction
algorithm based on an Indian cohort, which is presented in this
manuscript. At the same time, it is important to integrate
different aspects of COVID-19 rather than only one at a time.

Using our dataset, inclusive of a broad range of biochemical
test reports over multiple demographic and clinical observations
of COVID-19 patients, we present an approach to narrow down
the diverse clinical factors of COVID-19 into a few functionally
important variables. We analyzed the early-onset symptoms
presented by COVID-19 patients associated with the
development of severe disease and further used statistical
December 2021 | Volume 11 | Article 783961
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methods to identify important biomarkers for severity
progression of the disease. It is important to use and analyze
clinical data as these can provide insightful information about
the disease patterns, risk factors, and outcomes of treatment
(Nass et al., 2009). We devised a ML pipeline to predict the
outcomes of patients as severe or mild using the nested cross-
validation (nested CV) algorithm (Bhargava et al., 2020; Hao
et al., 2020; Liang et al., 2020; Gupta R. K. et al., 2021). We
studied five computational learning models, namely, logistic
regression, random forest, XGBoost, support vector machine
(SVM), and multilayer perceptron. The predictive results of each
model were compared and analyzed, and together, they can be
implemented in clinical settings to predict COVID-19 severity in
patients during the early stages of SARS-CoV-2 infection. Patient
risk stratification and identification of the relative contributions
of specific risk factors to overall risk are two of the widest
applications of ML in healthcare (Wiens and Shenoy, 2018).
ML/deep learning (DL) promote a data-driven approach to
common yet important problems such as patient categorization
and can greatly improve the management of patients in hospitals
(Ching et al., 2018). They also have the potential to increase the
efficiency and minimize the failure rates in drug discovery and
development (Vamathevan et al., 2019).

Beyond contextualizing our study by providing the SARS-CoV-2
genomic constitution of our cohort, we further highlight the
mutational diversity of SARS-CoV-2 in the background of its
phylogenetic diversity in the cohort. Herein, we observe the
evolutionary selection of the low-frequency mutations by
comparing our genomic data to current global mutational spectra.
Therefore, this study aimed to provide additional information and
context to early-onset symptoms and clinical features for the
improved risk prediction of patients diagnosed with COVID-19
using a combination of statistical and ML techniques. At the same
time, this study highlights the importance of genomic surveillance
in identifying SARS-CoV-2 genome mutations, which can undergo
evolutionary selection in the future.
METHODOLOGY

Data Acquisition and Pre-processing
The data used in the study were collected from 257 confirmed
COVID-19 patients from DY Patil group of hospitals in Pune,
Maharashtra, India. Patients were admitted in the hospital between
July and September 2020. A confirmed COVID-19 case was defined
by a positive real-time polymerase chain reaction (RT-PCR) test for
SARS-CoV-2 infection. The patient records were collected and
anonymized at the data warehouse of CSIR-IGIB. The electronic
hospital data used in the study included multiple demographics,
vitals, and biochemical test reports pertaining to the COVID-19
patients. This comprehensive dataset encompasses vital signs and
patient demographic data on oxygen saturation, respiratory rate,
body mass index (BMI), age, gender, comorbidities, and respiratory
support levels. Detailed blood test reports of the levels of C-reactive
protein (CRP), interleukin 6 (IL-6), total leukocyte count (TLC), D-
dimer, and lactate dehydrogenase, among others, were also included
in the study, with a total of 31 different test parameters. The data
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were then curated to exclude patients with missing values of critical
parameters. The patients were categorized as severe ormild based on
their disease outcomes, i.e., discharged or deceased and ventilatory
support requirement, as respiratory failure is a well-known indicator
of COVID-19 severity. All patients requiring ventilatory support or
deceased were considered to be severe; the rest were categorized as
mild. This resulted in a curated list of 175 patients, which has been
used in this study.

RT-qPCR
To obtain SARS-CoV-2 viral RNA, upper or lower respiratory
tract secretions were used for obtaining naso/oropharyngeal
swabs, which were preserved in a viral transport media (VTM)
solution; for patients with a productive cough, liquified sputum
samples were obtained to extract RNA. RNA extraction was
performed using a silica column-based RNA extraction kit for
cell-free bodily fluids (QIAmp viral mini kit, cat. no 52906;
Qiagen, Hilden, Germany). Of the VTM solution, 200 ml was
processed for lysing and viral enrichment, in accordance with the
protocol in the kit (QIAamp Viral RNA Mini Handbook). RNA
was eluted in RNase-free water after washing with wash buffers.
Quantitative real-time polymerase chain reaction (RT-qPCR) for
SARS-CoV-2 detection was performed using the TRUPCR
SARS-CoV-2 kit (cat. no 3B304; 3B BlackBio Biotech India
Ltd., Bhopal, India). For RT-qPCR, 10 ml RNA was added to
15 ml of the reaction mixture in accordance with the kit protocol.
The qPCR reaction was run on Rotor-Gene Q (Qiagen) using the
recommended cycling conditions. To designate a patient as
positive, a cycle threshold (Ct) value of ≤35 was considered.

