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Abstract 

Drug resistance is a major impediment in cancer therapy which strongly reduces the efficiency of anti-cancer drugs. 
Exosomes are extracellular vesicles with cup or spherical shape with a size range of 40–150 nm released by eukary-
otic cells that contain genetic materials, proteins, and lipids which mediate a specific cell-to-cell communication. The 
potential roles of exosomes in intrinsic and acquired drug resistance have been reported in several studies. Further-
more, a line of evidence suggested that the content of exosomes released from tumor cells in biological samples may 
be associated with the clinical outcomes of cancer patients. In this review, we highlighted the recent studies regard-
ing the potential roles of exosomes in tumor initiation, progression, and chemoresistance. This study suggests the 
possible role of exosomes for drug delivery and their contents in prognosis and resistance to chemotherapy in cancer 
patients.
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Introduction
Cancer is a major public health problem and the second 
most common cause of death in the world [1]. Among 
several therapeutic strategies, chemotherapy is one of the 
main approaches for tumor treatment [2]. Although sig-
nificant advances have been developed for increasing the 
efficacy of chemotherapeutics, chemoresistance remains 
a major obstacle against the effective treatment of cancer 
patients [3]. Exosomes are multi-signal messengers that 
support cancer development, progression, and chem-
oresistance by mediating the tumor–tumor and tumor–
stromal cells interaction [4]. Furthermore, accumulating 
data suggests that the differential content of exosomes in 
body fluids can be used as a prognostic factor for cancer 
therapy and clinical outcomes [5–8]. Here, we describe 

the structure biological functions of exosomes and their 
application as nano-carriers for drug delivery. We also 
discussed how to target these vesicles to increase the 
effectiveness of chemotherapeutic agents through over-
coming chemoresistance.

Structure, content, and biological roles 
of exosomes
Exosomes are cup-shaped or spherical extracellular vesi-
cles, these nano-sized vesicles span 40–150 nm in diam-
eter and weight 1.13–1.19 g/mL in density. The exosomes 
are consisting of a double-layered lipid membrane which 
surrounds a small fraction of cytosolic content but do 
not include any cytoplasmic organelles. The content 
of the exosomes is in direct relation to the physiologi-
cal status of the mother cell [9]. Exosome membrane is 
enriched with peripheral and integral proteins includ-
ing multi-vesicular body biogenesis associated proteins 
(tumor susceptibility gene 101 protein (TSG101), Alix), 
adhesion molecules (ICAM-1), MHC I and II molecules, 
GTPases, heat shock proteins (Hsp60, Hsp70, and Hsp 
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90), Rab proteins, clathrin, tubulin, annexins, flotillin-1, 
cholesterol, ceramides, sphingomyelin and phosphatidy-
lethanolamine which are crucial for the function of exo-
some during inter-and intra-cellular communication [10, 
11]. Tetraspanins (CD9, CD63, and CD81) are the most 
common surface markers of the exosomes which are 
widely applied for exosome detection [12, 13]. these vesi-
cles carry out different macromolecules as their cargo, 
including DNA, mRNA, microRNA, long non-coding 
RNA (lncRNAs), lipids, and proteins [10]. Exosome bio-
genesis initiates during inward budding of late endosomal 
membrane which results in the formation of intraluminal 
vesicles (ILVs) within multivesicular endosomes or mul-
tivesicular bodies (MVBs). Endosomal sorting complex 
required for transport proteins (ESCRT-0, I, II, and III) 
participate in direction of ILVs toward selective cargo 
loading [14]. Capable MVBs for releasing as exosome can 
move toward cell membrane and secret ILVs into extra-
cellular milieu under control of Rab GTPases 27A and B 
molecular motors, also the MVBs which are not capable 
of releasing as exosome can fuse with lysosomal compart-
ment for degradation and recycling of the components 
[15]. The general structure, composition, and biogenesis 
of exosomes are summarized in Fig. 1.

Exosomes can be secreted by almost all eukaryotic 
cell types, and they are traceable in body fluids such as 
blood, urine, saliva, cerebrospinal fluid (CSF), amniotic 
fluid, breast milk, synovial fluid, and ascites [16, 17]. The 
biological functions of exosomes rely on the cells of ori-
gin and the status of the originated tissue or cell at the 
time of exosome biogenesis. Normally, cells expel toxic or 
redundant nonfunctional cellular components including 
drugs via exosomes to maintain the cellular homeostasis 
[18]. The persistent presence of exosomes in biological 
body fluids and extracellular spaces suggests their impor-
tant role in the cell–cell communication network and it 
has been shown that these nano-vesicles play significant 
roles in biological processes (e.g. antigen presentation, 
coagulation, cellular homeostasis, angiogenesis, apop-
tosis, and synaptic physiology) and various pathological 
conditions including autoimmune and neurodegenera-
tive diseases, infectious diseases, inflammation, and can-
cers [16, 19, 20].

Exosome and cancer drug resistance
Drug resistance is defined as the reduction in effective-
ness and potency of medication to produce therapeu-
tic merits which is a major obstacle in cancer treatment 
[21]. To the best of our knowledge, resistance to anti-
cancer drugs can be categorized into two main classes, 
intrinsic (pre-existent) and acquired drug resistance 
[22]. In the intrinsic drug resistance, resistance-associ-
ated factors (e.g. presence of cancer stem cells) exist in 

the tumor mass before any drug exposure [23], while 
acquired drug resistance or multi-drug resistance (MDR) 
is a slow and stepwise process which force tumor cells 
to undergo genetic mutations or epigenetic changes 
during treatment which results in drug-resistant phe-
notype [24]. Acquired drug resistance can be attributed 
to the decreased intracellular concentration of chemo-
therapeutic agents, altered expression of oncogenes or 
tumor suppressor genes, enhanced DNA damage repair, 
epithelial-mesenchymal transition (EMT), autophagy 
[25, 26], and highly acidic microenvironment of tumors 
[27]. Recently an ever-increasing body of evidence high-
lighted the significant role of exosomes in modulating the 
tumor-specific chemoresistance strategies that lead to 
the induction of tumor drug resistance [28, 29]. Here, we 
describe the potential roles of exosomes in the establish-
ment of therapeutic resistance in cancer (Fig. 2).

