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Abstract

Emerging evidence suggests that host-microbe interaction in the cervicovaginal microenvi-

ronment contributes to cervical carcinogenesis, yet dissecting these complex interactions is

challenging. Herein, we performed an integrated analysis of multiple “omics” datasets to

develop predictive models of the cervicovaginal microenvironment and identify characteris-

tic features of vaginal microbiome, genital inflammation and disease status. Microbiomes,

vaginal pH, immunoproteomes and metabolomes were measured in cervicovaginal speci-

mens collected from a cohort (n = 72) of Arizonan women with or without cervical neoplasm.

Multi-omics integration methods, including neural networks (mmvec) and Random Forest

supervised learning, were utilized to explore potential interactions and develop predictive

models. Our integrated analyses revealed that immune and cancer biomarker concentra-

tions were reliably predicted by Random Forest regressors trained on microbial and meta-

bolic features, suggesting close correspondence between the vaginal microbiome,

metabolome, and genital inflammation involved in cervical carcinogenesis. Furthermore, we

show that features of the microbiome and host microenvironment, including metabolites,

microbial taxa, and immune biomarkers are predictive of genital inflammation status, but

only weakly to moderately predictive of cervical neoplastic disease status. Different feature

classes were important for prediction of different phenotypes. Lipids (e.g. sphingolipids and

long-chain unsaturated fatty acids) were strong predictors of genital inflammation, whereas

predictions of vaginal microbiota and vaginal pH relied mostly on alterations in amino acid

metabolism. Finally, we identified key immune biomarkers associated with the vaginal

microbiota composition and vaginal pH (MIF), as well as genital inflammation (IL-6, IL-10,

MIP-1α).
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Author summary

This work was undertaken to improve our understanding of interactions between

microbes, metabolites and the host in the cervicovaginal microenvironment. We

employed a multi-omics approach to investigate relationships between microbiome, vagi-

nal pH, metabolome, immunoproteome in women with and without cervical neoplasm

identifying a tight link to abundance of Lactobacillus spp. We established predictive mod-

els and identified key signatures related to vaginal microbiota, vaginal pH and genital

inflammation. Integration of multiple different “omics” data types resulted in only modest

increases in prediction accuracy compared to models trained on a single data type. Since

the most predictive data type was not known a priori, this multi-omics approach yielded

insights that would not have been possible with any single data type. Metabolomics data

was predictive of different features of the cervicovaginal microenvironment and host

response but integrating multi-omics data is likely to be essential for realizing the

advances promised by microbiome research.

Introduction

Despite the availability of preventive measures, such as human papillomavirus (HPV) vaccina-

tion and Pap smear screening, cervical cancer remains a major public health problem, particu-

larly in low- and middle-income countries [1]. Infection with high-risk HPV types is a well-

established risk factor for cervical cancer [2], but is not sufficient for development of the high-

est risk precancerous cervical dysplasia and progression to cancer [3]. This suggests that other

factors in the local cervicovaginal microenvironment play a role during cervical carcinogenesis

[4].

The human microbiome (collectively the microbiota, or microbial communities residing in

and on the human body, and their theater of activity [5]) is a key regulator of mucosal homeo-

stasis at various body sites, including the female reproductive tract [6]. The cervix and vagina

in the majority of healthy, reproductive-age women are colonized by one or few Lactobacillus
species [7]. These beneficial microorganisms produce lactic acid (lowering vaginal pH, typi-

cally below 4.5) and other antimicrobial products. Collectively, multifaceted interactions

between Lactobacillus and the host create a protective microenvironment against invading

pathogens, including HPV [8,9]. However, during dysbiosis Lactobacillus spp. are depleted

and replaced by a diverse consortium of anaerobes, resulting in elevated vaginal pH [10,11].

Multiple cross-sectional studies in various racial/ethnic cohorts consistently demonstrated

that HPV-positive women exhibit more diverse, non-Lactobacillus dominant (NLD) vaginal

microbiota compared to HPV-negative women [12–15]. Women with cervical dysplasia or

cancer also commonly lack Lactobacillus dominance (LD) [16–21]. Furthermore, bacterial

vaginosis (BV), which is microbiologically characterized as an overgrowth of anaerobes, has

been linked to an increased risk of HPV acquisition and persistence [22–24]. Limited longitu-

dinal studies also demonstrated that LD correlates with HPV clearance and regression of dys-

plasia, whereas NLD microbiota is associated with HPV persistence [25–28]. Recent

systematic reviews and meta-analyses of available studies support a causal link between dysbio-

tic vaginal microbiota and cervical cancer through the impact of bacteria on HPV acquisition,

persistence, and progression to dysplasia [29–31].

Metabolomics studies have reported that HPV infection and cervical dysplasia relate to

depletion of amino acid, peptide, and nucleotide signatures in the cervicovaginal microenvi-

ronment [32,33]. Intriguingly, these metabolic alterations are also associated with depletion of
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Lactobacillus spp., connecting HPV infection to vaginal dysbiosis [32,34]. Alternatively, cervi-

cal carcinoma profoundly perturbs lipid signatures, such as sphingomyelins [32], which are

also biomarkers of chronic inflammation [35] and associated with genital inflammation [32].

It is well documented that persistent HPV infection suppresses immune responses, which

may contribute to progression of HPV-mediated neoplasm [36]. Yet, the impact of the micro-

biome on host defenses in the context of cervical neoplasia has not been comprehensively stud-

ied. Recently we showed that dysbiotic microbiota correlates with increased pro-inflammatory

cytokines, growth factors, and immune checkpoint proteins in the cervicovaginal fluids

[17,37,38]. Another cross-sectional study suggested a link between dysbiotic fusobacteria and

immunosuppressive host responses [18]. Taken together, these reports strongly implicate

interactions between HPV, microbiota, and host response mechanisms in the local microenvi-

ronment in the progression of (or protection from) neoplastic disease.

Here we employ multiple machine learning algorithms (neural networks and Random For-

est classification and regression) to integrate omics datasets including vaginal microbiome

[17], pH [17], metabolome [32] and immunoproteome [17,37,38] collected from women with

and without cervical neoplasia. We present new predictive models of Lactobacillus dominance,

vaginal pH, genital inflammation and cervical neoplastic disease, and discuss the relative con-

tribution of different features and feature types to our top-performing models.

Results

Participant and clinical sample characteristics

In a previous multicenter study, we enrolled 100 pre-menopausal, non-pregnant participants,

including HPV-negative (Ctrl HPV-) and HPV-positive women without cervical neoplasm

(Ctrl HPV+), women with low-grade (LSIL) and high-grade squamous intraepithelial lesions

(HSIL), and women newly diagnosed with invasive cervical carcinoma (ICC) [17]. Micro-

biome [17], metabolome [32] and immunoproteome analyses [17,37,38] were performed on

collected cervicovaginal samples (Fig 1). The vaginal microbiota compositions were deter-

mined by 16S rRNA gene sequencing revealing 763 amplicon sequencing variants (ASVs).