SARS-CoV-2 Whole-Genome Sequencing
RNA was checked for the presence of sufficient quality and quantity
for sequencing. A sequencing library was prepared from the RNA
samples for sequencing on the Oxford Nanopore or Illumina-MiSeq
platforms. Briefly, double-stranded cDNA was synthesized using
100 ng of total RNA. Herein, first-strand cDNA was synthesized
using Superscript IV (cat. no. 18091050; Thermo Fisher Scientific,
Waltham, MA, USA) and second-strand using DNA polymerase-I
large (Klenow) fragment (cat. no. M0210S; New England Biolabs,
Ipswich, MA, USA) after RNase H digestion of RNA in the first-
strand. Purification of the double-stranded cDNA was carried out
using AMPure XP beads (cat. no. A63881; Beckman Coulter, Brea,
CA, USA).

Further sequencing library was prepared according to the
Oxford Nanopore Technology (ONT) library preparation
protocol PCR tiling of COVID-19 virus (version: PTC_9096_
v109revE_06Feb2020) for Oxford Nanopore sequencing. Here,
100 ng of the purified cDNA, 200 ng of multiplexed PCR
amplicons, and 200 ng of end-prepped samples were taken to
perform ARTIC multiplex PCR, end repair, and barcode ligation,
respectively. The final library was quantified on a Qubit High
Sensitivity DNA kit (cat. no. Q32854) and sequenced using the
MinION Mk1C platform.

For sequencing on the Illumina MiSeq platform, the
sequencing library was prepared using the Illumina DNA Prep
with Enrichment protocol (doc. no. 1000000048041v05;
Illumina, San Diego, CA, USA). For this purpose, 100 ng of
December 2021 | Volume 11 | Article 783961
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purified cDNA was used to prepare the library following
tagmentation, indexing, enrichment, PCR amplification, and
purification. Enrichment was performed using the Illumina
Respiratory Virus Oligo Panel (cat no. 20042472; Illumina).
The quality and the quantity of the sequencing library were
checked using the Agilent 2100 Bioanalyzer with high sensitivity
DNA chip (cat. no. 5067-4626; Agilent, Santa Clara, CA, USA)
and the Qubit dsDNA High Sensitivity DNA kit, respectively. A
loading concentration of 10 pM was prepared by denaturing and
diluting the libraries in accordance with the MiSeq System
Denature and Dilute Libraries Guide (document no. 15039740,
v10; Illumina). Sequencing was performed on the MiSeq system
using the MiSeq Reagent Kit v3 (150 cycles) at 2 × 75 bp
read length.

Sequencing Data Analysis
To analyze MinION raw fast5 files until variant calling, the
ARTIC end-to-end pipeline was used. Base calling was
performed using Guppy basecal ler v3 .2 .4 (https : / /
nanoporetech.com/nanopore-sequencing-data-analysis) with a
quality cutoff Phred score of >7 on a GPU-Linux accelerated
computing machine. Demultiplexed fastq reads were normalized
by a read length of 300–500 bp for further downstream analysis
and aligned to the SARS-CoV-2 reference (MN908947.3) using
the aligner Minimap2 v2.17 (Li, 2018). To index the raw fast5
files for variant calling and to create consensus fasta, Nanopolish
v0.13.3 (Loman et al., 2015), SAMtools v1.7, and BCFtools v1.8
(Danecek et al., 2021) were used over the normalized
minimap2 output.

All fastq files generated from Illumina sequencing were
checked for quality using FastQC v0.11.9. A threshold of Phred
score >20 was used for filtering the reads from all samples.
Subsequently, adapter trimming was performed using
TrimGalore v0.6.6 and alignment of the sequences was
performed using HISAT2 v2.2.1 (Kim et al., 2019) on human
data build hg38 (Kim et al., 2015). SAMtools v1.12 was used to
remove aligned sequences. Henceforth, only unaligned
sequences were taken into consideration. BCFTools v1.12 was
used to generate the consensus fasta and variant calling.

Phylogenetic Analysis
The Wuhan reference genome for SARS-CoV-2 (NC_045512.2)
was used to perform multiple sequence alignments of 92 SARS-
CoV-2 genomes using MAFFT (v7.475) (Katoh et al., 2002). The
alignment was manually trimmed and a phylogenetic tree was
constructed using MEGA-X (Tamura et al., 2007). SARS-CoV-2
clades were assigned using Nextclade (https://clades.nextstrain.
org/). The phylogenetic analysis was visualized with FIGTREE
software (http://tree.bio.ed.ac.uk/software/figtree/).

