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Background: Chest radiation therapy (RT) is known to be associated with cardiotoxicity.
However, the changes in myocardial tissue characterization with radiation-induced
cardiotoxicity are not well-understood.

Objectives: This study sought to assess the changes in left ventricular function
and tissue characterization using cardiovascular magnetic resonance (CMR) in
patients receiving RT.

Materials and Methods: Between June 2015 and July 2018, we enrolled patients
with breast, lung cancer, or lymphoma with plan to receive chest radiation after
chemotherapy. CMR was performed using a 1.5T scanner at baseline and 6 months
after RT. Myocardial volume, function, strain analysis using feature tracking, and
tissue characterization including late gadolinium enhancement (LGE), T1, T2, T1ρ

(rho), and extracellular volume fraction (ECV) were measured and compared using
non-parametric methods.

Results: The final cohort consisted of 16 patients, 11 of whom completed both baseline
and follow-up CMRs. Patients were matched to 10 healthy controls. At baseline prior
to RT, compared to controls, patients had lower global circumferential strain (GCS)
(15.3 ± 2.2% vs.18.4 ± 2.1%, p = 0.004), and elevated T2 (47.9 ± 4.8 ms vs.
45.0 ± 1.5 ms, p = 0.04) and T1ρ values (78.4 ± 5.9 vs. 66.9 ± 4.6 ms, p < 0.001).
Two patients had LGE. There was no significant difference in the average T1 values
or ECV. There was a trend toward lower LV ejection fraction and global longitudinal
strain (GLS). At 6-month follow-up after RT, there were no significant changes in all
the CMR parameters.
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Conclusion: At 6-month following chest radiation therapy, there was no change in LV
and RV EF, LV and RV GLS, LV GCS, and myocardial tissue characterization using
LGE, T1, ECV, T2, and T1ρ in a small cohort of patients. However, the baseline T2 and
T1ρ were elevated and LV GCS was reduced compared to controls indicating ongoing
myocardial edema and subclinical dysfunction post-chemotherapy.

Keywords: chemotherapy associated cardiotoxicity, radiation cardiotoxicity, cardiooncology, prospective cohort
study, CMR

INTRODUCTION

As survival continues to improve following treatment for
cancer, there is an increasing concern for long-term treatment-
related toxicity. In the management of thoracic malignancies,
systemic therapy and radiation are associated with cardiotoxicity.
Radiation therapy (RT) is an important component of curative
treatment in about half of patients with cancer (1). However,
thoracic RT may be associated with a significant risk of
cardiovascular (CV) toxicity and is of great concern, particularly
in breast and lung cancer patients (2, 3). Ischemic heart disease,
valvular disease, non-ischemic cardiomyopathy, pericardial
disease, arrhythmias, and conduction abnormalities are each
potential adverse cardiovascular sequelae of chest radiation (4–
7). Despite improvements in RT techniques and modalities that
decrease the total radiation dose administered, radiation-induced
heart disease (RIHD) remains a common cause of morbidity and
mortality among cancer survivors. The impact of cardiotoxicity
with current RT techniques on cardiac function, cardiomyocyte
inflammation, and necrosis is unknown (8).

The etiology of RIHD is not well-understood (9) although
multiple pathophysiologic mechanisms exist for long-term
RIHD, including micro- and macrovascular injury, fibrosis,
and endothelial cell dysfunction (10, 11). Currently, available
biomarkers such as troponin and brain natriuretic peptide have
not been validated in predicting the development of RIHD (12–
14). These biomarkers are known to play an important role in
the prediction of cardiotoxicity in patients receiving cardiotoxic
cancer therapy, particularly with sequential anthracycline and
trastuzumab therapy (15). Multiple cardiac imaging modalities
play important roles in pretreatment risk assessment, early
detection of cardiotoxicity, and in the identification of long-term
cardiotoxicity after receiving potentially cardiotoxic treatment.
Cardiovascular magnetic resonance imaging (CMR) provides an
accurate assessment of cardiac volumes, systolic function and
can non-invasively characterize myocardial tissue and allow early
detection of subclinical cardiac injury (16).