Cervicovaginal metabolic fingerprints were profiled by liquid chromatography-mass spec-

trometry and identified 467 unique metabolites. Levels of immune mediators and other can-

cer-related proteins in cervicovaginal lavage (CVL) samples were evaluated using multiplex

cytometric bead arrays for 68 targets. These data, which were previously analyzed indepen-

dently, were integrated resulting in 72 samples with complete microbiome, metabolome and

immunoproteome data for the bioinformatics analyses presented here. Seventy-two patients

were classified into five disease groups: Ctrl HPV- (n = 18), Ctrl HPV+ (n = 9), LSIL (n = 10),

HSIL (n = 27) and ICC (n = 8). Sixty-one women (85%) were Caucasian and 11 women (15%)

were of other races. Thirty-five women (49%) identified themselves as Hispanic/Latina. The

average age of participants was 38 years old (ranging from 22 to 58). Forty-nine women (68%)

were overweight [body mass index (BMI) >25]. Age, race, ethnicity and BMI were not signifi-

cantly different among the disease groups. Thirty-eight women (53%) exhibited high vaginal

pH (>5.0). Vaginal pH significantly varied among the disease groups ranging from 17%

women with high pH in Ctrl HPV+ group to 88% women in ICC group (P = 0.0002).

Clustering of omics features according to patient covariates

We performed a principal coordinate analysis (PCoA) of the microbiome data using the Jac-

card distance where the first two coordinates explained 20.8% of the observed sample variance

(Fig 2A–2D). For the metabolome and immunoproteome features we performed a principal

component analysis (PCA). The first two components accounted for 47.5% of the sample
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variance for metabolome samples (Fig 2E–2H) and for 44.3% of the variance for immunopro-

teome samples (Fig 2I–2L).

Evaluating the clustering of omics datasets based on defined patient covariates, we found

that microbiome samples cluster significantly according to vaginal pH (pH� 5.0 defined as

“low” and pH> 5.0 as “high”, Fig 2C) and by Lactobacillus dominance (“LD” representing

samples with relative abundance� 80% of Lactobacillus ASVs, Fig 2D). For metabolome fea-

tures a significant clustering was observed for all four patient covariates (Fig 2E–2H). For

immunoproteome data a significant clustering was only found for genital inflammation

(defined through a binned scoring system [17] (Fig 2J).

Interconnection of vaginal microbiome, metabolome, and immune

biomarkers

Microbe-metabolite interactions were predicted using mmvec [39]. Numerous lipids (includ-

ing sphingolipids and long-chain unsaturated fatty acids) were associated with multiple ASVs

belonging to Prevotella (including Prevotella bivia), Peptoniphilus, Streptococcus anginosus,
Atopobium vaginae, Sneathia sanguinegenes, Veillonellales, Finegoldia, and other taxonomic

groups (Fig 3). Lactobacillus ASVs (Lactobacillus crispatus, Lactobacillus iners, Lactobacil-
lus_H), some Prevotella (including Prevotella bivia), and other ASVs, were correlated with a

range of metabolites including phenylalanylglycine, the anti-inflammatory nucleotide cytosine,

glycerophosphoglycerol, glycerol, N-acetyl methionine sulfoxide, and maltopentaose (Fig 3).

These separations roughly mirror genital inflammation and disease status categories, corre-

sponding with our present findings (described below) and previous work showing association

between many of these lipids, ICC, and high inflammation; and between these non-lipid

metabolites, LD, and low inflammation [17,32]. Three-hydroxybutyrate, previously associated

Fig 1. Schematic of a multi-omics approach to study the complex interplay between HPV, host and microbiota in women across cervical neoplasia. In this

multicenter study n = 72 women were enrolled with invasive cervical carcinoma (ICC), high- and low-grade squamous intraepithelial lesions (HSIL, LSIL), as well as,

HPV-positive and healthy HPV-negative controls (Ctrl). Two vaginal swabs and cervicovaginal lavage (CVL) were collected from each participant. Vaginal swabs were

used for microbiome analysis and to evaluate vaginal pH. CVL samples were used for metabolome and immunoproteome analyses. The vaginal microbiota compositions

were determined by 16S rRNA gene sequencing revealing 763 amplicon sequencing variants (ASVs). Cervicovaginal metabolic fingerprints in CVL samples were profiled

by liquid chromatography-mass spectrometry and identified 467 unique metabolites. Levels of immune mediators and other cancer-related proteins in CVL samples (68

targets) were evaluated using multiplex cytometric bead arrays. Principal component, hierarchical clustering, neural network (mmvec) and Random Forest analyses were

utilized to explore associations among multi-omics data sets to predict Lactobacillus dominance (dominant vs. non-dominant), vaginal pH (low�5 vs. high>5), evidence

of genital inflammation (high, low, none) and disease status (Ctrl HPV–, Ctrl HPV+, LSIL, HSIL, ICC).

https://doi.org/10.1371/journal.pcbi.1009876.g001
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with ICC [32], pipecolate, N-acetylcadaverine, and deoxycarnitine were highly correlated with

a range of Streptococcus, Prevotella (including P. bivia), Megasphaera, Finegoldia, A. vaginae,
Sneathia amnii, and S. sanguinegens ASVs. Interestingly, 3-hydroxybutyrate was also corre-

lated to L. iners.
To further dissect relationships among the metabolite, microbiome, and immunoproteome,

Random Forest regression with 10-fold cross-validation was used to determine the ability to

predict the abundance of individual metabolites based on microbiome and immunoproteome

profiles, revealing very strong predictive strength for a wide variety of targets (S1 Fig and S2

Table). This includes the inflammation- and ICC-associated lipids 1-palmitoyl-2-arachido-

noyl-gpe (16:0/20:4), 1-palmitoyl-2-linoleoyl-gpc (16:0/18:2), 1,2-dilinoleoyl-gpc (18:2/18:2),

Fig 2. Metabolome features cluster most significantly according to patient covariate groups. A-D. Principal coordinate analysis (PCoA) of the Jaccard

distance calculated from microbiome samples. The differences among the groups were tested for significance using a PERMANOVA on the distance matrices.

E-L. For metabolome (E-H) and immunoproteome (I-L) features the principal component analysis (PCA) was performed on log-transformed and scaled

features (zero mean and unit variance). The differences among groups were assessed using the multivariate analysis of variance (MANOVA) model for the first

two principal components.

https://doi.org/10.1371/journal.pcbi.1009876.g002
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Fig 3. Microbiome-metabolome interaction probabilities via mmvec predict strong associations between lipid

metabolites with Prevotella, Streptococcus, Atopobium, Sneathia and other clades. A. The principal component analysis
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1-palmitoyl-2-docosahexaenoyl-gpc (16:0/22:6), several sphingomyelins, 1-stearoyl-2-docosa-

hexaenoyl-gpc (18:0/22:6), 1-linoleoyl-2-arachidonoyl-gpc (18:2/20:4n6), 1-palmitoyl-2-ara-

chidonoyl-gpc (16:0/20:4n6), and the bile acid glycochenodeoxycholate (S1 Fig and S2 Table).