Exosomes and drug efflux
Increased efflux of chemotherapeutic agents, which 
leads to declined intracellular drug concentration, has 
been considered to be the main cause of drug resistance 
in cancer [30]. One of the mechanisms by which tumor 
cells reduce intracellular levels of cytotoxic substances is 
the secretion of the exosomes to eliminate the cytotoxic 
effects of anti-cancer agents. Cancer cells can simply 
prevent the function of these agents and their metabo-
lites by encapsulating them in exosomes to remove out 
them from the cell [31]. In prostate cancer, Enzalutamide 
(ENZ)-resistant cells release significantly higher amounts 
(2–3 fold) of exosomes compared to respective sensi-
tive cells, also it has been shown that these resistant cells 
use exosomes to remove Enz out of the cell to reduce the 
drug concentration [32]. Similarly, Koch et  al. showed 
that B-cell lymphoma cells could eliminate doxorubicin 
and pixantrone through exosome secretion, and that exo-
some biogenesis inhibition via indomethacin or genetic 
depletion of ABCA3 enhances intracellular accumula-
tion and cytostatic activity of both drugs in vitro as well 
as in  vivo experiments [33]. Furthermore, Wang et  al. 
indicated that treatment of breast and ovarian cancer cell 
lines with paclitaxel or doxorubicin significantly increase 
exosome release in a time and dose-dependent manner, 
the exosomes isolated from these cells contain a consid-
erable concentration of the drug, and these exosomes 
have cytotoxic effects on recipient cells [34]. In addition 
to facilitating drug efflux by exosomes, drug exporter 
pumps, such as P-glycoprotein (P-gp/MDR1), multidrug-
resistant protein-1 (MRP-1), and breast cancer resist-
ance protein (BCRP/ABCG2) participate in drug efflux 
from the cells, therefore overexpression of these pumps 
in tumor cells can decrease the drug bioavailability and 
establish drug resistance [35, 36]. Several studies have 
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shown that exosomal transportation of P-gp induces 
chemoresistance phenotype in recipient tumor cells [37–
44]. For instance, Corcoran et al. revealed that exosomes 
derived from docetaxel-resistant prostate tumor cells 
induce docetaxel-resistance in drug-sensitive cells, which 
may be partially due to exosomal delivery of MDR-1/P-
gp. Also, exosomes isolated from the serum of patients 
with increasing PSA levels (non-respondent to docetaxel) 
could protect prostate tumor cells from the cytotoxic 
effects of docetaxel [38]. Another study has shown that 

exosomes released from doxorubicin-resistant osteosar-
coma cells induce a resistant phenotype in recipient cells 
by delivering MDR-1 mRNA and its product P-glycopro-
tein [43].

Exosomes and cancer stem cell‑mediated drug 
resistance
Cancer stem cells (CSCs), a small subset of cancer cells 
with self-renewal and multi-differentiation capacities, 
play a critical role in tumor initiation and progression. 

Fig. 1 a Exosomes are cup/spherical-shaped vesicles (40–150 nm) with a double-layered lipid membrane surrounding a small cytosol without 
any organelles. This phospholipid bilayer membrane loaded with peripheral and integral proteins. Exosomes also contain nucleic acids (e.g. DNA, 
mRNAs, microRNAs, and long non-coding RNAs) and lipids. b Exosome biogenesis started via endocytosis pathway and early endosome formation. 
During this process, the cell membrane components (proteins and etc.) are embedded into the early endosomes’ membrane, which then matured 
into late endosomes. Inward budding of late endosomal membrane creates multiple intraluminal vesicles (ILVs) within multivesicular endosomes, in 
which some particular proteins and other cytosolic constituents are enveloped in exosomes under control of ESCRT family. MVBs then fuse with the 
cell membrane to release their ILVs into extracellular milieu by Rab GTPases 27A and B molecular motors
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Recent studies revealed that the presence of CSCs within 
tumor mass is the main cause of cancer therapy resist-
ance, leading to tumor relapse and ultimately metasta-
sis [45, 46]. Due to their upregulated expression of drug 
efflux transporters (i.e., P-gp, ABCG2) and other chem-
oresistance related genes, these highly tumorigenic stem 
cells are inherently resistant to chemotherapeutic agents 
[47]. In addition to drug resistance, this rare population 
has a high tumorigenicity capacity, which enables them 
to repopulate a tumor after chemotherapy. In this regard, 
several studies have shown that recurrent tumors after 
chemotherapy failure are often enriched in cells that 
expressing CSC markers [48, 49], however, the origins of 
CSCs are not yet clear and controversial [46]. The accu-
mulated knowledge suggest that CSCs could be derived 
from cancer cells/differentiated cells that acquired stem-
like characteristics through reprogramming and dediffer-
entiation [50].