Cardiovascular magnetic resonance utilizes a multiparametric
approach for myocardial evaluation. Left ventricular (LV),
global longitudinal strain (GLS), and circumferential strain
(GCS) by CMR feature tracking is a more sensitive measure
of systolic function and can be used to identify sub-clinical
LV dysfunction (17). Elevated native T1 values correlate with
fibrosis or increased interstitial expansion (18). Native and
post-contrast T1 mapping are used to calculate myocardial
extracellular volume (ECV) which correlates with extracellular
volume fraction and its elevation maybe a result of fibrosis,

edema, protein deposition, or other pathologic processes (19).
Myocardial edema can be assessed quantitatively with T2
mapping. T1ρ or spin-locking relaxation time is a promising
non-contrast sequence that is sensitive to edema and necrosis in
the acute setting and scar in chronic myocardial infarction (20).
We sought to study the myocardial changes (volume, function,
strain, fibrosis/edema) with CMR in patients undergoing RT
after chemotherapy.

MATERIALS AND METHODS

Study Design and Patient Eligibility
Patients with breast cancer, lung cancer, or lymphoma receiving
chest radiation between June 2015 and July 2018 at our institution
were considered eligible for this sub-study (21). Patients were
excluded if they had documented prior cardiac disease history
including heart failure, uncontrolled hypertension, coronary
artery disease, or arrhythmias. All patients received RT to the
cancer-specific tumor region to a curative dose appropriate for
their specific tumor per institutional guidelines. The dose to
the heart and the dose to the left ventricle were recorded.
Control subjects were healthy volunteers without any known
cardiovascular or pulmonary disease who were not taking any
regular medications. The study was approved by the institutional
review board at our university. Written informed consent was
obtained from all subjects in the study.

Cardiovascular Magnetic Resonance
Cardiovascular magnetic resonance was performed before RT
and at 6 months after RT using a 1.5 scanner (Avanto, Siemens,
Germany). For patients with breast cancer and lymphoma,
chemotherapy was administered before baseline CMR, while
the lung cancer patients received chemotherapy during RT.
Retrospectively gated cine images of the short axis of the
heart were obtained using steady-state free precession (SSFP)
for biventricular volumes and function. Sequence parameters
include TE (echo time)/TR (repetition time) = 1.07/2.2 ms; slice
thickness = 8 mm with 2 mm gap; bandwidth = 930 Hz/pixel;
flip angle = 59◦; field-of-view = 320-380 mm2; spatial
resolution = 1.97 × 1.97 mm2, parallel imaging factor = 2.
Late gadolinium imaging was obtained using routine 2D
inversion recovery sequences with the following parameters:
TE = 3.3 ms; slice thickness = 8 mm with 2 mm gap;
bandwidth = 130 Hz/pixel; flip angle = 15, field-of-view = 320–
380 mm; spatial resolution = 1.5 × 1.5 mm.
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All mapping sequences were obtained at the basal and mid
ventricular short axis. Native T1 maps were acquired using a
modified Looker-Locker Inversion Recovery (MOLLI) sequence
(Siemens Work-in-Progress 448B) using the 5(3)3 scheme before
and 4(1)3(1)2 scheme after contrast injection in diastole with
the following sequence parameters: TE = 1.03 ms; minimum
TI = 100 ms; TI increment = 80 ms; flip angle = 35◦, field-of-
view = 320–380 mm2; spatial resolution = 1.7 × 1.7 mm2;
slice thickness = 8 mm; bandwidth = 1,085 Hz/pixel;
parallel imaging factor = 2. T2 maps were acquired using
a T2-prepared SSFP sequence with the following sequence
parameters at end-systole: T2-preparation durations = 0, 24,
and 55 ms; TE/TR = 1.37/2.64 ms; flip angle = 70◦; field-of-
view = 320 × 380 mm2; bandwidth = 1,185 Hz/pixel, spatial
resolution = 1.9 × 2.3 mm, slice thickness = 8 mm; parallel
imaging factor = 2. Motion corrected T1ρ maps were acquired at
the same location and eight T1ρ weighted images with different
spin locking pulse duration (TSL) was performed: TSL = 2, 10, 18,
26, 34, 42, 50 ms, B1 = 400–500 Hz, spatial resolution = 1.4 × 1.4
mm2, slice thickness = 6 mm, flip angle = 70◦, TE = 1.45 ms,
TR = 2.9 ms, bandwidth = 900 Hz/pixel, linear k-space phase
encoding ordering, parallel imaging with acceleration factor = 2.

