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Abstract: Surgical gestures detection can provide targeted, automated surgical skill assessment and
feedback during surgical training for robot-assisted surgery (RAS). Several sources including surgical
videos, robot tool kinematics, and an electromyogram (EMG) have been proposed to reach this
goal. We aimed to extract features from electroencephalogram (EEG) data and use them in machine
learning algorithms to classify robot-assisted surgical gestures. EEG was collected from five RAS
surgeons with varying experience while performing 34 robot-assisted radical prostatectomies over the
course of three years. Eight dominant hand and six non-dominant hand gesture types were extracted
and synchronized with associated EEG data. Network neuroscience algorithms were utilized to
extract functional brain network and power spectral density features. Sixty extracted features were
used as input to machine learning algorithms to classify gesture types. The analysis of variance
(ANOVA) F-value statistical method was used for feature selection and 10-fold cross-validation
was used to validate the proposed method. The proposed feature set used in the extra trees (ET)
algorithm classified eight gesture types performed by the dominant hand of five RAS surgeons with
an accuracy of 90%, precision: 90%, sensitivity: 88%, and also classified six gesture types performed
by the non-dominant hand with an accuracy of 93%, precision: 94%, sensitivity: 94%.

Keywords: robot-assisted surgery (RAS); electroencephalogram (EEG); functional brain network;
surgical gesture detection

1. Introduction
1.1. Importance of Gesture Detection in Robot-Assisted Surgery (RAS)

RAS offers advantages such as three-dimensionality of the surgical field, magnified
images of the work area, and improved dexterity compared to the traditional surgical
framework. Moreover, RAS has benefits for patients including smaller incisions, decreased
blood loss, shorter hospital stays, faster return to work, improved cosmesis, and lower
incidence of some surgical complications [1]. While RAS advantages are appreciated, chal-
lenges in skill evaluation limits utilization of the robot-assisted technologies, particularly
for complex surgical procedures. Existing methods for evaluation of RAS expertise level for
trainees and surgeons rely upon subjective, peer-based observational assessment [2], and
outcome-based analysis [3]. Such evaluations require large amounts of expert monitoring
and manual rating and can be inconsistent due to biases in human interpretation [4]. Previ-
ous work on skill evaluation in RAS mainly exploited kinematic data recorded by the robot
and global measurements of the task. These measurements include time to completion [5,6],
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speed and number of hand movements [5], distance travelled [6], and force and torque
signatures [6–8]. These methods are easy to implement. However, they perform a global
assessment about skill level and neglect the fact that a surgical task is composed of several
different gestures. These skill evaluation methods have two main shortcomings: First, they
use a single model for a whole complex task, while segmenting a task into gestures will
allow for the use of a simpler model for each gesture. Second, those methods assume that
a trainee is either skilled or unskilled at performing a whole task, while a trainee may
be skilled in performing some segments of the task and unskilled in performing other
segments as a complexity level is different for a gesture.

1.2. Literature Review of Gesture Detection in RAS Application

Automated recognition of “gestures” can provide a more accurate method for auto-
mated evaluation of surgical performance. Different sources of data including video [9], a
robot’s kinematics data [10–13], and electromyograms (EMG) [14] have been proposed for
gesture segmentation and recognition. Lee et al., proposed the deep neural network and
leap motion for hand gesture recognition. They used 903 training dataset and 100 testing
dataset, to train the proposed network using five types of surgical hand gesture including
hovering, grab, click, one peak, and two peaks performed by 10 subjects. They achieved
a classification accuracy of 86.46% [15]. In another study, Sarikaya et al., developed a
long short-term memory network (LSTM) model that jointly learns temporal dynamics on
rich representations of visual and motion features (JIGSAWS dataset), and simultaneously
classifies activities of low-level gestures and surgical tasks. The authors trained their model
on a fixed random set of 121,200 video segments and used 422 video segments for testing.
Average precision of their model was 51% for 3 tasks and 14 possible gesture labels [16].

In addition to variety of modalities used for gesture detection, several algorithms
have also been proposed to address this challenge. These algorithms include support-
vector-machine (SVM), hidden-Markov models [17,18], and neural networks [15,19,20]. We
compared the result of some studies about gesture detection in Table 1.

1.3. Strengths and Shortcomings of the Existing Methods of Gesture Detection in RAS Application

While videos contain semantic information that are not presented in kinematic data,
they are not typically used because of the complications associated with automatic video
interpretation [9]. Instead, recording kinematic data requires additional recording devices.
Also, a surgeon’s hand kinematics may not be accessible for recording in the operating
room (OR). Moreover, processing surgeon’s hand kinematics, hand trajectory segmentation
is another challenge that has not yet been addressed [12].

1.4. The Purpose of This Study

While electroencephalogram (EEG) data are source of information about motor, cog-
nition, and perception functions [12,26–29], this modality has not been widely used for
surgical gesture detection. In this study, we proposed functional brain network and power
features to be used in machine learning algorithms to classify surgical gestures performed
in the operating room (OR) for dominant (eight gesture types) and non-dominant hands
(six gesture types). Functional brain network features were extracted by applying network
neuroscience algorithms to EEG data. Power features were extracted by applying the short
fast Fourier transform (SFFT) method to EEG data. The k-nearest neighbors (KNN), bagged
decision trees (BAG), random forest (RF), and extra trees (ET) machine learning models
were examined to find the best classification model.
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Table 1. Comparing our proposed method with other robot-assisted surgery (RAS) gesture classification methods.

Study Data Classification
Method Task # of Classes Accuracy Distinct

Hands?

Henry C. Lin, et al. [21]
End effector
motion data

(JIGSAWS [22])

linear discriminant
analysis

Robot-assisted
surgery tasks
performed on

simulator

8 gestures 91.52% No

Xiaojie Gao, et al. [23]
End effector
motion data

(JIGSAWS [22])

reinforcement
learning and tree

search

Robot-assisted
surgery tasks
performed on

simulator

8 gestures 81.67% No

Fabien Despinoy [10] End effector
motion data k-nearest neighbors

pick-and-place
performed

using Raven-II
robot

12 gestures 81.9% No

Duygu Sarikaya et al.
[16]

Surgical videos
(JIGSAWS [22])

long short-term
memory network

(LSTM)

Robot-assisted
surgery tasks
performed on

simulator

14 gestures 51% No

Surgical videos
(JIGSAWS [22])

optical flow
ConvNets 3 tasks 84.36% No

Duygu Sarikaya and
Pierre Jannin [24]

Suturing task of
the JIGSAWS [22]

spatial temporal
graph

convolutional
networks

Robot-assisted
surgery tasks
performed on

simulator

10 gestures 68% No

Francisco Luongo et al.
[25]

videos of a live
vesico-urethral

anastomos (VUA)

LSTM and
convLSTM)

Robot-assisted
surgery tasks

5 suturing
gestures 87% No

1.5. Contribution of This Study

The proposed method will aid in developing an objective model for detection of RAS
surgical gestures. Since EEG data recording does not interfere with the main task of surgery
and processing EEG data is not as complicated as video processing, the proposed gesture
classification method will be useful in addressing this challenge in RAS.