Mutation Analysis
The vcf file was used to obtain the top most frequent and least
frequent mutations in the samples, and snpEff v5.0 (Cingolani
et al., 2012) was utilized to perform variant annotation such as
the variant definitions. The SnpEff database was created with
“SnpEff build” using the Wuhan reference NC_045512.2.
Furthermore, global frequency of the mutations was checked
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
against a global dataset available at 2019 Novel Coronavirus
Resource (2019nCoVR), CNCB (Song et al., 2020). Once the
annotated VCF was generated, a lollipop plot representing the
low-frequency (lower quartile) and-high frequency (upper
quartile) mutations was generated in R v4.1.0 using the g3viz
(Guo, 2021), rtracklayer (Michael Lawrence, 2017), and
trackViewer (Ou and Zhu, 2019) packages, followed by data
visualization using the ggplot2 package (ggplot2 version 3.3.5,
2021). Inkscape was utilized to modify the figures (Draw Freely|
Inkscape). Variant position along the SARS-CoV-2 genome is
indicated in the plot, which was used to compare the high- and
low-frequency mutations of the cohort study with the
global frequency.

Statistical Analysis
Continuous and categorical variables are represented as median
(interquartile range, IQR) and n (%). We applied the point-
biserial correlation to compare continuous and dichotomous
variables. Fisher’s exact test was used to comparing categorical
variables of gender, breathlessness, cough, diabetes, fever,
hypertension, heart conditions, and presence of other
comorbidities. Using these tests, the p-values of all features
were calculated. Multiple testing correction was done using the
Bonferroni test with an alpha value of 0.05. Data pre-processing
was done using pandas (https://pandas.pydata.org/pandas-docs/
stable/) and NumPy (Bisong, 2019). Statistical analysis was
conducted with SciPy (SciPy v1.7.1; https://docs.scipy.org/doc/
scipy/reference/) and statsmodels (https://www.researchgate.net/
publication/264891066_Statsmodels_Econometric_and_
Statistical_Modeling_with_Python), and the findings are visually
represented using the Matplotlib (Matplotlib 3.4.3; https://
matplotlib.org/) and Seaborn (Waskom, 2021) libraries in
Python (Python.org).

Machine Learning Pipeline
Thepipeline used to build theMLmodels in this study is described in
Figure 1. Broadly, the curated dataset was divided into seven folds
over seven iterations, six folds for training and one fold for testing in
each iteration, thus covering thewholedataset.Avaluebetween3and
10 is generally selected for the number of folds, with a higher value
leading to less bias. We chose to divide into seven folds because the
dataset size is 175, 25patients in each foldbeing ideal.This is theouter
loop. In each iteration, all of the31different variableswerepassed into
the function for building theMLmodels. Feature selection was done
on the training folds using the Extra Trees Classifier, in which we
selected the five most important features to train the model. For
hyperparameter tuning, GridSearchCV, on the six training folds, was
performed in the inner loop. ML algorithms of logistic regression,
random forest, XGBoost, SVM, and multilayer perceptron were
tested in this study. All five ML algorithms are trained on six folds
and tested on the seventh, over seven iterations. After all seven
iterations, the evaluationmetricswere averaged out to report thefinal
performance of the model. This method is known as nested cross-
validation (CV). To avoid information leaking into the test set and
overfitting of data, nested CV effectively uses a series of different
train–test set splits in each iteration.NestedCVis thepreferredway to
evaluate and compare tunedMLmodels and has been used before in
December 2021 | Volume 11 | Article 783961
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clinical settings (Gupta V. K. et al., 2021). Figure 2 demonstrates the
workflow of the nested CV algorithm. A detailed description of the
steps used in building the models is given in the following sections.

Data Normalization
Data normalization was performed using MinMaxScaler of scikit-
learn library in Python, which performs a linear transformation on
the original data. It was fitted on the training set and transformed on
the training and test sets using the same fit.

Feature Selection
Feature selection was done on the training folds using the
ExtraTreesClassifier (Extremely Randomised Random Tree
Classifier), which is present in the scikit-learn ensemble
methods. It is a type of ensemble learning technique that
accumulates multiple correlated trees in a forest and generates
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
the classification result. Each feature was ordered in descending
order according to its Gini importance, from which the five most
important features were selected for the model.

Hyperparameter Tuning
To perform hyperparameter tuning, grid search cross-validation
over six folds of the current training set was performed.
GridSearchCV is a package of scikit-learn that selects the best
hyperparameters from a range of listed hyperparameters by
trying all combinations of the values passed. They were scored
based on the F1 scores (one of our major evaluation metrics).