A body of evidence confirms that exosomes, as a medi-
ator of intercellular communication in the TME, partici-
pate in the conversion of non-CSC to CSCs via delivering 
stemness and EMT promoting factors. Snail1, a zinc fin-
ger transcriptional factor that promotes the repression 
of E-cadherin expression, is shared by cancer-associated 
fibroblasts (CAFs) derived exosomes to induce EMT and 
establishment of lung cancer cells with CSC character-
istics [51]. Fibroblasts-derived exosomes contain IL-6, 
Activin-A, and granulocyte colony-stimulating factor 
(G-CSF) which are interacted with lung carcinoma cells 
to induce gene expression alterations, most probably 
through STAT3 and Smad activation. The consequent 

activation of stemness-associated pathways such as Wnt, 
Notch, and Hedgehog direct tumor cells’ dedifferentia-
tion of lung cancer cells to a more CSC-like phenotype 
and reduces cell cycle progression, which is associated 
with higher methotrexate resistance [52]. Similarly, exo-
somal Wnt derived from fibroblasts induces resistance to 
5-fluorouracil (5-Fu) via reprogramming differentiated 
colorectal cancer (CRC) cells to functional CSCs [53].

In addition to exosomal protein cargo, several exo-
somal miRNAs are also reported to be involved in the 
EMT–associated chemoresistance. For instance, exoso-
mal delivery of oncomiRNA-155 from CSCs and resist-
ant breast cancer cells to sensitive breast cancer cells 
mediates the loss of C/EBP-β, which in turn, causes 
loss of TGF-β and leads to EMT and chemoresistance 
in recipient cells [54]. CAFs secreted exosomes contain 
miR-92a-3p which can induce 5-FU/L-OHP resistance 
by promoting cell stemness and EMT in CRC through 
targeting FBXW7 and MOAP1 [55]. In CRC, it has been 
shown that fibroblast-derived exosomes can develop 
chemoresistance to 5-FU or oxaliplatin through increas-
ing CSCs percentage, clonogenicity, and tumoral growth 
[29]. Together, these results depict that exosomes could 
promote the dedifferentiation of cancer cells to CSCs 
and the development of chemoresistance, and propose 
that interfering with exosome release and uptake may 
help to increase chemosensitivity of cancers to available 
chemotherapeutics.

Exosomes and autophagy induced drug resistance
Autophagy (or macro-autophagy) is a highly conserved 
catabolic mechanism for the destruction and recycling 
of redundant or dysfunctional cellular components, in 
which a specialized double-layered membrane vesicle 
called autophagosome is formed around the unneces-
sary cellular constituent or intracellular pathogen, which 
eventually fuses with the lysosome to degrade the con-
fiscated material [47]. Autophagy activation normally 
occurs in cells in response to environmental stressors, 
facilitates cell survival, and can establish drug resistance 
in malignant cells [56]. Increased activity of autophagy 
and improved secretion of exosomes from tumor cells 
after chemotherapy have been documented in sev-
eral studies, indicating that these responses are part of 
the cells’ response to stress conditions due to chemo-
therapy and survival mechanisms against chemothera-
pies [57, 58]. In support of this possibility, the potential 
role of exosomes in autophagy-mediated therapy resist-
ance has been reported in different types of cancers. For 
example, Gefitinib, a tyrosine kinase inhibitor, is widely 
used for the treatment of non-small cell lung cancer 
(NSCLC) patients with EGFR mutations, but its combi-
nation with Platinum-based antineoplastic drugs leads to 

Fig. 2 Exosome mediated cancer drug resistance mechanisms
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an antagonistic effect. Exosome isolated from gefitinib-
treated EGFR-mutant NSCLC cells conditioned medium 
decreased the anti-neoplastic effects of cisplatin by 
increasing autophagic activity and reducing apoptosis, as 
confirmed by an increasing Bcl-2/Bax ratio, upregulation 
of LC3-II, and downregulation of p62 protein levels [59]. 
Similarly, exosomal mediated transmit of miR-425-3p 
enhanced autophagy activation in the recipient NSCLC 
cells via targeting AKT1, eventually leading to resistance 
to cisplatin [60]. In hepatic cancers, exosomes secreted 
from HBV–infected cancer cells can downregulate cell 
apoptosis and promote oxaliplatin resistance via activat-
ing the chaperone-mediated autophagy (CMA) pathway 
through upregulation of lysosome-associated membrane 
protein (Lamp2a) as a key molecule in CMA pathway 
[61]. More interestingly, exosomal transmit of miR-567 
from normal breast epithelial cells (MCF-10A) resen-
sitized resistant breast cancer cells to trastuzumab by 
targeting autophagy-related 5 (ATG5) and thereby inhib-
iting autophagy [62]. These studies demonstrate the 
possible capacity of the crosstalk between cancer cells 
derived exosomes and autophagy phenomenon in cancer 
therapy response.

Role of exosomes in dysregulation of oncogenes 
or tumor suppressor genes expression
Oncogenes and tumor-suppressor genes (TSGs) are two 
broad classes of genes that play crucial roles in oncogen-
esis by opposite mechanisms. Oncogenes encoded pro-
teins (Onco-proteins) promote normal cell growth while 
TSGs encode proteins inhibit the survival of malignant 
cells. Several reports indicated that TSGs and onco-
genes are important mediators of drug resistance [63]. 
Exosomes have been shown to alter the expression of 
TSGs and oncogenes through the intercellular transloca-
tion of noncoding RNAs.