Many of these associations are driven by high abundances of these lipids, sphingomyelins, and

other metabolites in cancer cases: cancer biomarkers are the top predictive features for all of

these metabolites (S2 Fig), and when ICC cases are removed from the dataset microbial fea-

tures (including several Sneathia, Atopobium, Prevotella, Finegoldia, and Mobiluncus ASVs)

are included among the top predictive features, though high predictive strength remains for

many (but not all) of these targets (S3 and S4 Figs). The ability to accurately predict the abun-

dance of these metabolites through cross-validation highlights the close correspondence

between the metabolome, microbiome, and immunoproteome across patients, both respective

and irrespective of cancer diagnosis.

Random Forest regression was also performed to predict concentration of immunoproteo-

mic biomarkers based on microbiome and metabolome profiles, demonstrating strong predic-

tive strength for several targets, including proinflammatory cytokines and chemokines (IL-1β,

IL-6, IL-8, MIF, MIP-1β), the anti-inflammatory cytokine IL-10, growth factors (HGF, SCF,

TGF-α,) apoptosis-related proteins (sFAS, TRAIL), the hormone prolactin, the cytokeratin

CYFRA21-1, and other cancer biomarkers (AFP, sCD40L, CEA) (S5 Fig). Metabolites (pri-

marily inflammation-associated lipids) are the most predictive features for each of these tar-

gets, but microbial features occur among the top 25 predictive features for many of these, most

notably Coriobacteriales bacterium DNF00809, S. amnii, Veillonellales, S. sanguingegens, P.

bivia, Parvimonas, A. vaginae dominating the top important features for predicting cervicova-

ginal CEA concentration, regardless of cancer diagnosis (S6 Fig). Several of these biomarkers

are clearly related to ICC, as indicated by reduced predictive strength after ICC cases are

removed from the dataset; however, most of these markers exhibit similar performance and

important feature associations after removing ICC cases (S7 and S8 Figs).

These findings indicate that both the metabolome and microbiome are highly correlated

with and predictive of immunoproteomic biomarker concentrations in the cervicovaginal

mucosa. Hence, metabolome and microbiome composition can be considered proxy measure-

ments for genital inflammation and suggest immunological responses linked to cervicovaginal

carcinogenesis, a relationship that is more explicitly tested below.

Metabolome and immunoproteome markers predict Lactobacillus
dominance and vaginal pH

To evaluate the ability of metabolome and immunoproteome features to predict LD (as a

proxy for their association with vaginal health), we used Random Forest classification with

10-fold cross-validation. We define LD as any sample in which Lactobacillus ASVs collectively

comprise� 80% of the vaginal microbiome, and grouped subjects into LD (n = 32) and NLD

groups (n = 40). Microbiome data were excluded from the predictive model, as these measure-

ments are non-independent due to compositionality constraints, i.e., changing the relative

abundance of one feature (such as a Lactobacillus ASV) will alter the relative abundance of

other features.

(PCA) biplot displays the top correlations, colored by genus (for microbial features) or by super pathway (for metabolite

features). The correlations were tested using mmvec. This method uses neural networks for estimating microbe-metabolite

interactions through their co-occurrence probabilities. Microbes (points) and metabolites (arrows) that appear closer to

each other in the biplot have a higher likelihood of co-occurring. B. The heatmap depicts the correlation coefficients

between ASVs and metabolites; hierarchical clustering was done via average weighted Bray-Curtis distance. ASVs were

determined using the consensus taxonomy (see Materials and Methods section).

https://doi.org/10.1371/journal.pcbi.1009876.g003
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Results demonstrate a very high predictive accuracy (average AUC = 0.94), indicating a

near-perfect ability to predict LD or NLD across subjects via cross-validation (Fig 4A and 4B).

In other words, cervicovaginal metabolome and immunoproteome profiles are tightly linked

to the abundance of Lactobacillus spp., suggesting that host immunological response is associ-

ated with vaginal microbiome composition. The top predictive features consist primarily of

non-lipid metabolites, consistent with the mmvec results (Fig 3), though the immunoproteo-

mic biomarkers macrophage migration inhibitory factor (MIF) also rank among the top 25

most important predictive features (Fig 4C). MIF is more abundant in NLD women (S9 Fig),

consistent with higher inflammation and ICC.

Vaginal pH is an important feature of the cervicovaginal microenvironment which relates

to Lactobacillus dominance (Fig 2). We assessed the predictive relationship between pH and

cervicovaginal metabolites, microbiota, and immunoproteome using cross-validated Random

Forest classification models. Typically, women with LD microbiota have a vaginal pH of 4.5 or

lower. However, for the purposes of this analysis, samples were grouped into “low” (pH� 5.0,

n = 34) and “high” pH groups (pH> 5.0, n = 38). Vaginal pH level is closely related to demo-

graphic characteristics, and Hispanic women tend to have slightly higher average vaginal pH

compared to NHW [7,17]. We also observed that, in our cohort, the majority of women (75%)

with pH 5.0 had LD microbiota (defined as>80% Lactobacillus abundance). Thus, we defined

Fig 4. Metabolites (particularly xenobiotics, carbohydrates, amino acids and peptides) and the inflammatory cytokine MIF can accurately predict Lactobacillus
dominance. Integrated vaginal metabolome and immunoproteome profiles were used as predictive features for training cross-validated Random Forest classifiers to

predict whether a subject’s vaginal microbiota is Lactobacillus dominant (LD� 80% relative abundance consists of Lactobacillus ASVs) or non-LD (NLD< 80%

relative abundance consists of lactobacilli). Combined measurements predict the Lactobacillus dominance at an overall accuracy rate of 86.1%. A 1.6-fold improvement

over baseline accuracy was observed. Receiver operating characteristics (ROC) analysis showing true and false positive rates for each group, indicating excellent

predictive accuracy for both LD (AUC = 0.93) and NLD groups (AUC = 0.93) (A). The confusion matrix illustrates the proportion of times each sample receives the

correct classification when evaluating the classifier at a threshold of 0.5 (B). The graphs depict the 25 most strongly predictive features ranked by their mean Gini

importance score across all 10 trained classifiers, a measure of their overall contribution to classifier accuracy (C).

https://doi.org/10.1371/journal.pcbi.1009876.g004
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pH� 5.0 as “low” for the purposes of this study. Results indicate a weak to moderate predictive

relationship (AUC = 0.72) (Fig 5A). Predictive power was lost because a large proportion

(26.4%) of women with low vaginal pH were predicted to belong to the high pH group (Figs

5B and S10). Results also indicate that this binary pH model, as expected, exhibits many of the

same characteristics as the LD/NLD prediction model: many of the same top predictive fea-

tures were identified (Fig 5C). Notably, the top predictive features consist primarily of non-

lipid metabolites, and MIF is again in the top 25 most important predictors, both associated

with high pH as well as NLD (S9 and S11 Figs). Hence, together these findings recapitulate the

associations between LD, low vaginal pH, and low inflammation, and between NLD, high pH,

higher inflammation, and carcinogenesis, as well as the microbial and metabolic context of

these states, explored in more detail below.