Evaluation Metrics
The following metrics were recorded to assess the predictive
performance of the supervised models. The formulae for the
calculation of all metrics are given below.
FIGURE 1 | Pipeline for building a machine learning model for risk prediction. The processes of data pre-processing, data normalization, feature selection,
hyperparameter tuning, and training and testing of a model in nested cross-validation are depicted.
December 2021 | Volume 11 | Article 783961
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• Accuracy score: Accuracy is the fraction of predictions that the
model got right.

Accuracy   =
Number of correct predictions
Total number of predictions

• Precision: Precision indicates what proportion of the positive
predictions was correct. It is the number of correct positive
results divided by the number of positive results predicted by
the classifier.

Precision =
True positives

True positives + False positives

• Recall: Recall denotes what proportion of the actual positives
was identified correctly. It is the number of correct positive
results divided by the number of all relevant samples.

Recall =
True positives

True positives + False positives

• F1 score: The F1 score is the harmonic mean between precision
and recall. The range for the F1 score is [0, 1]. It indicates how
precise the classifier is (how many instances it classifies
correctly) and how robust it is (it does not miss a
significant number of instances).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
F1 Score = 2 ∗
Precision ∗Recall
Precision + Recall

• ROC score: The receiver operator characteristic (ROC) curve is
a probability curve that plots the true-positive rate (what
proportion of the positive class got identified correctly)
against the false-positive rate (what proportion of the
negative class got incorrectly classified) at various threshold
values and essentially separates the “signal” from the “noise.”
The area under the ROC curve (AUC) is a measure of the
ability of a classifier to distinguish between classes and is used
as a summary of the ROC curve.
RESULTS

Patient Clinical and
Demographic Characteristics
The initial dataset containing 257 patients was intensively
curated to exclude patients with missing data on important
parameters, resulting in a set comprising 175 patients with 31
different clinical parameters, which was used in the study. In this
dataset, 24 patients were classified as severe and 151 as mild
FIGURE 2 | Overview of nested cross-validation. The outer loop is for feature selection and average performance of each model on the different training and testing
folds, and the inner loop is for hyperparameter tuning using GridSearchCV.
December 2021 | Volume 11 | Article 783961

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Bhat et al. COVID-19 Mutations/ML for Public Health
COVID-19 patients. The median age of the patients was
46 years, ranging from 5 to 92 years. Males comprise a higher
percentage of the patients, constituting nearly 62%. The most
common clinical features were fever (48.57%), cough (42.28%),
and breathlessness (37.71%). The average respiratory rate was
seen to be 14–34 breaths per minute (median = 20). The
hematological parameters showed TLC counts from 2,500 to
25,200 cells/mm3, alkaline phosphatase median of 68, and CRP
median of 12mg/L. A summary of the available parameters is
presented in Table 1. Histograms of all continuous parameters
are shown in Supplementary Figures 1–3. The diversity in the
clinical presentations of the patients across various clinical
parameters and the severity are illustrated in Figure 3.

Symptoms Associated With
Disease Severity
To understand the significance of the clinical presentations of
patients and the possibility of developing severe disease, we
analyzed the statistical correlations of patients’ symptoms and
comorbidities across mild and severe individuals. We observed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
symptoms such as breathlessness (p = 5.29E−09) and cough
(p = 6.00E−04) to be significantly correlated with patients
developing severe COVID-19. At the same time, comorbidities
did not have a significant correlation with the disease severity. It
may be mentioned that comorbidities are a diverse set of
conditions that may have differential roles in modulating the
disease. The differential abundance of these factors across mild
and severe patients is highlighted in Figure 4.

Figure 4 shows the differential number of patients included in
our study with symptoms ranging from breathlessness, cough,
fever, hypertension, diabetes, and heart disease.

A closer look at the clinical data also revealed that 22 out of 66
patients reporting breathlessness developed severe disease, while
only 2 out of 109 patients not suffering from breathlessness
developed severe disease. To further understand the significance
of patients’ disease symptoms in delineating disease severity, we
calculated the combined effect of symptoms on severity
prediction. Unsurprisingly, we noted that the presence of all
three symptoms—cough, fever, and breathlessness—increased
the probability of contracting severe disease (Table 2).
TABLE 1 | Clinical summary of patients positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Patient features Cohort (n = 175) Mild (n = 151) Severe (n = 24) p-values

Age 46.00 (5–92) 43 (5–85) 70 (33–92) 5.61E−06a

Gender 1.77E−01b

Female 68 (38.85%) 62 (35.42%) 6 (3.42%)
Male 107 (61.14%) 89 (50.85%) 18 (10.28%)

Temperature 98.10 (95.70–102.00) 98 (95.7–102.0) 98.6 (96.7–100.0) 1.86E−01a

BMI 22.70 (18.70–17.40) 22.8 (18.9–27.4) 22.4 (18.7–27.2) 3.32E−01a

SpO2 98.00 (94.00–100.00) 97.0 (94.0–100) 98.0 (94.0–100) 7.73E−01a

Respiratory rate (per minute) 20.00 (14.00–34.00) 18.0 (14.0–34.0) 28.0 (16.0–32.0) 1.39E−17a