TP53 is the most studied TSGs and is mutated in 
more than half of human cancers which participates in 
cell cycle arrest and apoptosis following DNA damage 
through transcriptional activation of pro-apoptotic genes 
or sequestration of anti-apoptotic proteins. Alteration in 
TP53 expression or its function is often correlated with 
resistance to standard antineoplastic agents [64]. In pros-
tate cancer, exosomal miR-27a could induce resistance 
to cisplatin, docetaxel, and doxorubicin in recipient cells 
by the degradation of p53 mRNA [65]. Down-regulation 
of PTEN expression, a negative regulator PI3k/Akt sign-
aling pathway, results in reduced dephosphorylation of 
PIP3 and enhances cell survival and proliferation [63]. 
Recently, it has been reported that transferring exosomal 
miR-32-5p from resistant cells to sensitive cells can acti-
vate the PI3K/Akt pathway by targeting PTEN and dis-
seminating resistance to 5-FU by promoting angiogenesis 

and EMT [66]. CAV1 encodes Caveolin1, a negative reg-
ulator of EGFR activation, which acts as a tumor suppres-
sor gene in glioblastoma (GBM) cells. Exosomal delivery 
of bioactive miR-1238 from temozolomide (TMZ) resist-
ant cells can provoke chemoresistance through triggering 
the EGFR-PI3K-AKT-mTOR pathway in sensitive GBM 
cells [67]. CAFs are inherently resistant to gemcitabine 
(GEM) and CAF derived exosomes contain miR-106b 
which promotes GEM resistance in pancreatic cancer 
cells by direct targeting of TP53INP1 [68]. Furthermore, 
exosomal miR-155-5p increases paclitaxel resistance in 
recipient gastric cancer cells via GATA3 and TP53INP1 
downregulation [69].

In addition to miRNAs, tumor-derived exosomes also 
induce chemoresistance in drug-sensitive cells via trans-
ferring of lncRNAs [70, 71]. Sunitinib, a receptor tyros-
ine kinase (RTK) inhibitor, is the first-line treatment for 
renal cell carcinoma (RCC) patients, which has potent 
anti-angiogenic and anti-tumor activities by inhibition 
of VEGF receptor, PDGF receptor, FMS-like tyrosine 
kinase 3 (FLT3), and stem cell growth factor receptor. Qu 
et  al. showed that exosomes can share lncARSR which 
induces sunitinib resistance via competitively binding 
miR-449/miR-34 to increase c-MET and AXL expression 
in RCC cells [72]. Similarly, exosomal delivery of lncRNA 
PART1 disseminates gefitinib resistance in esophageal 
squamous cell carcinoma by regulating miR-129/Bcl-2 
pathway [70]. Treatment of drug-sensitive breast cancer 
cells with exosomes derived from trastuzumab-resistant 
cells that highly expressing lncRNA-SNHG14 can confer 
trastuzumab resistance by targeting the Bcl-2/Bax sign-
aling pathway [73]. Exosomal lncRNA CCAL from CAFs 
directly interacts with human antigen R (mRNA stabi-
lizing protein HuR), enhances β-catenin expression at 
both mRNA and protein levels, and promotes oxaliplatin 
resistance in CRC cells [74].

Besides, exosomes have been shown to directly trans-
duce oncogenes into the sensitive cells to induce drug 
resistance. For instance, MET is shared by GBM cells 
harboring PTPRZ1–MET fusion to establish temozolo-
mide resistance in GBM cells [75]. Survivin, a member 
of the inhibitor of apoptosis (IAP) protein family, can 
be regarded as an oncogene, aberrant overexpression of 
this molecule induces resistance to apoptotic stimuli and 
chemotherapeutic agents. It has been shown that exoso-
mal transferring of survivin promotes paclitaxel  resist-
ance in breast cancer cells [76]. Anaplastic lymphoma 
kinase (ALK) is an RTK that can be activated by muta-
tions and acts as an oncogene in different cancers. Cesi 
et al. showed that a novel truncated form of ALK can be 
shuttled by vemurafenib resistant melanoma cell-derived 
exosomes and promote resistance phenotype in recipi-
ent cells [77]. Moreover, exosome-mediated transfer of 
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p-STAT3 from resistant cells significantly promoted cell 
survival and 5-FU resistance both in  vitro and in  vivo 
[78].

Exosomes and enhanced DNA repair in tumor cells
Most chemotherapeutic agents, including platinum-
based drugs, 5-FU, and TMZ, target tumor cells by induc-
ing DNA damage, which can initiate a variety of signaling 
pathways called DNA damage response (DDR) [79] com-
prising DNA lesion detection, signal transduction, cell 
cycle checkpoints activation, and DNA repair, which 
may elicit resistance to clinical DNA-damaging agents 
through increasing DNA repair [80]. Also, the potential 
role of exosomes in enhancing DNA repair and promot-
ing cancer cell survival has been confirmed in several 
studies. For example, X-ray repair cross complement-
ing 4 (XRCC4), a major factor for double-strand breaks 
(DSBs) repair, has recently been shown to be connected 
with TMZ resistance in tumor cells. Zhang et al. revealed 
that exosomal lncRNA SBF2-AS1 provokes TMZ resist-
ance in recipient cells. Mechanistically, lncRNA SBF2-
AS1 acting as a competing endogenous RNA (ceRNA) for 
miR-151a-3p, leads to the disinhibition of its endogenous 
target, XRCC4, which enhances DNA lesions repair in 
tumor cells [81]. In another study, it has been shown that 
exosome-mediated transferring of miR-151a re-sensitize 
GBM-resistant cells to TMZ by targeting XRCC4 [82]. 
MGMT  (O6-methylguanine DNA methyltransferase) is 
the key enzyme involved in TMZ-induced DNA damage 
repairing and its tissue-level expression is negatively cor-
related with the treatment efficacy. Exosomal delivery of 
MGMT mRNA from reactive astrocyte to glioma cells 
confers TMZ resistance phenotype [83].

Tumor microenvironmental acidity 
and exosome‑mediated chemoresistance
The tumor microenvironment (TME) is acidic, in  vivo 
ranges from 6.5 to 7.1, which is a common phenotype 
of virtually all tumors and the TME acidity is directly 
related to the tumor malignancy [27]. Altered glycolytic 
activity due to the overexpression of M2-PK (a dimeric 
isoenzyme of pyruvate kinase) and hypoxia, the so-called 
“Warburg Effect”, causes a large accumulation of lactic 
acid and proton  (H+) within the tumor cell cytoplasm, 
which contributes to TME acidification [84]. Also, high 
amounts of carbon dioxide are produced during mito-
chondrial respiration in oxygenated tumor cells, which 
also contributes to the significant release of protons into 
the TME [85].