Materials and methods used in this study are explained in Section 2, followed by
results in Section 3. The findings of this study are discussed in Section 4.

2. Materials and Methods

The study was conducted in accordance with relevant guidelines and regulations and
was approved by Roswell Park Comprehensive Cancer Center Institutional Review Board
(IRB: I-241913).

2.1. Data Recording Setup

A group of five RAS surgeons (dominant hand: right), one master surgeon and four
surgical fellows, from Roswell Park Comprehensive Cancer Center (RPCCC) performed
34 robot-assisted radical prostatectomies. The details of the study and the goal of the
study were explained to all surgeons and an informed consent was obtained before the
first session of study. Brain activity was recorded by placing a 128 EEG headset (ANT
neuro inspiring technology, Inc., Hengelo, Netherlands) on the scalp while simultaneously
recording the surgical video feed. EEG was recorded at a frequency of 500 Hz using
119 electrodes from frontal (2 channels), prefrontal (3 channels), central (7 channels), tempo-
ral (2 channels), parietal (10 channels), occipital (4 channels), frontal-central
(19 channels), frontal-temporal (10 channels), parieto-occipital (17 channels), temporal-
parietal (8 channels), and central-parietal (18 channels) cortices. From the other nine
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channels, two are reference electrodes placed on the mastoids, and 7 electrodes (I1, Iz, I2,
CPz, PO5, PO6, Oz) were excluded from this study due to lack of signal quality.

2.2. Gestures Extraction

Surgical gestures, performed by dominant and non-dominant hands, were extracted
individually and synchronized with associated EEG data, by examining the videos of the
surgical scenes (Figure 1). Different types of extracted gestures (totally 1024 gestures performed
by left hand and 1258 by right hand) are represented in Table 2. These gestures include:

• Bipolar Cautery: Surgeon uses bipolar tool to control bleeding event by cauterization.
While cauterization is passing, a high frequency electrical current through tissue from
one electrode to another.

• Monopolar Cautery: Surgeon uses regular monopolar tool to control bleeding
by cauterization.

• Blunt Dissection: Surgeon separates tissue planes by pushing them around, instead of
cutting them or cauterization.

• Tissue Grasping: Surgeon catches tissue.
• Retraction: Surgeon retracts structures by holding them aside, to improve operative

field visibility.
• Suturing: Surgeon uses surgical sutures to hold body tissues together. Sutures (or

stitches) are typically applied using a needle with an attached piece of thread and are
secured with surgical knots.

• Needle Insertion: Surgeon inserts the needle to the entry site of tissue surface using
downward pressure and applies a twisting motion until resistance decreases as the
needle passes through the surface and the suture begins to traverse the tissue.

• Surgical Thread Grasping: Surgeon grasps the surgical thread.
• Idle: Surgeon is not doing any action as it may be waiting for a response from the

surgical team or is thinking before deciding the next step.

2.3. Electroencephalogram (EEG) Data Analyses

We used the Advanced Source Analysis (ASA) framework developed by ANT neuro
inspiring technology, Inc, Netherlands, to pre-process EEG data. ASA incorporates artifact
correction by spatial filtering. It separates brain signal from artifacts based on their to-
pography and subsequently removes the artifacts without distorting the brain signal. The
separation is determined based on data intervals with a clear artifactual activity as selected
by the user and will be used to specify the artifact topography. The method determines
which part of the data is considered the brain signal using two criteria. The first criterion
specifies the highest permitted amplitude of the brain signal while the second criterion
specifies the highest correlation between brain signal and artifact topography permitted.
Then, a spatial principal component analysis (PCA) method is used to determine the to-
pographies of the artifact-free brain signals and the artifact signals. Finally, the artifact
components are removed. It should be mentioned that in the EEG recording system, an
active shielding technique protects the referential EEG inputs from environmental noise
(e.g., grid interference noise and cable movement). Also, by using the EEGO framework
for EEG recording, a running DC offset value was calculated per channel over the data.
This offset was subtracted from the data to compensate for the DC offset. Artifacts by
line noise were removed by applying a 60 Hz notch filter to EEG data. The EEG data
from channels were filtered with a band-pass filter (0.2–250 Hz) with a filter steepness of
24 dB/octave. The EEG artifact correction was done based on blind source separation and
using the topographical PCA-based method. Individual portions of EEG were visually
inspected for facial and muscular activity artifacts and other artifacts [30]. Then, the spatial
Laplacian (SP) technique was applied to the signals and the result was used for extracting
features [31].
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Figure 1. Schematic of experimental set up and extraction of electroencephalogram (EEG) data
associated with each gesture. (A) EEG and video data recording set up. (B) Synchronizing EEG
data with videos to extract EEG portion associated with each gesture performed by dominant and
non-dominant hands.

Table 2. Extracted gestures performed by dominant and non-dominant hands.
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Table 2. Cont.
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2.4. Types of Feature and Functional Brain Network Analyses

We extracted two groups of features; functional brain network and power spectral
density (PSD) features. We also, considered motor (included 70 channels), cognition
(included 37 channels), and perception (included 12 channels) cortices in our analyses. To
be able to extract functional brain network features, we extracted functional brain network
by using EEG data.