Presence of symptoms 144 (82.28%) 120 (68.57%) 24 (13.71%) NA
Fever 85 (48.57%) 73 (41.71%) 12 (6.85%) 1.00E+00b

Cough 74 (42.28%) 56 (32%) 18 (10.28%) 6.00E−04b

Breathlessness 66 (37.71%) 44 (25.14%) 12 (6.85%) 5.29E−09b

Presence of comorbidities 84 (48.00%) 66 (37.71%) 18 (10.28%) 7.00E−03b

Hypertension 58 (33.14%) 45 (25.71%) 13 (7.42%) 3.30E−02b

Heart condition 21 (12.00%) 16 (9.14%) 5 (2.85%) 1.74E−01b

Diabetes 56 (32.00%) 45 (25.71%) 11 (6.28%) 1.57E−01b

Hemoglobin 13.70 (4.5–18.6) 13.60 (0–18.6) 13.95 (9.7–18.2) 6.84E−01a

TLC count 7,100.00 (2,500–25,200) 6,500.0 (2,500.0–24,700.0) 10,350.0 (5,200.0–25,200.0) 4.21E−05a

Platelet count 214,000.00 (73,000.00–1,820,000) 214,000.0 (73,000.0–546,000.0) 208,000.0 (73,000.0–1,820,000.0) 5.20E−02a

Random blood sugar 114.00 (74.00–432.00) 111.0 (74.0–432.0) 125.0 (83.0–401.0) 6.59E−01a

Urea 26.70 (13.50–176.00) 25.9 (13.5–165.5) 48.0 (25.2–176.0) 2.68E−05a

Creatine 1 (0.30–5800) 0.90 (0.3–5800.0) 1.05 (0.8–12.5) 6.99E−01a

Sodium 140 (124–159) 141.0 (124.0–159.0) 138.0 (127.0–146.0) 1.80E−02a

Potassium 4.30 (2.90–104.00) 4.30 (3.0–104.0) 4.45 (2.9–104.0) 1.18E−01a

Chloride 105.25 (1.10–125) 108.0 (1.1–125.0) 106.0 (88.0–111.0) 4.27E−01a

Total bilirubin 0.60 (0.30–4.20) 0.6 (0.3–4.2) 0.6 (0.3–2.4) 2.18E−01a

Direct bilirubin 0.20 (0.10–2.20) 0.2 (0.1–2.2) 0.2 (0.1–1.2) 6.21E−01a

SGOT 34.20 (0.20–474.20) 33.6 (0.4–285.0) 54.7 (0.2–474.2) 4.84E−03a

SGPT 31.20 (3.80–190) 31.0 (11.0–190.0) 40.7 (3.8–190.0) 1.86E−01a

Total proteins 6.40 (3.60–12.60) 6.5 (4.8–12.6) 6.0 (3.6–7.4) 8.00E−03a

Albumin 3.50 (2.60–6.60) 3.5 (2.6–6.5) 3.4 (2.7–6.6) 7.67E−01a

Alkaline phosphatase 68.00 (3.80–320.90) 67.8 (3.8–237.0) 75.1 (32.4–320.9) 1.28E−02a

C-reactive protein 12.00 (0.10–381) 5.67 (0.1–381.0) 126.25 (12.0–168.9) 3.89E−11a
December 2021 | Volume 11 | Art
Outlier trimming was performed for SGOT, thus removing one outlier. Data are shown as median (IQR) or n (%). Significant parameters found after multiple correction testing are shown in bold.
TLC, total leukocyte count; SGOT, serum glutamic oxaloacetic transaminase; SGPT, serum glutamic pyruvic transaminase. The table highlights the spectrum of a multitude of clinical
parameters across mild and severe patients and the p-values of every parameter in predicting disease severity.
aPoint-biserial correlation.
bFisher’s exact test.
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Statistical Correlation Analysis of All
Clinical Characteristics
To identify the clinical parameters associated with disease severity,
statistical tests for correlation were used on the curated dataset of
31 parameters across 175 patients. We found that 13 parameters
had a p-value <0.05, namely, age, alkaline phosphatase,
breathlessness, CRP, SGOT, cough, hypertension, comorbidities,
respiratory rate, sodium, TLC count, total proteins, and urea
(Table 1). Upon further scrutiny of the significance threshold by
performing multiple testing correlation, a p-value <0.0016 was
considered significant, thus resulting in the identification of seven
highly significant factors associated with severity. These factors are
age (65.41 ± 16.75, p = 5.61E−06), breathlessness (p = 5.29E−09),
CRP level (115.84 ± 45.81 mg/L, p = 3.89E−11), respiratory rate
(26.5 ± 3.78 breaths/minute, p = 1.39E−17), TLC count
(11,887.5 ± 6,378.108, p = 4.21E−05), coughing (p = 6.00E−04),
and blood urea level (60.88 ± 42.21 mg/dl, p = 2.68E−05). We also
noted that, in our dataset, there were no patients with severe
clinical disease that were completely free of symptoms: cough,
fever, and breathlessness. To understand the association of the
clinical parameters and disease severity, bar graphs are plotted for
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all parameters in Supplementary Figures 4–8. The order of
statistical significance of the 31 parameters are shown in
Figure 5A, and significant correlations are shown in Figure 5B.