Decreased extracellular pH induces a selective pres-
sure result in the selection of tumor cells that promotes 
cancer drug resistance [86], which one of the common 

phenomena associated with this selection is increased 
exosome secretion [87].

There is strong evidence that a low pH potentially influ-
encing exosome release and uptake by tumor cells [88]. 
Recently it has been shown that tumor acidity increases 
exosome secretion in human tumor cells from different 
cancer, including melanoma, osteosarcoma, colon, pros-
tate, and breast cancer [89]. The underlying mechanism 
of increased exosome extrusion under acidic conditions 
is unclear; however, one of the main and well-known 
functions of the exosome is the removal of toxins, includ-
ing chemotherapeutics, from the cell cytoplasm [84]. 
High acidity extracellular environment may likely induce 
an amplified exosome secretion for detoxifying purposes. 
In this regard, several investigations have indicated that 
resistant cancer cells secrete larger amounts of exosomes 
than their sensitive counterparts [90, 91]. Furthermore, 
the results of some recent experiments in vitro revealed 
that the acidic extracellular environment increases the 
number of released exosomes along with upregulation 
of certain tumor biomarkers such as carbonic anhydrase 
IX (CA IX) and prostate specific antigen (PSA) in cancer 
cells and their exosomes [17, 92].

Therefore, considering the effect of environmental 
acidity on exosome secretion and chemoresistance, an 
anti-acid approach can be proposed as a winning strat-
egy in cancer treatment, which may be achieved with 
buffers or proton pump inhibitors (PPIs) [89]. Recent 
studies have verified that the alkalization of tumor cell 
environment with buffers causes a sharp decrease in exo-
some secretion [93]. Furthermore, two different studies 
have demonstrated that buffering the tumor environ-
ment decelerates tumor growth of xenografts in mice and 
enhances responsiveness to chemotherapeutics in human 
and veterinary patients [94, 95]. Moreover, pre-treatment 
of human melanoma cells Lansoprazole (a PPIs) prevents 
tumoral exosome secretion leading to improved cispl-
atin-dependent cytotoxicity [96].

Exosomes and resistance to immunotherapies
Several studies have suggested that tumor cells produce 
and secrete exosomes that act as a decoy target for anti-
cancer immunotherapies. Trastuzumab (Herceptin), a 
humanized monoclonal antibody targets the extracellu-
lar domain of human epidermal growth factor receptor 
2 (HER2) inhibits tumor cells’ survival and proliferation, 
and is widely used as an approved medication for early 
HER2 positive and advanced metastatic cancers. It has 
been shown that HER2-overexpressing breast cancer 
cells, release HER2-containing exosomes which inter-
fere with the therapeutic activity of Herceptin. Exosomal 
surface expression of HER2 allows the exosome to com-
pete with breast cancer cells for Trastuzumab binding, 
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thus restraining bioavailability and decreasing Trastu-
zumab anti-cancer efficiency [97]. In breast cancer, Han 
et  al. showed that exosomal lncRNA AFAP1-AS1 (actin 
filament associated protein 1 antisense RNA 1) could 
promote Herceptin resistance through associating  AU-
binding factor 1 (AUF1) and HER-2 protein levels upreg-
ulation [62].

Rituximab, a chimeric antibody against cell surface 
CD20 antigen, exerts its cytolytic effects via direct induc-
tion of apoptosis, antibody-dependent cytolysis, as well 
as complement-dependent cellular cytotoxicity, and is 
used in aggressive B-cell lymphoma immunotherapy. 
B-cell lymphoma cells secrete CD20 carrying exosomes, 
which bind and deplete therapeutic anti-CD20 antibod-
ies, leads to complement components depletion, and 
shield cancer cells from antibody attack [98].

How to combat exosome‑induced drug resistance
Given the above, the potential role of exosomes in can-
cer therapy resistance can be understood, therefore, to 
maximize the efficacy of chemotherapy, eliminating the 
detrimental effect of exosomes on cancer therapy seems 
to be necessary. To this end, several approaches have 
been proposed including inhibition of exosome biogen-
esis and release, inhibition of their uptake by recipient 
cells, and targeting their cargo. Some pharmacological 
and chemical compounds have been used to sensitize 
cancer cells to chemotherapeutic agents via targeting 
biogenesis, release, and exosome uptake which have been 
summarized in Table  1. For instance, in leukemia and 
lymphoma, it has been found that high expression of 
ATP-binding cassette transporter A3 (ABCA3) is crucial 
for exosome generation and chemoresistance and pre-
treatment of diffuse large B-cell lymphomas (DLBCL) 