Metabolome, immunoproteome, and microbiome accurately predict

genital inflammation but only moderately predict cancer status

Next, we tested the relationship between the cervicovaginal environment and genital inflam-

mation, as a crucial characteristic of ICC progression. We have previously utilized a scoring

system to quantify genital inflammation in our cohort [17]. To assign genital inflammatory

scores (0–7), levels of seven cytokines and chemokines, including IL-1α, IL-1β, IL-8, MIP-1β,

Fig 5. Metabolites (particularly amino acids, peptides and nucleotides) and inflammatory cytokine MIF are the best predictors of vaginal pH. Integrated vaginal

microbiome, metabolome, and immunoproteome profiles were used as predictive features for training cross-validated Random Forest classifiers to predict whether a

subject’s vaginal pH was low (� 5.0) or high (> 5.0). Combined measurements predict vaginal pH at an overall accuracy rate of 77.8%. A 1.5-fold improvement over

baseline accuracy was observed. Receiver operating characteristics (ROC) analysis showing true and false positive rates for each group, indicating weak predictive

accuracy (micro-average AUC = 0.72) for both low (AUC = 0.71) and high pH groups (AUC = 0.71) (A). The confusion matrix illustrates the proportion of times each

sample receives the correct classification when evaluating the classifier at a threshold of 0.5 (B). The graphs depict the 25 most strongly predictive features ranked by their

mean Gini importance score across all 10 trained classifiers, a measure of their overall contribution to classifier accuracy (C).

https://doi.org/10.1371/journal.pcbi.1009876.g005
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MIP-3α, RANTES, and TNFα, were measured in cervicovaginal lavages (CVL) and patients

were assigned a score based on whether the level of each immune mediator was in the upper

quartile. For the purposes of classification, subjects were grouped into no (score = 0, n = 28),

low (0 < score< 5, n = 34), or high inflammation (score� 5, n = 10) groups, and Random

Forest classifiers were trained and tested via 10-fold cross-validation to assess the ability to pre-

dict genital inflammation across subjects based on cervicovaginal microbiome, metabolome,

and immunoproteome (excluding the seven inflammatory markers that are used to measure

inflammatory score). Results indicate moderately high predictive accuracy (macro-average

AUC = 0.88) (Fig 6A). Predictive accuracy is very good for high (AUC = 0.95) and no inflam-

mation (AUC = 0.89), but lowest for low inflammation (AUC = 0.79), due to misclassification

of some samples as either high or no inflammation (Fig 6B). Similar to pH classification but to

a lesser extent, this reflects the shortcoming of binning samples for classification into categori-

cal groups, a necessary limitation due to the small sample size of the current study. Regression

models predicting actual inflammation score demonstrate high accuracy at lower inflamma-

tion scores, but lower accuracy at the upper range due to sparsity of high-inflammation sam-

ples for cross-validation (S12 Fig). Larger sample sizes in future studies will enable more

accurate prediction of low-inflammation samples through prediction of actual inflammation

scores, refining our current estimates of associations between genital inflammation and

Fig 6. Various metabolites (particularly long-chain fatty acids, sphingolipids and glucose), protein biomarkers (IL-6, IL-10, MIP-1α) are the best predictors of the

genital inflammation. Integrated vaginal microbiome, metabolome, and immunoproteome profiles (excluding the 7 cytokines used to score genital inflammation) were

used as predictive features for training cross-validated Random Forest classifiers to predict whether a subject’s genital inflammation score was “no inflammation” (0), low

(1–4), or high (� 5.0). Combined measurements predict inflammation score at an overall accuracy rate of 77.8%. A 1.7-fold improvement over baseline accuracy was

observed. Receiver operating characteristics (ROC) analysis showing true and false positive rates for each group, indicating moderate average accuracy (micro-average

AUC = 0.90) and weak to good predictive accuracy for each group (A). The confusion matrix illustrates the proportion of times each sample receives the correct

classification when evaluating the classifier at a threshold of 0.5 (B). The graphs depict the 25 most strongly predictive features ranked by their mean Gini importance

score across all 10 trained classifiers, a measure of their overall contribution to classifier accuracy (C).

https://doi.org/10.1371/journal.pcbi.1009876.g006
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cervicovaginal microenvironment. As it stands, categorical classification performs moderately

well, and can identify a range of features predictive of inflammation, primarily lipids, but also

several immunoproteomic biomarkers including MIP-1α, IL-10 and IL-6 (Figs 6C and S13).

Given the ability to predict genital inflammation, a crucial feature of ICC progression,

based on features of the cervicovaginal microenvironment, we sought to determine if cervical

neoplasm status could also be predicted based on these features using cross-validated Random

Forest classification. Samples (n = 72) were grouped into control HPV- (n = 18), control HPV

+ (n = 9), LSIL (n = 10), HSIL (n = 27), and ICC (n = 8). This yielded low predictive accuracy

(micro-average AUC = 0.74, macro-average AUC = 0.65) (S14 Fig). Although many of the

same carcinogenesis-related metabolites and immune markers were top predictors in these

models, accurate differentiation could not be achieved, primarily because of the low sample

size and large class imbalances, but also due to the large number of classes with borderline dif-

ferences (e.g., high similarity led to misclassification between control HPV–and control HPV

+ groups, and between LSIL and HSIL groups). Given the low per-group sample sizes,

approaches to mitigate class imbalances were not feasible in the current study, but larger sam-

ple sizes and pooled analyses will facilitate better estimates in future studies. However, it

should be noted that ICC predictive accuracy was moderately high (AUC = 0.76), in spite of

the low sample size and class imbalance (S14 Fig). This indicates that ICC could be predicted

with fairly high accuracy across subjects, but non-ICC groups could not be reliably distin-

guished due to the similarities between these groups. Combining LSIL and HSIL prior to clas-

sification increases accuracy, indicating ambiguity between these groups, as reflected in the

imprecise distinction between these histological classifications. Hence, ICC elicits signature

characteristics in the cervicovaginal microenvironment across subjects that can be used to

identify these subjects, but intermediate stages of progression (HPV infection, LSIL, HSIL)

cannot be fully distinguished (Fig 2E and 2I). Larger sample sizes and longitudinal measure-

ment in future studies may improve our ability to diagnose ICC or even predict cancer risk

based on cervicovaginal microenvironment characteristics (metabolome, immunoproteome,

microbiome).

Integrative omics modestly increases predictive accuracy

To test whether integration of multiple omics dataset leads to increased predictive accuracy of

our models, we evaluated the performance of each Random Forest classifier with different com-

binations of data types with the expectation that more data types could only yield better predic-

tive accuracy. Results indicate that integrating data led to modest increases in accuracy for most

classification tasks, but with mixed results (Fig 7). For LD, combining multiple datasets did not

increase accuracy (Fig 7A). Metabolites alone could predict LD status with high accuracy;

immunoproteome data exhibited lower accuracy. For pH prediction, metabolites, immunopro-

teome and microbiome datasets on their own could predict pH with moderate accuracy; inte-

grating all three omics datasets led to an overall increase in mean accuracy (Fig 7B).