Brain network: Our approach was to consider EEG channels as nodes (i; i = 1, . . . .,N,
where N = 119) of the functional brain network and strength of functional connectivity (FC)
between pairs of brain regions (EEG channels) as the link between nodes of the functional
brain network. Functional connectivity was estimated as the coherence of the associated
EEG channels’ time series and can be considered as a measure of communication between
brain regions [32,33]. The functional brain network will then be a square matrix whose
elements (i,j) represent the magnitude of FC between pairs of brain areas. The result is a
weighted connectivity matrix (Γ =

(
Γij

)
∈ <NXN) whose entries represent the connection

weight between different brain areas i and j (EEG channels) and were also specific to
each individual. Since, this network fluctuates over different timescales; it is possible to
study time-varying properties of the FC network and find the relationship between these
time-varying properties and associated external or internal cause/stimulation. Community
structure, the decomposition of a network into densely inter-connected sub-networks or
“communities”, is one method for analyzing dynamic features of FC networks [34–36].
Communities representing brain regions tend to preferentially communicate with each
other, while weakly communicating to the rest of the brain regions [37–39].
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Brain functional modules: The adjacency matrix (Γij) of each 1-sec window within the
recording was used in categorical multilayer community detection algorithm [40]. A
Louvain-like locally “greedy” algorithm was used to optimize modularity in the multilayer
network [41,42]. Since the community detection algorithm is non-deterministic [43], and
also due to near-degeneracies in the modularity optimization [44], the output typically
varies from one run to another. Optimization of the multi-layer modularity was repeated
100 times, in a consensus iterative algorithm for each single run [43]. This was done to
identify a single representative partition from all partition sets, based on statistical testing
in comparison to the ‘Newman–Girvan’ null network [42]. The output of categorical
multilayer community detection is a partition matrix (A), representing the functional
community that each channel was assigned to [40].
Module-allegiance matrix: The module allegiance matrix (MAM) was derived using the
functional community each channel was assigned to. MAM elements represent the prob-
ability that pairs of brain areas be assigned to the same functional community during
processing tasks. This matrix was used to extract dynamic brain features of network
flexibility, integration and recruitment.

Functional brain network features were extracted by using:

- Adjacency matrices (Γ; extracted by coherence analysis applied to EEG data): search
information, strength, transitivity, mean pairwise diffusion efficiency, global efficiency,
and mean global diffusion efficiency features were extracted by using Γ.

- Module-allegiance matrix (MAM; extracted by applying multi-layer community de-
tection techniques to adjacency matrices): integration and recruitment features were
extracted by using MAM.

- Partition matrices (A; extracted by applying community detection techniques to
adjacency matrices): regional network flexibility feature was extracted using A.

PSD features were extracted by applying SFFT to EEG data.

2.5. Definition of Extracted Features
2.5.1. Brain Regional (Node) Network Flexibility

The flexibility of each node of a network corresponds to the number of times that
it changes module allegiance [45]. We used partition matrix A to calculate flexibility of
network nodes (regional flexibility) as (1) [46]:

fi = 1− 1
T − 1

T−1

∑
r=1

δ(Ai,r, Ai,r+1) (1)

where, ‘i’ is the EEG channel, A is partition matrix, and r is the time layer (successive
one second windows). Regional network flexibility of region ‘i’ counts the portion of
times that brain region ‘i’ changes its community assignment in successive one second
windows throughout a gesture performance [45]. Low (high) flexibility score shows that
the corresponding brain region’s community assignment is consistent (variable) across
layers [45,47].

2.5.2. Integration

Average probability that a brain area is in the same network community as areas from
other cortices [46,48].

2.5.3. Recruitment

Average probability that a brain area is in the same network community as other areas
from its own cortex [48].

Extracted MAM matrices were used to evaluate integration and recruitment of channels
within each cortex. The average value of each metric—integration, and recruitment—over all
channels in each cortex was considered flexibility, integration, and recruitment of that cortex.
We also evaluated these features for cortices in left and right lobes of the brain, separately.
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2.5.4. Search Information

The amount of information (measured in bits) that is required to follow the shortest
path between a given pair of nodes [49]. The adjacency matrix of each recording was used
to extract this feature [50]. Search information was calculated for pairs of channels within
each cortex, and the average value was considered per cortex in each recording. This
feature was evaluated for all cortices in the left and right lobes and throughout the cortices
of the whole brain.

2.5.5. Strength

The total communication weight of channels within each cortex of the brain. The
adjacency Matrix of each recording was used to extract the strength feature. The average
strength for each cortex was considered as strength of that cortex [51]. Average value for
cortices in the left and right lobes of the brain were evaluated separately as the strength of
cortices in the left and right lobes. This feature was evaluated for all cortices in the left and
right lobes and throughout cortices of whole brain.

2.5.6. Mean Pairwise Diffusion Efficiency of Cortices

The diffusion efficiency between nodes ‘i’ and ‘j’ is the inverse of the mean first passage
time from ‘i’ to ‘j’, that is the expected number of steps it takes a random walker starting
at node i to arrive for the first time at node j [52]. The average value of pairwise diffusion
efficiency for channels in each cortex is considered as mean global diffusion efficiency of
that cortex. The value of this feature was calculated separately for cortices in the left and
right lobes of the brain.

2.5.7. Transitivity

Transitivity is calculated as the ratio between the observed number of closed triplets
and the maximum possible number of closed triplets in the network. This feature shows
overall probability for the network to have adjacent nodes interconnected, thus revealing
the existence of tightly connected subgroups [53].

2.5.8. Global Efficiency

The average of inverse shortest path length. Efficiency was computed using an
auxiliary connection-length matrix L, defined as Lij = 1/Aij for all nonzero Lij; This has
an intuitive interpretation, as higher connection weights intuitively correspond to shorter
lengths [54,55].

2.5.9. Power

The SFFT method with a one second Kaiser moving window was used to calculate the
PSD of EEG signals. A 50% overlap was considered for Kaiser moving window. The PSD
analysis was used to extract average power of EEG signals of channels within each brain
cortex (motor, cognition, and perception).

A summary of extracted features is shown in Table 3.
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Table 3. Summary of extracted features.

Feature Method of Extraction Total Number

Regional network flexibility Network community detection
technique applied to functional

connectivity matrix Calculated for motor, cognition,
and perception cortices at left and
right lobes of the brain and same

cortices throughout brain

9

Integration 9

Recruitment 9

Search Information

Functional connectivity matrix

9

Strength 9

Mean pairwise diffusion
efficiency of cortices 9

Transitivity

Calculated throughout brain

1

Global efficiency 1

mean global diffusion
efficiency 1

Power Short fast Fourier transform
(SFFT)

Calculated for motor, cognition,
and perception cortices 3

2.6. Machine Learning Algorithms

Gestures from dominant and non-dominant hand include 8 and 6 types, respectively.
Available data for different classes are imbalanced, meaning the number of available data
samples was different for various gesture types. Most machine learning algorithms assume
that all classes have an equal number of samples. Therefore, we used an oversampling
technique of the synthetic minority oversampling technique (SMOTE), to synthesize new
examples of the minority types so that the number of examples in the minority class better
resembles or matches the number of examples in the majority classes [56]. SMOTE was
applied only to training sets, not the entire dataset.