with indomethacin, a COX inhibitor, enhances the accu-
mulation of doxorubicin and pixantrone in the nuclei 
of DLBCL tumor cell through the reduction in ABCA3 
levels and exosome biogenesis, which increases tumor 
cell susceptibility to these drugs [33]. Manumycin A, a 
natural microbial metabolite with a potent selective Ras 
farnesyl-transferase inhibitory activity, decrease exosome 
biogenesis and secretion by inhibition of Ras/Raf/ERK1/2 
signaling pathway and consequent inhibition of the onco-
genic splicing factor hnRNP H1 in castration-resistant 
prostate cancer cells [99]. In another study, it has been 
shown that pre-treatment of tumor cells (MCF7, HeLa, 
and BT549) with ketotifen, an anti-histamine which acts 
as a calcium channel blocking agent, reduces exosome 
release and increases the sensitivity of cancer cells to 
doxorubicin by enhancing intracellular drug retention 
[100]. Similarly, 5-FU mediated apoptosis was signifi-
cantly increased in prostate and breast cancer cell lines 
in the presence of a combination of chloramidine and 
bisindolylmaleimide-I, which act as inhibitors of exo-
some release [101]. Exosomes interact and are taken up 
by recipient cells in various mechanisms such as direct 
integration with the cell membrane, clathrin and cave-
olin1-mediated endocytic pathways, cholesterol/lipid 
rafts–dependent endocytosis, macro-pinocytosis, phago-
cytosis, and ligand-receptor interaction. As a result, tar-
geting the aforementioned mechanisms can prevent the 
internalization of the exosomes. On such a basis, several 
researchers have attempted to overcome the chemother-
apy resistance through inhibition of exosome uptake by 
target cells. To et al. reported that exosome uptake inhi-
bition by dynasore, dynamin GTPase activity inhibitor, 
prevents ABCG2 induction and sensitizes the resistant 
colorectal cancer cells to SN38 treatment [102]. Heparan 

Table 1 Chemical and pharmacological agents for targeting exosome biogenesis, secretion, and uptake

Drug/Compound Mechanism Ref.

Inhibition of exosome 
biogenesis and secre-
tion

GW4869 Targeting neutral sphingomyelinase 2 [29]

Manumycin Inhibition of Ras/Raf/MEK/ERK1/2 signaling pathway [99]

Indomethacin Blocking the expression of ABCA-3 [33]

Ketotifen Unknown [100]

Chloramidine and bisindolylmaleimide-I Unknown [101]

Lansoprazole (proton pump inhibitor) Decreasing microenvironmental acidity [96]

Inhibition of exosome 
internalization

Heparin Inhibition of HSPG mediated endocytosis [104]

Cytochalasin D Inhibition of actin polymerization [105]

Dynasore Inhibition of the GTPase activity of dynamin [106]

Chlorpromazine Inhibition of clathrin-dependent endocytosis [107]

Methyl-β-cyclodextrin Remove cholesterol from the cell membrane [108]

Nystatin and Simvastatin* Inhibition of the lipid raft -mediated endocytosis 
pathway/*Inhibitor of HMG-CoA

[109]

Filipin III Inhibitor of lipid raft dependent and caveolar endocytosis [88]
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sulfate proteoglycans (HSPGs) acts as cell surface recep-
tors for exosome uptake and internalization [103]. Pre-
treatment of oral squamous carcinoma cells (OSCCs) 
with heparin, a competitive inhibitor of HSPG mediated 
endocytosis, inhibits exosome uptake by recipient cells 
and suppresses the exosome induced tumor progression 
in vitro and in vivo [104].

In addition to inhibiting biogenesis, release, and uptake 
of exosomes, exosome cargo targeting could also be an 
approach to overcome exosome-induced drug resist-
ance. In esophageal cancer, exosome-mediated transfer-
ring of MiR-21 provokes cisplatin-resistant phenotype in 
recipient cells through targeting programmed cell death 
4 (PDCD4) mRNA and downregulating its protein level. 
It has been shown that cell transfection with anti-miR-21 
(the antisense oligonucleotide sequence of miR21) inhib-
its exosome induced chemoresistance, which raises the 
possibility that anti-exosome miR-21 can act as a poten-
tially useful target for overcoming cisplatin resistance in 
patients with esophageal cancer [110]. Similarly, in vitro 
and in vivo inhibition of exosomal miR-214 with antago-
mir, re-sensitize resistant NSCLC cells to gefitinib [111]. 
As previously mentioned, the intercellular transmission 
of lncARSR by exosomes promotes sunitinib resistance 
in renal cell carcinoma cells, and lncARSR targeting with 
locked nucleic acids significantly rescinded the sunitinib-
exosome-mediated resistance [72].

Exosomes as a natural capsule for drug delivery 
to overcome tumor drug resistance
The role of exosomes as a natural vehicle of protein, 
mRNA, and noncoding RNAs among cells, leads to the 
idea that they can be used as a delivery system for over-
coming chemoresistance. In this context, there is a con-
siderable body of research that shows the efficacy of 
exosomes in drug or gene delivery due to their ability to 
pass through the lipid bilayer cell membrane. Exosomes 
as a natural product of the body have many advantages 
over the other synthetic nano-carriers for drug or gene 
delivery, such as low immunogenicity, high biocom-
patibility and, and high efficacy of delivery [112]. Also, 
exosomes have good stability in the circulation, which 
allows them to travel long distances within the body and 
deliver their cargo to target cells under both physiologi-
cal and pathological conditions. Furthermore, exosomes 
have a cytosol like core, which makes them suitable car-
rier for water-soluble drugs [113]. Today, these natural 
nanoparticles are widely used as delivery systems for 
conventional drugs, genes, and other natural compounds. 
The successful delivery of paclitaxel by exosomes in vitro 
laid the foundation for exosomes carrying anticancer 
drugs for in vivo tumor therapy [112]. Kim et al. demon-
strated that the incorporation of paclitaxel into exosomes 

increases cytotoxicity more than 50 times in drug-resist-
ant (P-glycoprotein+) cells [114]. Saari et al. also showed 
that exosome-mediated delivery of paclitaxel enhances 
the cytotoxicity of this drug in autologous prostate can-
cer cells [115]. Several studies have shown that exosomal 
encapsulation of doxorubicin reduces the doxorubicin-
induced cardiotoxicity in mice. Therefore, a higher 
concentration of doxorubicin can be used for cancer 
treatment, which in turn increases the efficiency of doxo-
rubicin [116–118]. Moreover, Yang et  al. have reported 
that brain endothelial cell-derived exosomes can pass 
anticancer agents across the blood-brain barrier (BBB) 
for the treatment of brain tumors [119]. More interest-
ingly, in another study cow milk-derived exosomes have 
been used for delivery of the chemo-preventive and 
chemotherapeutic drugs. In this report, paclitaxel and 
docetaxel-loaded exosomes showed significantly higher 
efficacy compared to the free drug in cell culture studies 
and against lung tumor xenografts in vivo [120]. Acridine 
Orange (AO) is an organic acidophilic dye with a potent 
tumor-killing effect after activation by a light source 
at 466  nm (blue light). However, the clinical use of OA 
is restricted by its potential systemic toxicity. Iessi et al. 
demonstrated the exosome-mediated transfer of OA 
increase the delivery and the efficacy of AO in human 
melanoma cells [121].