Genital inflammation was the one measurement that showed little change in accuracy with

integration of multiple omics datasets (Fig 7C). Both metabolome and immunoproteome

datasets yielded nearly identical high predictive accuracy, whereas microbiome data exhibited

poor predictive accuracy. Combining all three datasets led to a slight increase in predictive

accuracy.

Discussion

The vaginal microbiota, HPV infection and cervical neoplasm are related in ways that are still

not fully understood. Emerging evidence suggests that Lactobacillus dominance (LD) in the
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vagina and cervix relates to HPV clearance and disease regression, whereas dysbiotic anaer-

obes contribute to HPV persistence and progression of cervical neoplasm [29–31]. Host

response to HPV and microbiota, which may result in genital inflammation, immune evasion,

and altered metabolism, likely contribute to establishment of persistent infection and disease

progression [32,33,40–43]. Thus, improving our understanding of microbiota-virus-host

interactions in the local cervicovaginal microenvironment is imperative for the development

of novel diagnostic, preventative and therapeutic approaches, which might help reduce cervical

cancer burden among unvaccinated women in the future [44].

We investigated relationships between multiple clinical “omics” datasets (microbiome, vag-

inal pH, metabolome, immunoproteome) collected from women who had not been vaccinated

against HPV at different stages of cervical neoplasia (Fig 1). Using integrated multi-omics, we

aimed to establish predictive models and identify key signatures related to vaginal microbiota

structure, vaginal pH, genital inflammation and cervical neoplasm status. We identified spe-

cific metabolites that were predictive of Lactobacillus dominance, vaginal pH, and genital

inflammation (Figs 4–6). These findings demonstrate that vaginal microbiota and host defense

responses strongly influence cervicovaginal metabolic fingerprints [32,33,45] and indicate that

cervicovaginal metabolic signatures might be promising biomarkers for gynecological condi-

tions, including cervical cancer. In addition, select immune mediators and cancer biomarkers

also exhibited high importance scores in our analyses for predictions of LD and vaginal pH

(MIF), as well as genital inflammation (IL-6, IL-10, MIP-1α), further confirming the link

between vaginal microbiota and host immune responses [17,37,40,46,47]. Intriguingly, micro-

bial features did not rank among the top predictors of vaginal pH or genital inflammation, sug-

gesting they had less predictive power than metabolites. On the other hand, our neural

network and Random Forest models showed that the abundance of bacterial taxa highly corre-

sponded to levels of key metabolites, immune mediators, and cancer biomarkers related to cer-

vicovaginal health or dysbiosis (Fig 3), suggesting tight coupling of the microbiome,

metabolome, and immunoproteome [39,48–51].

Using our approach, we predicted the cervical cancer group with good accuracy, however

we were unable to accurately predict other cervical neoplasm status. Relatively low sample size

and imbalance in disease classification, which are limitations of our study, might have

impacted these predictions. Larger numbers of subjects and temporal data on subjects will

likely improve predictive models in the future, and better support causal links between

Fig 7. Integrating multiple–omics datasets does not dramatically improve overall prediction accuracy; however, different integration of various

measurements are needed for the best prediction of distinct features. Graphs show stepwise accuracy levels for Lactobacillus dominance (A), vaginal pH (B)

and genital inflammation (C) when Random Forest models are trained on a single omics dataset or combined data containing 2–3 omics datasets. Lactobacillus
dominance can be explained mostly by metabolome data, vaginal pH by metabolome and microbiome datasets, and genital inflammation by metabolome and

immunoproteome datasets. Combining omics datasets leads to higher average accuracy scores for Lactobacillus dominance and vaginal pH and genital

inflammation classifications, but not for Lactobacillus dominance classification.

https://doi.org/10.1371/journal.pcbi.1009876.g007
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microbial dysbiosis and HPV-mediated carcinogenesis. In addition, pathophysiological

responses across the continuum of cervical neoplasm might not be uniform among patients

with different disease classifications (for example LSIL and HSIL). Indeed, clinical studies have

shown contrasting results related to genital inflammation and cervical dysplasia. Some studies

report that infection with high-risk HPV types or precancerous dysplasia has not been associ-

ated with increased levels of genital inflammation [17,40,43]. Another report showed increased

inflammatory cytokines in patients with cervical dysplasia, but it did not control for micro-

biota composition [42].

Our integrated analyses revealed that different classes of metabolites are important for pre-

diction of different phenotypes: lipids were strong predictors of genital inflammation, while

amino acids, peptides and nucleotides were predictive of the vaginal microbiota composition.

Sphingolipids and long-chain unsaturated fatty acids in particular ranked as top predictors of

genital inflammation. Emerging studies have demonstrated that sphingolipids are implicated

in multiple pathological processes, such as inflammatory diseases, diabetes, and cancer [52]. In

a previous report we showed that women with cervical cancer had elevated sphingolipids in

the cervicovaginal fluids, suggesting that cancer drives associations of phospholipids with

inflammation. In addition, we observed the correlation with inflammation even after exclud-

ing cancer patients [32]. In fact, sphingolipids are bioactive metabolites, which may mediate

inflammatory signaling through TNFα activation [35]. Using neural network analysis, we also

showed the co-occurrence of many lipid metabolites and dysbiotic vaginal bacterial taxa

(including multiple BV-associated bacteria and Streptococcus), linking microbiota to inflam-

matory markers.

Predictions of vaginal microbiota and vaginal pH relied mostly on alterations in amino acid

metabolism, which was in accordance with previous reports on cervicovaginal metabolomes

[33,34,45]. Specifically we found that 3-hydroxybutyrate, a ketone body, was strongly corre-

lated with abundance of pathobionts or dysbiotic bacterial taxa, such as Streptococcus, Prevo-
tella, Megasphaera, Atopobium and Sneathia, and unexpectedly with one ASV classified to the

predominant vaginal Lactobacillus spp., L. iners. L. iners-dominant vaginal microbiota has

been shown to more often transition to dysbiotic NLD microbiota compared to other Lactoba-
cillus spp. [53]. Furthermore, L. iners produces a different ratio of lactic acid isoforms [54],

which vary in bactericidal capacities [55]; therefore, the protective role of L. iners in the cervi-

covaginal microenvironment is still questionable [56]. We have previously demonstrated that

3-hydroxybutyrate (measured in the cervicovaginal fluids) is an excellent discriminator of cer-

vical cancer patients compared to healthy controls [32]. Several clinical studies also identified

3-hydroxybutyrate (but measured in serum or tissue effusions) as a potential biomarker of

other gynecologic malignancies, such as endometrial cancer [57] and ovarian cancer [58,59].