We then implemented different non-linear machine learning classifier algorithms,
frequently used in EEG classification, to data in order to find the best classifier. We
evaluated the following machine learning models of KNN, BAG, RF, and ET, on the
datasets for the dominant and non-dominant hands.

KNN: The KNN is a very simple technique. The entire training dataset is stored. When
a prediction is required, the k-most similar records to a new record from the
training dataset are then located. From these neighbors, a summarized prediction
is made. Similarity between records can be measured in many ways. Once the
neighbors are discovered, the summary prediction can be made by returning the
most common outcome or taking the average. KNN parameters include number
of neighbors to use: 5, weight function used in prediction: ‘uniform’.

Bagging: Bagging involves taking multiple samples from training dataset (with replace-
ment) and training a model for each sample. The final output prediction is
averaged across the predictions of all the sub-models. The three bagging models
are BAG, RF, and ET. Bagging performs best with algorithms that have high
variance.

RF: Random forest is an extension of bagged decision trees. Samples of the training
dataset are taken with replacement, but the trees are constructed in a way that
reduces the correlation between individual classifiers. Specifically, rather than
greedily choosing the best split point in the construction of the tree, only a random
subset of features is considered for each split.

ET: Extra trees are another modification of bagging where random tree are constructed
from samples of the training dataset. The ET algorithm works by creating a large
number of unpruned decision trees from the training dataset. Classification
predictions are made by using majority voting.
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The ER and RF algorithms are very similar ensemble methods as both are composed
of many decision trees, where the final decision is obtained considering the prediction of
every tree. Also, when selecting the partition of each node, both randomly choose a subset
of features [57]. However, RF and ET have some differences including:

- RF uses bootstrap replicas: it subsamples the input data with replacement, whereas
ET uses the whole original sample.

- The selection of the cut points in order to split nodes: RF chooses the optimal split
while ET chooses it randomly. However, after selection of the split points, the two
algorithms choose the best between all the subset of features. Therefore, ET adds
randomization but still has optimization.

Bias-variance tradeoff: the differences between RF and ET motivate the reduction of
both bias and variance. While using the whole original sample instead of a bootstrap replica
will reduce bias, choosing randomly the split point of each node will reduce variance [57].

The BAG, RF, and ET parameters that we used in our analyses had: 350 trees; the
function to measure the quality of split (criterion): Gini impurity; the minimum number of
samples required to split an internal node: 2; the minimum number of samples required to
be at a leaf node: 1.

We examined a range of number of trees in the ensemble algorithms, from 100 to 1000
with increment of 20, to acquire the best performance. We set number of trees to 350. All
models are implemented in Scikit-learn library, Python 3.7.

2.7. Feature Selection Method

Feature selection is a process of automatically selecting features that contribute most
to the output. Statistical tests can be used to select those features that have the strongest
relationship with the output variable. We used analysis of variance (ANOVA) F-value
statistical method for feature selection.

2.8. Measures of Classification Method’s Performance

The 10-fold cross-validation was used to validate gesture-type classification method
and to investigate the effect of the training dataset size on the classification performance [57].

Classifications were evaluated regarding common metrics of average accuracy, preci-
sion, and sensitivity. Average accuracy: the ratio between the sum of correct predictions
and the total number of samples; Precision is the ratio of correct positive predictions (Tp)
and the total positive results predicted by the classifier (Tp + Fp) and sensitivity represents
the ratio of positive predictions (Tp) and the total positive results (Tp + Fn).

Also, we applied paired t-test (α = 0.05) with Bonferroni correction to extracted
accuracies for different number of selected features, to confirm whether detected differences
among the results of BAG, RF, and ET machine learning methods are statistically significant.

3. Results

Classification results for different machine learning methods and different number of
selected features are represented in Figure 2 for dominant and non-dominant hands.

Our results showed that the best classification accuracy occurs with 60 features
(57 functional brain network and 3 PSD features) and ET classifier. For dominant hand
(eight gestures), classification accuracy: 90.2%, precision: 89.81%, sensitivity: 88.33%.
For non-dominant hand (six gestures) classification accuracy: 93.4%, precision: 94.00%,
sensitivity: 94.23%.
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By increasing number of selected features, classification accuracy improves for both
hands’ gestures. Also, bagging models (BAG, RF, and ET) work better than the KNN
machine learning model for this classification problem.

We found that BAG, RF, and ET accuracies of classifying gesture types performed by
dominant and non-dominant hands are significantly different (p < 0.0001). The level of
accuracy improvement for pairs of classification methods is represented in Table 4.

Table 4. Results of applying paired t-test (α = 0.05) with Bonferroni correction to extracted accuracies
using bagged decision trees (BAG), random forest (RF), and extra trees (ET) algorithms (D: dominant
hand, ND: non-dominant hand).

Test Improvement Confidence Interval p-Value

D; ET versus BAG 0.90% 0.78–1.02% <0.0001

D; RF versus BAG 0.62% 0.53–0.72% <0.0001

D; ET versus RF 0.28% 0.21–0.36% <0.0001

ND; ET versus BAG 1.07% 0.95–1.18% <0.0001

ND; RF versus BAG 0.58% 0.45–0.70% <0.0001

ND; ET versus RF 0.49% 0.41–0.57% <0.0001

Also, results of applying classification methods to 60 features are shown in Table 5, for
gestures performed by dominant and non-dominant hands.

Table 5. Classification result—accuracy (standard deviation)—for dominant (D) and non-dominant
(ND) hands gestures, using 60 features and different non-linear classifiers including k-nearest neigh-
bors (KNN), bagged decision trees (BAG), random forest (RF), and extra trees (ET) classifiers.

KNN BAG RF ET

D 82.8 (0.023) 88.9 (0.017) 89.8 (0.017) 90.2 (0.018)

ND 86.7 (0.023) 91.9 (0.015) 92.7 (0.016) 93.4 (0.017)

To extract confusion matrix for classifying types of gestures performed by dominant
(8 types) and non-dominant (6 types) hands using ET algorithm, we considered 75% of
data as training dataset and 25% of data as test set. Confusion matrices are represented in
Tables 6 and 7 for dominant and non-dominant hands, respectively.

Table 6. Confusion matrix for classification of eight surgical gestures performed by dominant hand.