In addition to conventional drugs, various genetic 
materials such as short interfering RNA (siRNA) and 
miRNA can also be delivered by exosomes to overcoming 
drug resistance in tumor cells. Sorafenib is an effective 
clinical drug in the treatment of hepatocellular carci-
noma (HCC) and GRP78 (a member of the HSP family) 
which is overexpressed in sorafenib resistant cancer cells 
compared to sensitive cells. Exosomal delivery of siRNA 
against GRP78 (siGRP78) suppresses sorafenib resistance 
in HCC [122].

Further studies have indicated that miRNAs can also 
be delivered by exosomes. For example, in triple-negative 
breast cancer cells, miR-134-enriched exosomes derived 
from miR-134-transfected cells decreased aggressiveness, 
migration, and enhanced sensitivity to anti-Hsp90 drugs 
in parent cells (with low endogenous miR-134 levels) 
via down-regulation of STAT5B-Hsp90 [123]. Similarly, 
Zeng et  al. indicated that exosome-mediated transfer-
ring of miR-151a to temozolomide-resistant glioblastoma 
cells enhances chemo-sensitivity to temozolomide [82]. 
As well as, exosomal miR-122 and miR-199 delivery by 
mesenchymal stem cell-derived exosomes improved the 
chemosensitivity of HCC cells respectively to sorafenib 
[124] and 5-fu [125] in  vitro and in  vivo studies. It has 
been shown that miR-9 is involved in the expression of 
P-glycoprotein and exosomal transferring of anti-miR-9 
could confer chemo-sensitivity in glioblastoma multiform 



Page 9 of 15Mostafazadeh et al. Cell Biosci            (2021) 11:1  

cells [126]. Furthermore, treatment of HepG2 cells with 
miR-744-enriched exosomes inhibited proliferation and 
sorafenib resistance in HCC through targeting paired 
box gene 2 (PAX2) [127]. Similarly, exosomes derived 
from the conditioned media of transfected bone marrow 
stromal cells with a miR-146b expression plasmid signifi-
cantly reduces tumor growth in vitro and a rat xenograft 
model of brain tumor [128]. More excitedly, Liang et al. 
used engineered exosomes for targeted co-delivery of 
5-FU and miR-21 inhibitor to reverse chemoresistance in 
colon cancer. They showed that exosomal co-delivery of 
5-FU and miR-21 inhibitor effectively resensitize resist-
ant cells to 5-FU [129].

Exosomes as predictive biomarkers for clinical 
outcome of chemotherapy
Multi-drug resistance, undesirable chemotherapeutic 
agents’ side effects, and tumor cell dissimilarity among 
and within the cancer patients restrict the efficacy of anti-
cancer drugs. To overcome these obstacles, predictive 
biomarkers (e.g. tumor-derived exosomes) have recently 
emerged to guide oncology specialists in the selection of 
proper chemotherapy drugs for the treatment of various 
cancer patients [130]. Exosomal cargo properly reflects 
the features of releasing cells and their metabolic status. 
For this reason and because of their abundance in biolog-
ical fluids, accessibility, high circulation stability, selective 
cargo sorting, and reproducibility, exosomes represent a 
valuable and non- or semi-invasive biomarker for cancer 
diagnosis and prognosis [131–134]. There is an increasing 
interest in using tumor-derived exosomes as easily acces-
sible biomarkers in predicting the clinical outcome of 
chemotherapy [8, 135–137]. A recently conducted study 
suggested that high exosomal expression of the oncogenic 
lncRNA UCA1 (urothelial carcinoma-associated 1) might 
predict cetuximab resistance in CRC patients [137]. A 
panel of serum-derived exomiRs (miR-96-5p, miR-21-5p, 
miR-1229-5p, and miR-1246) is suggested as a predictive 
biomarker for chemoresistance in CRC patients [138]. 
Elevated serum-derived exomiR-92a-3p is proposed as 
a prognostic marker for metastasis and 5-Fu/Oxalipl-
atin resistance in CRC patients [55]. Modified fluoro-
uracil, leucovorin, and oxaliplatin (mFOLFOX6)-based 
chemotherapy is the first-line treatment for metastatic 
CRC. It has been reported that plasma exomiR-125b 
levels may serve as a useful biomarker for mFOLFOX6)-
based first-line chemotherapy resistance in advanced 
and recurrent CRC cancer patients [139]. Microtubule-
targeting chemotherapy agents such as docetaxel and 
paclitaxel are currently used as the first-line chemo-
therapy for castration-resistant prostate cancer (CRPC) 
patients. Serum derived exosomes containing CD44v8-10 
mRNA, have been proposed as a potential element for 

docetaxel-resistance predicting among prostate cancer 
patients [140]. Circulating exosomal Integrin β4 (ITGB4) 
and vinculin (VCL) could predict taxane-resistance in 
prostate cancer patients [141].  Higher plasma levels of 
exomiRs (miR-1290 and miR-34a) are related to poor 
response to docetaxel in metastatic CRPC patients [142, 
143]. P-gp, which acts as a drug exporter pump, con-
tributes to the expansion of drug resistance in different 
cancer types. It has been suggested that serum exosomal 
P-gp in prostate cancer patients could be a useful marker 
for docetaxel resistance diagnosis [39]. Another study has 
shown that resistance to hormonal therapy in metastatic 
prostate cancer patients may be predicted by detecting 
androgen receptor splice variant 7 (AR-V7) in plasma-
derived exosomal RNA [144].