We observed that patients above the age of 60 years were more
prone toward having severe COVID-19. It is important to note that
only 8 out of 130 people below 60 years had severe disease, while 16
out of 45 people above 60 years had severe disease outcomes.
Figure 5B highlights that, for patients with a respiratory rate above
25 breaths/minute, the outcome was most likely to be severe.
Similarly, it was observed that a CRP level above 100 mg/L was
correlated with severity, albeit with a few outliers.

Machine Learning Model Development
Five different ML algorithms were used to develop viable
predictive models for disease severity. All the models were
tested using nested CV and their average performance metrics
reported. For the final ROC curve, the ROC curve for each
iteration of nested CV was plotted and averaged to obtain the
final curves (Supplementary Figure 9).

The statistical results previously obtained tallied with the
features that were selected for most models using ExtraTrees
FIGURE 3 | Distribution of the clinical parameters across severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients. The figure highlights the clinical
heterogeneity across various clinical parameters in COVID-19 patients. These include demographic, clinical, and blood parameters and disease outcomes.
December 2021 | Volume 11 | Article 783961
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Classifier. Every model showed more than 90% accuracy, but
their performance was judged by comparing the ROC AUC
scores and F1 scores, as these measures are better suited for an
imbalanced dataset. It was observed that most models performed
similarly to each other with respect to the ROC-AUC scores (in
the range of 0.90–0.93), but multilayer perceptron stood out with
an ROC score of 0.96. In terms of the F1 scores, SVM performed
the best (F1 score = 0.793), followed closely by multilayer
perceptron (F1 score = 0.791), with a difference of just 0.002. It
must be noted that the results would vary slightly with each test
run, so it can be said that, for our test run, multilayer perceptron
performed the best overall with the second best F1 score of 0.791
(very close to that of the first being 0.793) and the best ROC score
of 0.96. The scores of each model across various performance
metrics are shown in Supplementary Table 1. A detailed
comparative report of the model performances is shown in
Figure 6, with the confusion matrices, ROC curve, and F1
scores of each model.

SARS-CoV-2 Phylogenetic Analysis
SARS-CoV-2-positive nasopharyngeal RNA samples from 92
patients out of 257 in the patient cohort with sufficient
quantity and quality of RNA were available for viral genome
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sequencing. To understand the SARS-CoV-2 genomic diversity
in our patient cohort, genome sequencing and analysis were
performed on these RNA samples. Phylogenetic analysis showed
that the majority of the samples belonged to clades 19A (47.8%),
20A (11.9%), and 20B (40.2%) (Figure 7). This is consistent with
the SARS-CoV-2 genomic surveillance observations in India
during a similar period of the pandemic (Banu et al., 2020;
Kumar et al., 2020; Joshi et al., 2021). The clades and genome
coverage of all sequenced patient samples are listed in
Supplementary Table 2.

SARS-CoV-2 Mutation Analysis
To further observe the diversity of mutations captured in our
samples, we performed mutational analysis vis-a-vis comparison
with the global frequency and genomic distribution of the
observed mutations. Individual mutation level analysis revealed
422 unique mutations in our sample set. Further analysis toward
the global frequency of all these mutations during SARS-CoV-2
surveillance with 21,51,254 globally shared sequence data
revealed that eight mutations present in low frequencies (lower
quartile) in our dataset are now present in higher frequencies
(>35%) when compared with the global mutational frequency
data. The evolutionary selection of these mutations over the
period of the pandemic (from May 2020 to Sept 2021) and their
presence in the VOCs and VOIs indicate their potential
functional significance. Orthogonally, we noticed five highly
frequent mutations in our dataset (upper quartile) that are
now present in very low frequency (<1%) in current global data
(Figure 8). These mutations can possibly have a detrimental effect
on the improved transmission characteristics observed in the
latest variants spreading across the globe. We also noticed six
mutations in our dataset (D614G, P4715L, R203R, R203K,
C15279T, and Q57H) that have currently been designated as
clade-defining mutations of the VOCs and VOIs of SARS-CoV-2,
namely, 20I (Alpha), 21A (Delta), 21B (Kappa), and 20H (Beta).
All mutations were then annotated on the SARS-CoV-2 reference
genome to identify the presence of the mutations in different
regions of the SARS-CoV-2 genome. We observed 67% of the
FIGURE 4 | Relative abundance of symptoms in severe and mild coronavirus disease 2019 (COVID-19) patients.
TABLE 2 | Correlation between severity and presence of multiple symptoms.