Dominant Hand

Predicted Label

Bipolar
Cautery

Monopolar
Cautery

Blunt
Dissection Retraction Suturing Needle

Insertion

Surgical
Thread

Grasping
Idle

True
Label

Bipolar Cautery 83% 0% 0% 7% 1% 0% 0% 9%

Monopolar
Cautery 0% 100% 0% 0% 0% 0% 0% 0%

Blunt
Dissection 0% 0% 99% 0% 1% 0% 0% 0%

Retraction 9% 0% 0% 84% 0% 0% 0% 7%

Suturing 0% 0% 0% 0% 94% 3% 0% 3%

Needle
Insertion 0% 0% 0% 0% 3% 92% 1% 4%

Surgical Thread
Grasping 0% 0% 0% 0% 1% 0% 99% 0%

Idle 23% 0% 6% 4% 0% 4% 0% 63%
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Table 7. Confusion matrix for classification of six surgical gestures performed by non-dominant hand.

Non-Dominant Hand

Predicted Label

Tissue
Grasping Retraction Suturing Needle

Insertion

Surgical
Thread

Grasping
Idle

True Label

Tissue
Grasping 95% 5% 0% 0% 0% 0%

Retraction 2% 86% 0% 0% 5% 7%

Suturing 0% 0% 100% 0% 0% 0%

Needle
Insertion 0% 0% 0% 99% 1% 0%

Surgical
Thread

Grasping
1% 0% 0% 0% 99% 1%

Idle 0% 15% 0% 2% 5% 78%

4. Discussion

Automatic detection of hand gestures in RAS is required for evaluating surgical skills
and providing surgical trainees with structured feedback [58]. Robot end effector kine-
matics and surgical videos are the most common modalities proposed for RAS gesture
detection. However, recording end effector kinematics may not be approved in the operat-
ing room. While using videos does not interfere with a surgeon’s performance, processing
videos is costly. Also, RAS gesture detection models developed by using videos are mostly
complicated deep neural network models. Moreover, the developed method depends
on the surgery type and is not generally used for all types of surgery. High complexity
level and cost may limit using videos for gesture detection. Analyzing robot end-effector
kinematics is less complicated. However, recording robot end effector kinematics may be
feasible only in research labs and during practice on surgical simulators as attaching an
external tracking sensor to surgical robot in the OR is not possible.

4.1. Proposed Method and Implications

To address this challenge, we proposed utilizing functional brain network features
extracted from EEG data in combination with PSD features in ET classifier. EEG data were
recorded from five RAS surgeons performing RARP. The surgical videos, synchronized with
EEG data, were used to extract bipolar cautery, monopolar cautery, blunt dissection, tissue
grasping, retraction, suturing, needle insertion, surgical thread grasping, and idle gestures
performed by dominant and non-dominant hands and also extract their corresponding
EEG data. Implementing network neuroscience and community detection algorithms,
we extracted functional brain network features including regional network flexibility,
integration, recruitment, search information, strength, transitivity, mean pairwise diffusion
efficiency, and global efficiency. These features and PSD feature were used in the gesture
classification process. We have shown that functional brain network and PSD features
were informative for dominant and non-dominant hands’ gesture classification in RAS
application. We achieved 90.2% and 93.4% accuracy in classifying gestures performed
by the dominant hand (8 gestures) and non-dominant hand (6 gestures), respectively.
The extracted accuracies illustrate the importance of brain dynamic measurements in
understanding information about surgical gestures.

4.2. Strength of Proposed Method

While existing RAS gesture classification methods have their own advantages and
applications, our proposed method demonstrates higher classification accuracy and fea-
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sibility of differentiating between gestures performed by dominant and non-dominant
hands simultaneously. In RAS, handedness (the better, faster, or more precise performance
or individual preference for use of a hand) is a required critical skill [59–61]. RAS surgeons
should be able to manage use of dominant and non-dominant hands for executing different
gestures in an efficient way. It has been shown that hand movement trajectory smoothness
is higher for expert surgeons compared to novices and intermediates. Also, smoothness is
higher for non-dominant hand in comparison with dominant hand [13]. Hence, it is impor-
tant to discriminate between gesture detection performed by each individual hand of the
surgeon. Our understanding is that this is the first study taking this fact into consideration.

Functional brain network reconfigures by practice throughout skill acquisition [62].
Although subjects have different levels of expertise, all of them had required skills to per-
form considered gestures on the patient, with high performance and under the supervision
of a master surgeon in the OR. Therefore, differences in evaluated functional brain network
features are not subject to change as a result of skill acquisition.

Inter- and intra-subject differences were considered in the proposed method, as we
included EEG data from five RAS surgeons with varying expertise levels (fellows and
expert surgeon). Moreover, EEG data have high spatial and temporal resolution as EEG
was recorded from 119 areas of the brain at frequency of 500 Hz.

We also examined different machine learning algorithms for classification including
KNN, BAG, RF, and ET classifiers. Our results showed that the ET algorithm performs
better on our data. The proposed gesture classification method has several advantages for
researching the RAS environment as it is convenient and does not interfere with a surgeon’s
performance. Also, analyzing EEG data is not as complicated as video processing.

Objective gesture recognition for dominant and non-dominant hands can provide a
valuable method for automated evaluation of surgical performance. Recognizing type of
gesture performed by dominant and non-dominant hands of RAS surgeon throughout a
complicated surgical task will aid in evaluating the skill level of surgeons in performing
each individual gesture. This detailed and fair skill evaluation will help RAS trainees to
focus only on performing gestures where their skill level is low. These improvements
in skill evaluation will result in accurate feedback to trainees and consequently shortens
learning curve.

4.3. Limitations and Shortcomings of the Proposed Method

Data from only one master surgeon and four surgical fellows were used in this study.
To validate the wide-ranging application of proposed method, data from more experts and
also data from novice and beginner RAS trainees are required.

To the best of our knowledge, this is the first study proposing brain functional network
features for classifying RAS surgical gestures performed by dominant and non-dominant
hands of surgeons. Using EEG data in network neuroscience algorithms to extract infor-
mative features for surgical gesture detection can address some of the existing challenges.
However, more in-depth investigations are required to explore other informative features
of EEG data and more validations are required to develop a general automatic gesture
detection model for surgical application in a clinical framework.

5. Conclusions

Based on our classification results with different numbers of selected features (up to
60), by increasing number of selected features classification accuracy improves. It shows
that the proposed and developed 60 features are informative in surgical gesture recognition,
but there are still informative features to be added to this feature set to make classification
accuracy even better. We will consider extracting features through distinct frequency
domains and individual brain cortices and using them for RAS gesture recognition, as a
future goal.

The developed gesture recognition method uses the EEG data and these data are not
dependent on the type of surgery. Also, the considered gestures are common in different
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types of surgery. Therefore, the developed method can be generalized to other types of
surgery by adding more gesture types from other types of surgery, as a future goal.