Wang et  al. demonstrated that circulating exosome 
carrying transient receptor potential channel 5 (TRPC5) 
might act as a noninvasive chemoresistance biomarker 
for breast cancer patients [145]. Glutathione S-trans-
ferase P1 (GSTP1), a xenobiotic-metabolizing enzyme 
that plays an important role in the detoxification of 
chemotherapy agents through conjugating them with 
glutathione, has been shown that enriched in adriamy-
cin-resistant breast cancer cell-derived exosomes and 
plasma-derived GSTP1-containing exosomes could 
predict response to chemotherapy drugs in breast can-
cer patients [136]. Exosomal enrichment of lncRNA-
SNHG14 and survivin in human serum is another 
diagnostic biomarker for drug-resistant breast cancer 
[73, 76].

In pancreatic cancer, exosomal expression of Ephrin 
type-A receptor 2 (EphA2) could serve as a minimally-
invasive predictive biomarker for responding to GEM 
[146]. Clinically, high levels of lncSBF2-AS1 in serum 
exosomes were associated with poor response to TMZ 
treatment in GBM patients [81]. Different exosomal car-
gos including miRNAs, LncRNAs, and proteins are pre-
viously described as predictive markers in tumor drug 
resistance which are listed in Table 2.

Conclusion
The rapid development of drug resistance in tumor cells 
is one of the most important barriers to cancer treat-
ment, and success in this field depends on a thorough 
understanding of the molecular mechanisms involved 
in drug resistance, as well as the complexities of inter-
action between different components of the tumor 
microenvironment. Exosomes are intracellular endo-
somal origin nano-vesicles that are produced and 
secreted by all eukaryotic cell types in normal and path-
ological conditions and play a key role in maintaining 
cellular homeostasis, as well as intra and intercellular 
communication. Distribution of biological molecules 
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ranging from non-coding RNAs to functional proteins 
through tumor cellular components by exosomes sug-
gesting their significant role in tumor initiation and 
chemoresistance expansion. Exosome properties such 
as presence in all body’s biological fluids, accessibility, 
high stability, and high sensitivity to reflecting the char-
acteristics of the originating cells, has made exosomes 
an excellent biomarker for diagnostic and prognos-
tic goals. In this regard, we provide a list of exosomal 

cargos that can be used as predictor markers of drug 
resistance. Exosomes as a natural capsule can also be a 
good tool for drug or gene delivery to overcome tumor 
drug resistance. Also, exosomes are suitable therapeu-
tic targets for maximizing the efficacy of chemotherapy, 
therefore, searching for new chemicals or pharmaco-
logical agents that interfere with the biogenesis, secre-
tion, and uptake of exosomes by the recipient cells is 
essential.

Table 2 Predictive role of exosomal cargo in tumor drug resistance

Cancer type Exosomal contents (srug) Ref.

Colorectal cancer miR-92a-3p (5-Fu/Oxaliplatin) [55]

miR–125b (mFOLFOX6) [139]

lncRNA UCA1 (Cetuximab) [137]

A panel of miR-21-5p, miR-1246, miR1229-5p and miR-96-5p (oxaliplatin and 
5-fluorouracil)

[138]

Prostate cancer ITGB4 and Vinculin (Taxane) [141]

AR-V7 (Hormonal Therapy) [144]

P-glycoprotein (Docetaxel) [39]

CD44v8-10 mRNA (Docetaxel) [140]

MDR-1, MDR-3, endophilin-A2, and PABP4 (Docetaxel) [147]

miR-1290 (Docetaxel) [148]

miR-34a (Docetaxel) [142]

Breast cancer Survivin (Paclitaxel) [76]

TRPC5 [145]

TK1 and CDK9 mRNA (CDK4/6 inhibitors) [149]

lncRNA–SNHG14 (Trastuzumab) [73]

lncRNA AFAP1-AS1 (Trastuzumab) [62]

RNA H19 (Doxorubicin) [150]

GSTP1 (Adriamycin) [136]

Multiple myeloma PSMA3 and lncPSMA3-AS1 (Bortezomib) [151]

Ovarian cancer Plasma gelsolin (pGSN) [152]

Pancreatic cancer EphA2 (Gemcitabine) [153]

miR-155 (Gemcitabine) [154]

Head and neck cancer miR-196a (Cisplatin) [155]

Lung cancer miR-222-3p (Gemcitabine) [156]

miR-146a-5p (Cisplatin) [157]

miR-21 (Cisplatin) [158]

miR-425-3p (Platinum-based chemotherapy) [8, 60]

lncRNA RP11–838N2.4 (Erlotinib) [159]

Melanoma PDGFR-B (Vemurafenib) [160]

Glioblastoma miR-1238 (Temozolomide) [161]

miR-151a (Temozolomide) [82]

MET and p-MET (Temozolomide) [75]

lncSBF2-AS1 (Temozolomide) [81]

Gestational trophoblastic neoplasia miR-219a-5p (Methotrexate) [162]

Diffuse large B-cell lymphoma miR-146a [163]

miR-99a-5p and miR-125b-5p (R-CHOP regimen) [164]

Renal cell carcinoma lncARSR (Sunitinib) [72]
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