Other key metabolites that we identified to highly correlate with dysbiotic microbiota were

pipecolate and deoxycarnitine. In a previous study on metabolomes of women with BV, these

two metabolites positively associated with BV status and the presence of “clue cells” [34], a key

clinical characteristic of BV. We also revealed that deoxycarnitine in cervicovaginal fluids can

discriminate HPV-positive and HPV-negative women without neoplasia [32], linking vaginal

dysbiosis with HPV infection. In addition, Lactobacillus spp. (particularly L. crispatus) posi-

tively correlated with N-acetyl methionine sulfoxide, a reactive oxygen species. Production of

hydrogen peroxide, another reactive oxygen species, by vaginal Lactobacillus spp. has been

postulated to have a protective effect against invading pathogens [60,61]. Similarly, an increase

of N-acetyl methionine sulfoxide in the cervicovaginal microenvironment might contribute to

host protection via oxidative stress.

Through our integrated multi-omics approach, we also identified key immune biomarkers

associated with the vaginal microbiota composition and vaginal pH, for instance MIF, a
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pleiotropic cytokine regulating inflammatory reactions and stress responses [62]. MIF was

identified as a top predictive factor of vaginal pH and LD in our Random Forest analysis,

which took into account multiple different “omics” data types (Figs 4 and 5), suggesting that

Lactobacillus colonization may be closely involved in regulating markers of genital inflamma-

tion, including MIF. In accordance, several reports have demonstrated significantly increased

levels of MIF in cervicovaginal fluids of women with vaginal dysbiosis or BV compared to

women with healthy LD microbiota [47,63,64]. Previously, we identified cervicovaginal MIF

as a potential biomarker for cervical cancer [37]. Immunohistochemical studies demonstrated

overexpression of MIF in cervical cancer tissues compared to healthy cervix and dysplasia [65–

67]. MIF has been shown to promote cell proliferation, inhibit apoptosis [66] and directly

induce secretion of VEGF, an angiogenesis factor [65]. Thus, elevated MIF production

induced by dysbiotic vaginal microbiota might contribute to cervical carcinogenesis. Our inte-

grated analysis further highlighted the importance of this key immune mediator, and links its

expression to vaginal microbiome and metabolome characteristics. Other immunoproteome

biomarkers (IL-6, IL-10, MIP-1α) identified to be associated with genital inflammatory scores

likely relate to cancer-induced inflammation rather than a host defense response to dysbiotic

vaginal microbiota [37]. Overall, our data indicate that mucosal inflammation is likely associ-

ated with cervical neoplasm via the effect of vaginal microbiota on induction of specific inflam-

matory mediators and metabolites.

Many of the predictive models used in this study integrate metabolome, immunoproteome,

and microbiome data. We hypothesized that integrating multiple data types would lead to a

cumulative increase in predictive accuracy, as accumulating more features should more

completely model the host environment. We instead observed that our metabolomics data

nearly always drove classifier accuracy, and inclusion of other data types resulted in modest, if

any, increases in classifier performance accuracy. There are a few explanations for this that are

not mutually exclusive. First, the metabolites profile might contain features that are proxy

information for other feature types (e.g., microbial metabolites as a proxy for microbiome),

and hence only gain minimal benefit for integration with those other data types and serve as a

good predictor of those other features. This is supported by our finding that metabolome and

immunoproteome can almost perfectly predict LD where most of the important features are

metabolites (Fig 3). However, those classifiers do not achieve perfect accuracy even for this

simple microbiome summary statistic of LD, therefore we expect that the microbiome pro-

vides context about the cervicovaginal microenvironment that is not present in the other fea-

ture types used here. Second, our supervised classification approaches may need improvement

for integrating data types. This is likely, given that integrating microbiome multi-omics data is

currently a very active area of bioinformatics research. In this case, higher accuracy will be pos-

sible as feature extraction and normalization methods designed for microbiome multi-omics

improve. Third, there may be more variance in microbiomes than metabolomes across indi-

viduals (or across samples from the same individual), requiring a larger training data set for

microbiome-based classification than for metabolite-based classification. In this case it is pos-

sible that a larger training set would allow for accurate microbiome- or immunoproteome-

based classification.

Given that we observed only a modest increase in classifier performance accuracy with the

use of multiple “omics” data types, it may seem that the benefit of including these additional

data does not justify their cost. We provide a few counterpoints to this idea. First, we cannot

know, a priori, which data type will provide the best predictive accuracy in any given study of a

new system (as in our study). The information gained in this multi-omics survey can now be

used to prioritize data to collect in future studies, with the caveat that larger sample sizes and

additional populations are needed to fully resolve the predictive power of various omics types
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for cervicovaginal microenvironment across human populations. While the metabolome data

in our study appears most predictive, and this finding has been presented in other recent stud-

ies [48–50], we suspect that this is system-specific rather than a general principle. Second, inte-

grating multiple feature types may lead to more consistent performance, as shown here, and

even modest increases in accuracy are valuable. Furthermore, different feature types were dif-

ferentially useful for predicting different characteristics of the cervicovaginal environment.

Profiling different feature types therefore enabled discoveries that would not have been possi-

ble had we focused only on a single feature type. As a result, we still see considerable value in

collecting multi-omics data despite achieving consistently high performance from a single fea-

ture type in the samples and system under investigation here. We believe that collecting multi-

omics data in human microbiome studies will enable a broader understanding of the complex

mechanistic interplay between microbes, metabolites, the host immune system, and host phe-

notype. As we continue to amass data relating microbes and metabolites to the host immune

system and phenotype, we suspect that our ability to model features (such as genital inflamma-

tion) based on combinations of microbes and metabolites will improve. This will enable design

of treatments based on an understanding of, for example, how the presence of a metabolite

will impact the abundance of a group of microbes, which in turn will drive or suppress an

immune response.

In our previous work, we investigated pairwise associations between pH [17] and micro-

biome, microbiome and immunoproteome [17,37,38], microbiome and metabolome [32], as

well as microbiome and metabolome [32] in the cervicovaginal microenvironment to better

understand the complex host-microbe interactions contributing to cervical carcinogenesis. In

this study, we employed a multi-omics approach and machine-learning algorithms (neural

networks and Random Forest) to move beyond pairwise associations by integrating all avail-

able omics datasets and establish predictive models of cervical neoplasm, genital inflammation,

pH and microbiome. We also aimed to identify key signatures related to these different fea-

tures of cervicovaginal microenvironment. Intriguingly, our integrated analyses revealed meta-

bolome as the top predictor of genital inflammation, microbiome, and vaginal pH when

integrated with other feature types. In addition, we identified new links between microbial,

immune, and metabolic signatures linked to cervical carcinogenesis, which have not been

reported previously (e.g., interconnection of 3-hydroxybutyrate and MIF with pathobionts

and dysbiotic microbiota).

Although our study provided new insights into the multifaceted host-microbe interplay

during cervical carcinogensis, there is much work to be done to improve our approaches for

integrated multi-omics analyses. For example, developing machine learning classification tools

for microbiome multi-omics data that can handle multiple observations per subject to make

better use of longitudinal data, and interactive visualization tools that can assist with explora-

tion and interpretation of multi-omics network data will facilitate work. Combining these

approaches with novel methods [68] and databases [69,70] for accurate taxonomic classifica-

tion of vaginal microbiota will further advance our ability to identify microbial species linked

to carcinogenesis and prevention. We posit that integrated multi-omics approaches are essen-

tial to enabling many of the advances in human medicine that are promised by microbiome

research.