Since a command for performing any action is created and controlled by the brain,
utilizing EEG data of RAS surgeons performing surgical tasks can be used not only for
dominant and non-dominant gesture detection, but also to identify the decision making
period for each gesture command creation. It may also be useful to extract the relationship
between length of decision-making time window and the surgeon’s performance.

Author Contributions: Conceptualization: S.B.S.; Data curation: S.B.S., M.D., M.M., A.S.E., K.G.;
Formal analysis: S.B.S.; Funding acquisition: K.G., S.B.S.; Methodology: S.B.S., K.G.; Validation:
S.B.S., Z.J.; Writing—original draft: S.B.S. Writing—review and editing: S.B.S., Z.J., P.D., A.A.H., U.I.,
A.S.E., and K.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of Roswell Park Compre-
hensive Cancer Center (protocol code: I-241913, and date of approval: 06/03/2013).

Informed Consent Statement: Written informed consent has been obtained from the participant(s)
to publish this paper.

Acknowledgments: This work was funded by the Roswell Park Alliance Foundation. Authors
would like to thank Arun Menon and Naif Aldhaam from Urology department at Roswell Park
Comprehensive Cancer Center for participation in the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Reza, M.; Maeso, S.; Blasco, J.; Andradas, E. Meta-analysis of observational studies on the safety and effectiveness of robotic

gynaecological surgery. Br. J. Surg. 2010, 97, 1772–1783. [CrossRef]
2. Anderson, C.I.; Gupta, R.N.; Larson, J.R.; Abubars, O.I.; Kwiecien, A.J.; Lake, A.D.; Hozain, A.E.; Tanious, A.; O’Brien, T.; Basson,

M.D. Impact of objectively assessing surgeons’ teaching on effective perioperative instructional behaviors. JAMA Surg. 2013, 148,
915–922. [CrossRef]

3. Bridgewater, B.; Grayson, A.D.; Jackson, M.; Brooks, N.; Grotte, G.J.; Keenan, D.J.; Millner, R.; Fabri, B.M.; Mark, J. Surgeon
specific mortality in adult cardiac surgery: Comparison between crude and risk stratified data. BMJ 2003, 327, 13–17. [CrossRef]

4. Reiley, C.E.; Lin, H.C.; Yuh, D.D.; Hager, G.D. Review of methods for objective surgical skill evaluation. Surg. Endosc. 2011, 25,
356–366. [CrossRef] [PubMed]

5. Datta, V.; Mackay, S.; Mandalia, M.; Darzi, A. The use of electromagnetic motion tracking analysis to objectively measure open
surgical skill in the laboratory-based model. J. Am. Coll. Surg. 2001, 193, 479–485. [CrossRef]

6. Judkins, T.N.; Oleynikov, D.; Stergiou, N. Objective evaluation of expert and novice performance during robotic surgical training
tasks. Surg. Endosc. 2009, 23, 590–597. [CrossRef] [PubMed]

7. Richards, C.; Rosen, J.; Hannaford, B.; Pellegrini, C.; Sinanan, M. Skills evaluation in minimally invasive surgery using
force/torque signatures. Surg. Endosc. 2000, 14, 791–798. [CrossRef]

8. Yamauchi, Y.; Yamashita, J.; Morikawa, O.; Hashimoto, R.; Mochimaru, M.; Fukui, Y.; Uno, H.; Yokoyama, K. Surgical Skill
Evaluation by Force Data for Endoscopic Sinus Surgery Training System. In Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 44–51.

9. Zappella, L.; Béjar, B.; Hager, G.; Vidal, R. Surgical gesture classification from video and kinematic data. Med. Image Anal. 2013,
17, 732–745. [CrossRef] [PubMed]

10. Despinoy, F.; Bouget, D.; Forestier, G.; Penet, C.; Zemiti, N.; Poignet, P.; Jannin, P. Unsupervised trajectory segmentation for
surgical gesture recognition in robotic training. IEEE Trans. Biomed. Eng. 2015, 63, 1280–1291. [CrossRef]

11. Tao, L.; Zappella, L.; Hager, G.D.; Vidal, R. Surgical Gesture Segmentation and Recognition. In Proceedings of the Interna-
tional Conference on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013;
pp. 339–346.

12. Shafiei, S.B.; Guru, K.A.; Esfahani, E.T. Using Two-Third Power Law for Segmentation of Hand Movement in Robotic Assisted
Surgery. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015.

13. Shafiei, S.B.; Cavuoto, L.; Guru, K.A. Motor Skill Evaluation during Robot-Assisted Surgery. In Proceedings of the ASME 2017
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland,
OH, USA, 6–9 August 2017.

http://doi.org/10.1002/bjs.7269
http://doi.org/10.1001/jamasurg.2013.2144
http://doi.org/10.1136/bmj.327.7405.13
http://doi.org/10.1007/s00464-010-1190-z
http://www.ncbi.nlm.nih.gov/pubmed/20607563
http://doi.org/10.1016/S1072-7515(01)01041-9
http://doi.org/10.1007/s00464-008-9933-9
http://www.ncbi.nlm.nih.gov/pubmed/18443870
http://doi.org/10.1007/s004640000230
http://doi.org/10.1016/j.media.2013.04.007
http://www.ncbi.nlm.nih.gov/pubmed/23706754
http://doi.org/10.1109/TBME.2015.2493100


Sensors 2021, 21, 1733 17 of 18

14. Wu, Z.; Li, X. A Wireless Surface EMG Acquisition and Gesture Recognition System. In Proceedings of the 2016 9th Inter-
national Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong, China,
15–17 October 2016; pp. 1675–1679.

15. Lee, A.-r.; Cho, Y.; Jin, S.; Kim, N. Enhancement of surgical hand gesture recognition using a capsule network for a contactless
interface in the operating room. Comput. Methods Programs Biomed. 2020, 190, 105385. [CrossRef] [PubMed]

16. Sarikaya, D.; Guru, K.A.; Corso, J.J. Joint surgical gesture and task classification with multi-task and multimodal learning. arXiv
2018, arXiv:1805.00721.

17. Marin, G.; Dominio, F.; Zanuttigh, P. Hand Gesture Recognition with Leap Motion and Kinect Devices. In Proceedings of the 2014
IEEE International conference on image processing (ICIP), Paris, France, 27–30 October 2014; pp. 1565–1569.