Image Analysis
Left ventricular and right ventricular (RV) endocardial and
epicardial borders were manually traced on short-axis slices
according to Society of Cardiovascular Magnetic Resonance
(SCMR) recommendations using Qmass software (Medis,
Netherlands) (22). Papillary muscles were included in the
ventricular volume. To discriminate ventricular volume from the
atrial volume at the basal slices, four-chamber view was used
as a reference. Strain analyses were analyzed on long-axis and
short-axis cine images using SuiteHeart (Neosoft, WI). Mean
values from T1, T2, and T1ρ mapping slices were obtained
by drawing a region of interest on the reconstructed maps
over the septal and lateral wall avoiding the blood pool and
epicardial fat. The mean mapping values were then averaged
between the basal and the mid-ventricular slices. Mapping values
are obtained on AQNetClient (Durham, NC, United States).
LGE is assessed visually by an experienced investigator with
15-year CMR experience.

Statistical Analysis
Continuous variables were expressed as mean ± SD. Categorical
variables were presented as absolute numbers or percentages. For
continuous variables, significant differences were analyzed using
the Mann-Whitney U-test between the two groups and Kruskal–
Wallis H (K) test among the three groups. For ranked variables,
significant differences were analyzed using the Chi-square test.
A p-value of < 0.05 was considered statistically significant. Data
analyses were performed using the SPSS 17.0 (SPSS Inc., Chicago,
IL, United States).

RESULTS

A total of 18 patients met eligibility criteria and underwent
baseline CMR (Figure 1). One patient was excluded due to

18 patients met eligibility 
criteria

17 consented to participate and 
underwent baseline study

(16 patients in final analysis)

11 underwent follow-up CMR 
post RT

3 refused follow-up CMR
1 patient deceased
1 lost to follow-up

1 patient excluded- found to 
have metastatic disease after 
initial screening
1 patient died
1 lost to follow-up1 patient excluded due to 
poor images

FIGURE 1 | Diagram illustrating the selection of participants for the study.
CMR, cardiovascular magnetic resonance; RT, radiation therapy.

TABLE 1 | Subject baseline characteristics.

Variables Control (n = 10) Patients (n = 16) p-Value

Age 42.0 ± 13.5 47.3 ± 17.8 0.37

Male (%) 40 43.8 0.854

BSA 1.9 ± 0.3 2.0 ± 0.3 0.445

CMR characteristics

Peak LV GLS (%) 20.2 ± 2.5 18.4 ± 3.2 0.061

Peak LV GCS (%) 18.4 ± 2.1 15.3 ± 2.2 0.004

LVEDVi (mL/m2 ) 81.3 ± 12.8 85.5 ± 15.4 0.527

LVEF (%) 59.7 ± 2.8 56.3 ± 6.6 0.114

LVmassi (g/m2 ) 45.1 ± 9.4 47.5 ± 9.3 0.673

Peak RV GLS (%) 23.9 ± 3.2 22.2 ± 4.3 0.414

RVEDVi (mL/m2 ) 90.1 ± 17.5 81.6 ± 17.1 0.343

RVEF (%) 53.8 ± 4.2 56.4 ± 4.6 0.206

LGE (+) / 2 (17) /

T1 (ms) 998.0 ± 22.9 1018.4 ± 30.7 0.082

T2 (ms) 45.0 ± 1.5 47.9 ± 4.8 0.04

T1ρ (ms) 66.9 ± 4.6 78.4 ± 5.9 <0.001

ECV 24.9 ± 2.8 21.2 ± 10.9 0.958

BSA, body surface area; CMR, cardiovascular magnetic resonance; ECV,
extracellular volume; GCS, global circumferential strain; GLS, global longitudinal
strain; LGE, late gadolinium enhancement; LV, left ventricle; LVEF, left ventricular
ejection fraction; LVEDVi, left ventricular end-diastolic volume indexed; RV, right
ventricle; RVEF, right ventricular ejection fraction; RVEDVi, right ventricular end-
diastolic volume indexed. Bold p-values are statistically significant.

diagnosis of metastatic disease after enrollment and one patient
due to suboptimal baseline imaging. The final cohort included
16 patients of which 11 patients underwent follow-up CMR
6 months after completion of RT.