Materials and methods

Ethics statement

The research and related activities involving human subjects were approved by the Institu-

tional Review Boards at University of Arizona (no. 1510171298), University of Arizona Cancer
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Center/Dignity Health St. Joseph’s Hospital and Medical Center (no. PHXB-15-0027-70-15)

and Maricopa Integrated Health Systems (no. 2015–040). All participants provided informed

written consent and all research was performed in accordance with the federal guidelines and

regulations and the Declaration of Helsinki.

Study population and clinical sample collection

Seventy-two premenopausal, non-pregnant women were recruited at three clinical sites

located in Phoenix, Arizona: St. Joseph’s Hospital and Medical Center, University of Arizona

Cancer Center and Maricopa Integrated Health Systems (now Valleywise Health Medical Cen-

ter). The participants were grouped as follows: Ctrl HPV- (n = 18), Ctrl HPV+ (n = 9), LSIL

(n = 10), HSIL (n = 27) and ICC (n = 8). Classification of patients into the five groups and

detailed inclusion/exclusion criteria were described previously [17]. Cervicovaginal lavage

(CVL) and two vaginal swabs were collected by a physician using the standardized clinical pro-

tocol and processed as described previously [17]. Briefly, the first vaginal swab was collected

using ESwab Collection System (cat. no. 480C, COPAN Diagnostics Inc., Murrieta, CA) and

stored at -80˚C prior to microbiome analysis. Vaginal pH was measured using the second vagi-

nal swab, nitrazine paper and a pH scale ranging from 4.5 to 7.5 [17]. CVL sample was col-

lected using 10 ml of sterile 0.9% saline solution, cleared by centrifugation and aliquoted to

avoid freeze-thaw cycles. CVL samples were also stored at -80˚C prior to immunoproteome

and metabolome analyses. Demographic data were collected from surveys and/or medical

records.

Omics analyses

Immunoproteome, metabolome and microbiome datasets used in this study were described

previously [17,32,37,38].

For immunoproteome analysis, levels of 68 proteins were determined in CVL samples

using multiplex cytometric bead arrays: customized MILLIPLEX MAP Human Cytokine/Che-

mokine I (cat. no. HCYTOMAG-60K), Th17 (cat. no. HTH17MAG-14K), High Sensitivity T

Cell (cat. no. HSTCMAG-28SK), Circulating Cancer Biomarker 1 (cat. no. HCCBP1MAG-

58K) and Immuno-Oncology Checkpoint Protein 1 (cat. HCKP1-11K) Magnetic Bead Panels

(Millipore, Billerica, MA) or enzyme-linked immunosorbent assays: Human IL-1F9 (IL-36γ)

ELISA kit (cat. no. ELH-IL1F9, RayBiotech, Norcross, GA) in accordance with the manufac-

turer’s protocols [17,37,38]. Data were collected with a Bio-Plex 200 instrument and analyzed

using Manager 5.0 software (Bio-Rad, Hercules, CA). Levels of seven cytokines (IL-1α, IL-1β,

IL-8, MIP-1β, MIP-3α, RANTES, and TNFα) were used to determine the genital inflammatory

scores; patients were assigned one point for each mediator when the level was in the upper

quartile. Patients with inflammatory scores 0, 1–4, 5–7 were considered to have no, low or

high genital inflammation, respectively.

Global untargeted metabolome analysis of CVL samples was performed by Metabolon, Inc

(Durham, NC) using a Waters ACQUITY ultra-performance liquid chromatography (UPLC)

and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced

with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at

35,000 mass resolution [32]. Metabolites were identified and quantified using Metabolon’s

Laboratory Information Management Systems (LIMS).

For microbiome analysis, DNA was extracted from vaginal swabs using PowerSoil DNA

Isolation Kit (MO BIO Laboratories, Carlsbad, CA) following the manufacturer’s instructions

[17]. Amplicon library preparation and 16S rRNA sequencing were performed by Second

Genome Inc. (San Francisco, CA). The V4 region of bacterial 16S rRNA gene was amplified
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from the genomic DNA using fusion primers and sequenced on the MiSeq platform (Illumina,

San Diego, CA).

Bioinformatics analysis

Microbial DNA sequence data were processed and analyzed using the QIIME 2 version 2019.7

[71]. DADA2 [72] was used (via the q2-dada2 QIIME 2 plugin) to quality filter the sequence

data, removing PhiX, chimeric, and erroneous reads, and merge paired-end reads. Forward and

reverse reads were trimmed to 250 nt prior to denoising with dada2, otherwise default parame-

ter settings were used. Taxonomy was assigned to sequence variants using q2-feature-classifier

[73] with the classify-sklearn naive Bayes classification method against (a) the GreenGenes 16S

rRNA reference database 13_8 release [74] assuming a uniform taxonomic distribution [68]; (b)

the Genome Taxonomy Database (GTDB) [75], assuming a uniform taxonomic distribution;

and (c) GTDB, with taxonomic class weights (expected species distributions) assembled from a

collection of 1,017 human cervicovaginal microbiota samples derived from the Vaginal Human

Microbiome Project (the same reference set used to construct the STIRRUPS database [69])

using q2-clawback [68]. RESCRIPt [70] was used to merge these taxonomies via determination

of the last common ancestor (LCA) consensus taxonomy assignment for each feature (giving

priority to majority classifications, and using superstring matching to facilitate compatibility

between the Greengenes and GTDB taxonomies). Any sequence that failed to classify at phylum

level was discarded prior to downstream analysis. Microbial feature tables were evenly sampled

at 50,000 sequences per sample prior to supervised classification. We did not apply CLR prior to

supervised classification or diversity analyses, as this and many other normalization methods

for compositional data were designed for differential abundance tests, and their appropriate

application to supervised classification problems is still an open question [76]. Following the

recommendations of Knights et al. [77] we did apply rarefaction to avoid introducing library

size biases and used the rarefied counts as input, not relative abundances.

Prior to the application of supervised learning, samples were selected based on their avail-

ability of all omics features and defined targets, resulting in 72 samples. Additionally, features

with the same value for all samples were discarded (69 features affected). Supervised learning

was performed in q2-sample-classifier [78] via 10-fold nested cross-validation (classify-sam-

ples-ncv method), using Random Forest classification or regression models [79] grown with

500 trees. We did not apply transformation to different omics data before merge as the scaling

of measurements of different features is not necessary for decision tree based supervised classi-

fication approaches [80], and prediction results do not change as a result of monotone trans-

formation of the training data. Using scikit-learn implementations, the trained classifiers were

evaluated on their performance on the test sets of each fold. Evaluation metrics that were

employed include the area under curve (AUC) of the receiver operating characteristic (ROC)

curve and the confusion matrix calculated at a probability threshold of 0.5. Feature impor-

tances were calculated as the mean of the Gini importance scores across all 10 trained classifi-

ers. Trained regressors were evaluated based on the R-squared measure and the scatter plot of

true versus predicted values of the test sets. An overview of which combination of omics fea-

tures was used to train classifiers for selected targets is provided in S15 Fig.