Fever Cough Breathlessness No. of patients
with these
symptoms

Probability of
severe outcome in

our cohort

Absent Absent Absent 41 0
Absent Absent Present 13 0.23
Absent Present Absent 8 0
Absent Present Present 28 0.32
Present Absent Absent 37 0
Present Absent Present 10 0.3
Present Present Absent 23 0.09
Present Present Present 15 0.47
The table highlights the combinatorial effect of the most prominent disease symptoms and how
it increases the probability of severe disease outcomes in the presence of multiple symptoms.
December 2021 | Volume 11 | Article 783961
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mutations to be present in the ORF1ab region and 11.76% of the
mutations to be present in the spike region of the SARS-CoV-2
genome. It is interesting to note that, due to the size of the SARS-
CoV-2 spike region being around one-fifth of the ORF1ab region,
we saw equal mutation rates in the spike and ORF1ab regions,
which were around 1.31 and 1.34, respectively. We also observed
a significant number of mutations present in other regions of the
genome (Supplementary Table 3).
DISCUSSION

COVID-19 has spread around the globe with rapidly emerging
VOCs and VOIs reducing the efficacy of global vaccination
efforts, which has transformed the pandemic to an ever-
looming threat to global healthcare. Therefore, meaningful
surveillance efforts and an efficient, applicable COVID-19 risk
prediction model based on the Indian cohort are warranted. In
this study, we analyzed 175 patient clinical data with 31 different
parameters, which included vital signs and patient demographic
data on oxygen saturation, respiratory rate, BMI, age, gender,
comorbidities, and respiratory support levels. Detailed blood test
reports pertaining to the levels of CRP, IL-6, TLC, D-dimer, and
lactate dehydrogenase were also included in the study. We
observed that symptoms such as breathlessness and cough
segregated toward severe outcomes in due course of disease
progression. The significance of these symptoms has been
previously reported by different studies (Burke et al., 2020;
Ioannou et al., 2020), whereas the presence of symptoms such
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
as cough, fever, and breathlessness together significantly
increased the probability of the patient developing severe
COVID-19. This has been shown in other cohorts, but not in
India (Ioannou et al., 2020). To further improve the identification
of risk factors associated with COVID-19, we analyzed every
biochemical test parameter for its severity predictive significance.
We observed that seven parameters—age above 60 years,
breathlessness, CRP level above 100 mg/L, cough, respiratory
rate above 25 breaths/minute, TLC count above 10,000, and blood
urea level above 40 mg/dl—showed a statistically significant
(p < 0.0016) correlation with disease severity. Some of these
parameters have been individually reported to be of predictive
significance in COVID-19: CRP levels (Ali, 2020), blood urea
levels signifying kidney involvement (Cheng et al., 2020b), TLC
(Zhao et al., 2020), and old age (Mueller et al., 2020). Using these
factors in a combined manner can help to assess the risk of
patients developing severe disease. Although due to the relatively
small patient cohort in the study, albeit detailed clinical
parameters, it would be important to validate the findings in a
larger Indian dataset to further iterate the findings and highlight
the significance of these clinical parameters in predicting
COVID-19 severity and clinical outcomes.

To enable a robust risk stratification procedure to be
implemented in clinical settings, five ML models for risk
stratification were developed. Herein, we observed that
multilayer perceptron outperformed all other models, with an
ROC score 0.96 and an F1 score 0.791. Upon close observation of
the characteristics of the other models, it became clear that a
simpler model such as logistic regression (F1 score = 0.51) cannot
A

B

FIGURE 5 | Statistical correlations of the clinical parameters and clinical severity. (A) Ranking of the parameters according to predictive significance. (B) Depiction of
the differential abundance of clinical parameters across mild and severe patients. For the presence of any symptom, cough and breathlessness, the p-value is
between mild and severe patients with respect to the presence and absence of symptoms.
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capture the complexity of the dataset, even after selecting the best
features and tuning the hyperparameters. In various other studies
with similar models (Prakash, 2020; Gupta V. K. et al., 2021), it
was observed that logistic regression underperformed. In our
study, random forest, multilayer perceptron, XGBoost, and SVM
performed much better and had similar scores, so we can use the
results of the four combined to arrive at a prediction. The only
plausible limitation of the approach is the relatively small sample
size, which may limit how well the models built here generalize
and the lack of repeatability of the ML-generated results. However,
it is important tomention that theML pipeline described adapts to
and can be applied as a method for larger datasets, when available,
making it a novel approach to the problem.