18. Marin, G.; Dominio, F.; Zanuttigh, P. Hand gesture recognition with jointly calibrated leap motion and depth sensor. Multimed.
Tools Appl. 2016, 75, 14991–15015. [CrossRef]

19. Moorthi, M.; Senthilkumar, A.; Thangaraj, A. A Study the effect of Biofertilizer Azotobacter Chroococcum on the Growth of
Mulberry Cropmorus Indica L. and the Yield of Bombyx Mori L. Int. J. Environ. Agric. Biotechnol. 2016, 1, 238607.

20. DiPietro, R.; Ahmidi, N.; Malpani, A.; Waldram, M.; Lee, G.I.; Lee, M.R.; Vedula, S.S.; Hager, G.D. Segmenting and classifying
activities in robot-assisted surgery with recurrent neural networks. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 2005–2020.
[CrossRef] [PubMed]

21. Lin, H.C.; Shafran, I.; Murphy, T.E.; Okamura, A.M.; Yuh, D.D.; Hager, G.D. Automatic Detection and Segmentation of Robot-
Assisted Surgical Motions. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Palm Springs, CA, USA, 26–29 October 2005; pp. 802–810.

22. Gao, Y.; Vedula, S.S.; Reiley, C.E.; Ahmidi, N.; Varadarajan, B.; Lin, H.C.; Tao, L.; Zappella, L.; Béjar, B.; Yuh, D.D. Jhu-isi Gesture
and Skill Assessment Working Set (Jigsaws): A surgical Activity Dataset for Human Motion Modeling. In Modeling and Monitoring
of Computer Assisted Interventions (MICCAI) Workshop: M2cai; Johns Hopkins University: Boston, MA, USA, 2014; p. 3.

23. Gao, X.; Jin, Y.; Dou, Q.; Heng, P.-A. Automatic Gesture Recognition in Robot-Assisted Surgery with Reinforcement Learning
and Tree Search. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France,
31 May–31 August 2020; pp. 8440–8446.

24. Sarikaya, D.; Jannin, P. Towards generalizable surgical activity recognition using spatial temporal graph convolutional networks.
arXiv 2020, arXiv:2001.03728.

25. Luongo, F.; Hakim, R.; Nguyen, J.H.; Anandkumar, A.; Hung, A.J. Deep learning-based computer vision to recognize and classify
suturing gestures in robot-assisted surgery. Surgery 2020. [CrossRef]

26. Shafiei, S.B.; Elsayed, A.S.; Hussein, A.A.; Iqbal, U.; Guru, K.A. Evaluating the Mental Workload During Robot-Assisted Surgery
Utilizing Network Flexibility of Human Brain. IEEE Access 2020, 8, 204012–204019. [CrossRef]

27. Hussein, A.A.; Shafiei, S.B.; Sharif, M.; Esfahani, E.; Ahmad, B.; Kozlowski, J.D.; Hashmi, Z.; Guru, K.A. Technical mentorship
during robot-assisted surgery: A cognitive analysis. BJU Int. 2016, 118, 429–436. [CrossRef] [PubMed]

28. Shafiei, S.B.; Doyle, S.T.; Guru, K.A. Mentor’s Brain Functional Connectivity Network during Robotic Assisted Surgery Mentor-
ship. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1717–1720.

29. Shafiei, S.B.; Esfahani, E.T. Aligning Brain Activity and Sketch in Multi-Modal CAD Interface. In Proceedings of the International
Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, NY, USA,
17–20 August 2014; p. V01AT02A096.

30. Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2014.
31. Kayser, J.; Tenke, C.E. On the benefits of using surface Laplacian (current source density) methodology in electrophysiology. Int.

J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2015, 97, 171. [CrossRef] [PubMed]
32. Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [CrossRef]
33. Park, H.-J.; Friston, K. Structural and functional brain networks: From connections to cognition. Science 2013, 342, 6158. [CrossRef]
34. Mattar, M.G.; Cole, M.W.; Thompson-Schill, S.L.; Bassett, D.S. A functional cartography of cognitive systems. PLoS Comput. Biol.

2015, 11, e1004533. [CrossRef]
35. Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [CrossRef]
36. Newman, M.E. Communities, modules and large-scale structure in networks. Nat. Phys. 2012, 8, 25–31. [CrossRef]
37. Power, J.D.; Cohen, A.L.; Nelson, S.M.; Wig, G.S.; Barnes, K.A.; Church, J.A.; Vogel, A.C.; Laumann, T.O.; Miezin, F.M.; Schlaggar,

B.L. Functional network organization of the human brain. Neuron 2011, 72, 665–678. [CrossRef]
38. Yeo, B.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni,

J.R. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106,
1125–1165.

39. Sporns, O.; Betzel, R.F. Modular brain networks. Annu. Rev. Psychol. 2016, 67, 613–640. [CrossRef]
40. Shafiei, S.B.; Hussein, A.A.; Guru, K.A. Relationship between surgeon’s brain functional network reconfiguration and performance

level during robot-assisted surgery. IEEE Access 2018, 6, 33472–33479. [CrossRef]
41. Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory

Exp. 2008, 2008, P10008. [CrossRef]

http://doi.org/10.1016/j.cmpb.2020.105385
http://www.ncbi.nlm.nih.gov/pubmed/32062090
http://doi.org/10.1007/s11042-015-2451-6
http://doi.org/10.1007/s11548-019-01953-x
http://www.ncbi.nlm.nih.gov/pubmed/31037493
http://doi.org/10.1016/j.surg.2020.08.016
http://doi.org/10.1109/ACCESS.2020.3036751
http://doi.org/10.1111/bju.13445
http://www.ncbi.nlm.nih.gov/pubmed/26864145
http://doi.org/10.1016/j.ijpsycho.2015.06.001
http://www.ncbi.nlm.nih.gov/pubmed/26071227
http://doi.org/10.1089/brain.2011.0008
http://doi.org/10.1126/science.1238411
http://doi.org/10.1371/journal.pcbi.1004533
http://doi.org/10.1016/j.physrep.2009.11.002
http://doi.org/10.1038/nphys2162
http://doi.org/10.1016/j.neuron.2011.09.006
http://doi.org/10.1146/annurev-psych-122414-033634
http://doi.org/10.1109/ACCESS.2018.2841338
http://doi.org/10.1088/1742-5468/2008/10/P10008


Sensors 2021, 21, 1733 18 of 18

42. Jutla, I.S.; Jeub, L.G.; Mucha, P.J. A Generalized Louvain Method for Community Detection Implemented in MATLAB. 2011.
Available online: http://netwiki.amath.unc.edu/GenLouvain (accessed on 1 March 2021).