Microbe-metabolite interactions were estimated using mmvec [39]. This method uses neu-

ral networks for estimating microbe-metabolite interactions through their co-occurrence

probabilities. Features with fewer than 10 observations were filtered prior to mmvec analysis.

Conditional rank probabilities were used to construct principal coordinate analysis biplots

(visualized using matplotlib [81]) that illustrate the co-occurrence probabilities of each metab-

olite and microbe.
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Supporting information

S1 Table. Random Forest regression predictive accuracy for predicting log concentration

of 95 selected metabolites, ordered by accuracy (most to least). Low mean squared error

and high r-squared values indicate close correspondence between predicted and true values.

These values correspond to plots displayed in S1 Fig, for the top 20 most accurately predicted

features.

(XLS)

S2 Table. Random Forest regression predictive accuracy for predicting log concentration

of cancer biomarkers, ordered by accuracy (most to least). Low mean squared error and

high r-squared values indicate close correspondence between predicted and true values. These

values correspond to plots displayed in S5 Fig, for the top 20 most accurately predicted fea-

tures.

(XLS)

S1 Fig. Microbiome and immunoproteome data accurately predict metabolite abundances.

Random Forest regressors with 10-fold cross-validation were used to predict the abundance of

each selected metabolite in S1 Table based on combined microbiome and immunoproteome

datasets. Scatterplots display the linear regression of predicted vs. true log concentrations for

the top 20 most accurately predicted metabolites. Dotted lines indicate an ideal 1:1 slope. Grey

lines and shading indicate the regression trend line and 95% CI.

(PDF)

S2 Fig. Microbiome and immunoproteome data accurately predict metabolite abundances.

Feature importance of top 15 features used in the final Random Forest regression model for

each metabolite prediction displayed in S1 Fig. �Microbial features are displayed in red, with

the first 6 characters of the ASV ID followed by the genus/species-level Greengenes taxonomy.

(PDF)

S3 Fig. Microbiome and immunoproteome data accurately predict metabolite abundances

with cancer cases removed. Plots display the predictive accuracy of the top 20 metabolites dis-

played in S1 Fig, but with cancer cases removed. Predictive accuracy remains high for most

metabolites, indicating that cancer cases do not drive the associations observed for that metab-

olite.

(PDF)

S4 Fig. Microbiome and immunoproteome data accurately predict metabolite abundances

with cancer cases removed. Feature importance of top 15 features used in the final Random

Forest regression model for each metabolite prediction displayed in S3 Fig. �Microbial features

are displayed in red, with the first 6 characters of the ASV ID followed by the genus/species-

level Greengenes taxonomy.

(PDF)

S5 Fig. Microbiome and metabolome data accurately predict cancer biomarker abun-

dances. Random Forest regressors with 10-fold cross-validation were used to predict the abun-

dance of each selected biomarker in S2 Table based on combined microbiome and

metabolome datasets. Scatterplots display the linear regression of predicted vs. true log con-

centrations for the top 20 most accurately predicted biomarkers. Dotted lines indicate an ideal

1:1 slope. Grey lines and shading indicate the regression trend line and 95% CI.

(PDF)
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S6 Fig. Microbiome and metabolome data accurately predict cancer biomarker abun-

dances. Feature importance of top 15 features used in the final Random Forest regression

model for each cancer biomarker prediction displayed in S5 Fig. �Microbial features are dis-

played in red, with the first 6 characters of the ASV ID followed by the genus/species-level

Greengenes taxonomy.

(PDF)

S7 Fig. Microbiome and metabolome data accurately predict cancer biomarker abun-

dances with cancer cases removed. Plots display the predictive accuracy of the top 20 bio-

markers displayed in S5 Fig, but with cancer cases removed. Predictive accuracy remains high

for most metabolites, indicating that cancer cases do not drive the associations observed for

that metabolite.

(PDF)

S8 Fig. Microbiome and metabolome data accurately predict cancer biomarker abun-

dances with cancer cases removed. Feature importance of top 20 features used in the final

Random Forest regression model for each cancer biomarker prediction displayed in S7 Fig.
�Microbial features are displayed in red, with the first 6 characters of the ASV ID followed by

the genus/species-level Greengenes taxonomy.

(PDF)

S9 Fig. Abundances of top 25 most predictive features for Lactobacillus dominance (LD)

vs. non-LD (NLD) Random Forest classification. Boxplots display quartile distributions,

swarmplots display individual values of top important feature abundances in LD and NLD

groups.

(PDF)

S10 Fig. Vaginal pH distribution is skewed toward low (typical) end of pH range, prevent-

ing accurate random forest prediction of pH values. Left, histogram displays number of sam-

ples per pH value, binned into increments of 0.5 (min = 4.5, max = 7.5). Right, scatterplot

displays true vs. predicted log10 vaginal pH for each subject (using 10-fold cross-validation

random forest regressors to predict vaginal pH across subjects), indicating very poor regres-

sion results due to pH skew.

(PDF)

S11 Fig. Abundances of top 25 most predictive features for vaginal pH Random Forest

classification. Boxplots display quartile distributions, swarmplots display individual values of

top important feature abundances in “typical” (pH� 5.0) and “high” (pH> 5.0) groups.

(PDF)

S12 Fig. Genital inflammation score distribution is skewed toward no and low inflamma-

tion, reducing predictive accuracy of high-inflammation samples. Left, histogram displays

number of samples per genital inflammation score. Right, scatterplot displays true vs. pre-

dicted inflammation scores for each subject (using 10-fold cross-validation random forest

regressors to predict inflammation score across subjects).

(PDF)

S13 Fig. Abundances of top 25 most predictive features for genital inflammation score

Random Forest classification. Boxplots display quartile distributions, swarmplots display

individual values of top important feature abundances in no (score = 0), low (0 < score< 5),

and high inflammation (score� 5) groups.

(PDF)
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S14 Fig. Microbiome, metabolome, and immunoproteome data weakly predict disease state.

Receiver operating characteristics (ROC) analysis showing true and false positive rates for each

group, using random forest classifiers with 10-fold cross-validation to test predictive accuracy

across subjects. Higher area under the curve (AUC) indicates better accuracy. Micro-average is

calculated across each sample, and hence impacted by class imbalances. Macro-average gives

equal weight to the classification of each sample, eliminating the impact of class imbalances on

average AUC. Notably, invasive cervical carcinoma (ICC) cases are predicted moderately well,

indicating a characteristic signal associated with ICC but not with intermediate stages of progres-

sion. HSIL and LSIL = high- and low-grade squamous intraepithelial lesions, respectively.

(PDF)

S15 Fig. Overview of omics features used to predict selected targets with supervised classifica-

tion models. Column names depict selected targets and row names selected omics features.

(PDF)
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