In our genomic analysis of 92 patients, we identified clades
19A, 20A, and 20B. To help stratify the SARS-CoV-2 mutations
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
with respect to potential functional significance, we accessed the
current global frequency of all 422 mutations identified in our
dataset. Herein, we observed a few mutations that have a
significant frequency flip for their occurrence. We noticed eight
mutations present in extremely low frequencies in our dataset
(n ≤ 2 patients), but were highly abundant in the global dataset
(>35%). All of these mutations are now seen predominantly in
VOC 20I Alpha. The mutations C3267T (T1001I) (Public Health
England, 2021; Castonguay et al., 2021; Srivastava et al., 2021),
A28111G (Y73C) (Public Health England, 2021, C23271A
(A570D) (Public Health England, 2021), C913T (S216S)
(Castonguay et al., 2021), T28282A (D3E) (He et al., 2021),
G28280C (D3H) (Castonguay et al., 2021; He et al., 2021), and
A28281T (D3V) (Castonguay et al., 2021) are reported in 20I
Alpha clade. Of these, C15279T (H5005H) is a clade-defining
A

B

C

FIGURE 6 | Performance of the different machine learning (ML) models. (A) Confusion matrices of the last fold in the nested cross-validation (CV) for each model.
(B) Plot of the average receiver operating characteristic (ROC) curve of each model. (C) Line plot for the F1 and area under the curve (AUC) scores for each model.
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mutation for 20I (Hadfield et al., 2018). The identification of these
mutations associated with 20I in the Indian cohorts around the
period from July to September 2020 is an interesting finding for
further evolutionary analysis of clade 20I, as it is believed to have
originated from the UK where it was first discovered on
September 20, 2020 (Public Health England, 2021).
Orthogonally, five of the mutations highly abundant in our
dataset were seen to be sparsely present in the global data (<1%
frequency). The literature reviews of these mutations—C13730T
(A4489V) (Banu et al., 2020; Alai et al., 2021), (C6312A) T2016K
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(Banu et al., 2020; Sarkar et al., 2021), C6310A (S2015R) (Kumar
et al., 2020), C5700A (A1812D) (Joshi et al., 2021; Srivastava et al.,
2021), and C23929T (Y789Y) (Banu et al., 2020; Joshi et al., 2021;
Sarkar et al., 2021)—reiterate this finding as they showed that all
of these mutations were highly prevalent during the initial phase
of the pandemic in India as a part of clades 19A, 20A, and 20B,
whereas these mutations are not a part of the currently circulating
clades, even in India, such as 21A (Delta) (Dhar et al., 2021;
Shastri et al., 2021). This possibly indicates the detrimental effect
of these mutations in viral transmission characteristics. Our effort
toward mutational analysis beyond strain identification of the
SARS-CoV-2 variants can provide epidemiological context to
help prioritize SARS-CoV-2 mutations for functional analysis.
However, cohort-specific genomic analysis provides valuable
insights into the evolving genomic characteristics of the virus.
Further validation toward the prevalence of the identified
mutations can be done by continuous monitoring of the
regional genomic trends of COVID-19 patients at the same
time point and beyond.

An accurate risk stratification model for segregating
disease-specific patient populations based on detailed clinical
parameters can help in the rapid screening and resource
allocation in healthcare facilities. Cohort-specific changes can
be present between patients of different ethnicities (Ali, 2020),
therefore necessitating the development of cohort-specific
models for country-specific healthcare settings. Our study
hereby provides an approach and method to converge the
diversity of the clinical variables observed in the early
phases of COVID-19 into a few consequential diagnostic
variables for severity prediction. This ML model, upon further
validation in larger patient cohorts across India, can be
implemented by a clinician using an interactive dashboard at a
healthcare facility in the future. A brief outline of the approach
and future perspectives of this study are summarized graphically
in Figure 9.
FIGURE 8 | Mutation frequency analysis with frequency flip. The frequency of mutations with significant frequency differences between the global and our study
cohort are shown. Global frequency is represented as blue circles and the missense mutation frequency in our cohort is shown as red circles. Synonymous mutation
frequencies in our cohort, S216S (C913T), H5005H (C15279T), and Y789Y (C23929T), are shown as green circles.
FIGURE 7 | Phylogenetic analysis of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) genomes. The distribution of SARS-CoV-2
clades among 92 coronavirus disease 2019 (COVID-19) patients compared
with the wild-type strain is shown.
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CONCLUSION

The findings of this study highlight the integrative analysis of the
diverse clinical data, SARS-CoV-2 genomic mutations, its future
relevance when compared with the global frequency of the
mutations, and the use of ML to reduce the dimensionality of
the data in order to identify key features associated with disease
severity. The findings regarding the low-frequency mutations
being part of future VOCs and VOIs provide a framework for
closely monitoring the low-frequency mutations for their future
functional importance in transmission and immune escape.
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