43. Bassett, D.S.; Wymbs, N.F.; Rombach, M.P.; Porter, M.A.; Mucha, P.J.; Grafton, S.T. Task-based core-periphery organization of
human brain dynamics. PLoS Comput. Biol. 2013, 9, e1003171. [CrossRef] [PubMed]

44. Good, B.H.; De Montjoye, Y.-A.; Clauset, A. Performance of modularity maximization in practical contexts. Phys. Rev. E 2010,
81, 046106. [CrossRef]

45. Betzel, R.F.; Satterthwaite, T.D.; Gold, J.I.; Bassett, D.S. Positive affect, surprise, and fatigue are correlates of network flexibility.
Sci. Rep. 2017, 7, 1–10. [CrossRef]

46. Mattar, M.G.; Betzel, R.F.; Bassett, D.S. The flexible brain. Brain 2016, 139, 2110–2112. [CrossRef]
47. Bassett, D.S.; Wymbs, N.F.; Porter, M.A.; Mucha, P.J.; Carlson, J.M.; Grafton, S.T. Dynamic reconfiguration of human brain

networks during learning. Proc. Natl. Acad. Sci. USA 2011, 108, 7641–7646. [CrossRef] [PubMed]
48. Newman, M.E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [CrossRef]
49. Goñi, J.; Van Den Heuvel, M.P.; Avena-Koenigsberger, A.; De Mendizabal, N.V.; Betzel, R.F.; Griffa, A.; Hagmann, P.; Corominas-

Murtra, B.; Thiran, J.-P.; Sporns, O. Resting-brain functional connectivity predicted by analytic measures of network communica-
tion. Proc. Natl. Acad. Sci. USA 2014, 111, 833–838. [CrossRef]

50. Rosvall, M.; Trusina, A.; Minnhagen, P.; Sneppen, K. Networks and cities: An information perspective. Phys. Rev. Lett. 2005,
94, 028701. [CrossRef] [PubMed]

51. Sporns, O. Network analysis, complexity, and brain function. Complexity 2002, 8, 56–60. [CrossRef]
52. Goñi, J.; Avena-Koenigsberger, A.; Velez de Mendizabal, N.; van den Heuvel, M.P.; Betzel, R.F.; Sporns, O. Exploring the

morphospace of communication efficiency in complex networks. PLoS ONE 2013, 8, e58070.
53. Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52,

1059–1069. [CrossRef] [PubMed]
54. Latora, V.; Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001, 87, 198701. [CrossRef]
55. Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K. Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E

2005, 71, 065103. [CrossRef]
56. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
57. Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973; Volume 3.
58. Lin, H.C.; Shafran, I.; Yuh, D.; Hager, G.D. Towards automatic skill evaluation: Detection and segmentation of robot-assisted

surgical motions. Comput. Aided Surg. 2006, 11, 220–230. [CrossRef] [PubMed]
59. Badalato, G.M.; Shapiro, E.; Rothberg, M.B.; Bergman, A.; RoyChoudhury, A.; Korets, R.; Patel, T.; Badani, K.K. The da Vinci robot

system eliminates multispecialty surgical trainees’ hand dominance in open and robotic surgical settings. JSLS J. Soc. Laparoendosc.
Surg. 2014, 18, e2014.00399. [CrossRef]

60. Choussein, S.; Srouji, S.S.; Farland, L.V.; Wietsma, A.; Missmer, S.A.; Hollis, M.; Richard, N.Y.; Pozner, C.N.; Gargiulo, A.R. Robotic
assistance confers ambidexterity to laparoscopic surgeons. J. Minim. Invasive Gynecol. 2018, 25, 76–83. [CrossRef] [PubMed]

61. Kong, X.; Yang, M.; Li, X.; Ni, M.; Zhang, G.; Chen, J.; Chai, W. Impact of surgeon handedness in manual and robot-assisted total
hip arthroplasty. J. Orthop. Surg. Res. 2020, 15, 1–8. [CrossRef] [PubMed]

62. Shafiei, S.B.; Hussein, A.A.; Guru, K.A. Dynamic changes of brain functional states during surgical skill acquisition. PLoS ONE
2018, 13, e0204836. [CrossRef] [PubMed]

http://netwiki.amath.unc.edu/GenLouvain
http://doi.org/10.1371/journal.pcbi.1003171
http://www.ncbi.nlm.nih.gov/pubmed/24086116
http://doi.org/10.1103/PhysRevE.81.046106
http://doi.org/10.1038/s41598-017-00425-z
http://doi.org/10.1093/brain/aww151
http://doi.org/10.1073/pnas.1018985108
http://www.ncbi.nlm.nih.gov/pubmed/21502525
http://doi.org/10.1073/pnas.0601602103
http://doi.org/10.1073/pnas.1315529111
http://doi.org/10.1103/PhysRevLett.94.028701
http://www.ncbi.nlm.nih.gov/pubmed/15698238
http://doi.org/10.1002/cplx.10047
http://doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
http://doi.org/10.1103/PhysRevLett.87.198701
http://doi.org/10.1103/PhysRevE.71.065103
http://doi.org/10.1613/jair.953
http://doi.org/10.3109/10929080600989189
http://www.ncbi.nlm.nih.gov/pubmed/17127647
http://doi.org/10.4293/JSLS.2014.00399
http://doi.org/10.1016/j.jmig.2017.07.010
http://www.ncbi.nlm.nih.gov/pubmed/28734971
http://doi.org/10.1186/s13018-020-01671-0
http://www.ncbi.nlm.nih.gov/pubmed/32316973
http://doi.org/10.1371/journal.pone.0204836
http://www.ncbi.nlm.nih.gov/pubmed/30379871

	Introduction 
	Importance of Gesture Detection in Robot-Assisted Surgery (RAS) 
	Literature Review of Gesture Detection in RAS Application 
	Strengths and Shortcomings of the Existing Methods of Gesture Detection in RAS Application 
	The Purpose of This Study 
	Contribution of This Study 

	Materials and Methods 
	Data Recording Setup 
	Gestures Extraction 
	Electroencephalogram (EEG) Data Analyses 
	Types of Feature and Functional Brain Network Analyses 
	Definition of Extracted Features 
	Brain Regional (Node) Network Flexibility 
	Integration 
	Recruitment 
	Search Information 
	Strength 
	Mean Pairwise Diffusion Efficiency of Cortices 
	Transitivity 
	Global Efficiency 
	Power 

	Machine Learning Algorithms 
	Feature Selection Method 
	Measures of Classification Method’s Performance 

	Results 
	Discussion 
	Proposed Method and Implications 
	Strength of Proposed Method 
	Limitations and Shortcomings of the Proposed Method 

	Conclusions 
	References