Of the 16 patients, 10 patients underwent treatment with
anthracycline (AC) based chemotherapy and six patients
with non-AC based chemotherapy. Five patients received
chemotherapy (all were non-AC-based) during radiation. At
baseline, when compared to controls, patients who underwent RT
had reduced LV GCS at baseline (15.3 ± 2.2% vs. 18.4 ± 2.1%,
p = 0.004) and a trend toward lower LV ejection fraction (EF)
(56.3 ± 6.6% vs. 59.7 ± 2.8%, p = NS). The T2 and T1ρ

values were elevated in these patients compared with controls
at baseline (47.9 ± 4.8 ms vs. 45.0 ± 1.5 ms, p = 0.04 and
78.4 ± 5.9 ms vs. 66.9 ± 4.6 ms, p < 0.001). No significant
difference in the average T1 values was observed in these
patients (1018.4 ± 30.7 ms) compared to the control group
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TABLE 2 | Cancer and radiation characteristics of patients.

Variables Patients (n = 16)

Age (years) 47.25 ± 17.8

Male (%) 7 (67)

BSA (m2 ) 1.98 ± 0.28

Type of cancer

Breast cancer 6 (38%)

Lung cancer 5 (31%)

Hodgkin lymphoma 5 (31%)

Cardiac risk factors

Hypertension 4 (25)

Type II diabetes 2 (12.5)

Hyperlipidemia 6 (37.5)

Radiation treatment type

3D Conformal 7 (44%)

Protons (passive scattering) 2 (12%)

Protons (scanning) 3 (19%)

IMRT 4 (25%)

Total radiation dose (Gy) 45.1 ± 15.7

RT dose to heart

Mean dose (Gy) 6.5 ± 8.6

Maximum dose (Gy) 38.2 ± 14.4

RT dose to left ventricle

Mean dose (Gy) 5.5 ± 9.2

Maximum dose (Gy) 26.6 ± 21.6

BSA, body surface area; 3D, three-dimensional; IMRT, intensity-modulated
radiation therapy; RT, radiation therapy.

(998.0 ± 22.9 ms, p = NS). No significant differences were found
in the right ventricle for ventricular volumes, function, and RV
longitudinal strain (Table 1).

Eleven of the 16 patients completed follow-up CMR. The
mean age was 48.3 ± 18.6 years and 55% were female.
Contemporary radiation techniques to minimize radiation to
the heart while ensuring full dose to the tumor were used.
These include intensity-modulated radiation therapy (IMRT),
3-dimensional conformal RT (3DCRT) in 25 and 44% of the
patients, respectively. 3D CRT was exclusively used in the setting

of breast cancer and lymphoma. Proton therapy was used in
31% of the patients with either passive scattering (12% of the
patients) which produces a broad beam of proton delivery or
with active scanning (19% of the patients) which uses several
small pencil beams throughout the target volume (Table 2). The
average radiation dosage was 45.1 ± 15.7 Gy. The maximum and
mean heart dose of this cohort were averaged at 38.2 Gy (range
21.6–69.1 Gy) and 6.45 Gy (range 0.6–30.7 Gy). Of these, seven
patients received a mean heart dose of less than 5 Gy, two patients
between 5 and 10 Gy and one patient at a dose greater than 10 Gy
and one patient at a dose greater than 20 Gy. The maximum
and mean dose to the LV of this cohort averaged 26.6 Gy
(range 0.2–67.8 Gy) and 5.5 Gy (range 0–31.6 Gy). Patients were
then divided into those who received minimal radiation and
partial/full radiation. Patients who received minimal radiation
are breast cancer patients with radiation primarily to the breast
and right side of the heart in the radiation field (Figure 2).
The partial/full radiation patients had LV in the radiation field
(Figure 3). There was no significant difference in LV or RV EF,
LV or RV volumes, strain (LV GLS, LV GCS, and RV GLS), T1,
T2, and T1ρ values after RT compared to pre-RT in these two
cohorts (Table 3). Two patients had positive LGE which did not
change after RT.

REPRODUCIBILITY

There was excellent intra and inter-observer reproducibility
with the ICC ranging from 0.892–0.964 for T1, T2, and T1ρ

values (Table 4).

DISCUSSION

We prospectively evaluated for early cardiac toxicity following
RT using CMR to identify subclinical functional and structural
changes. Prior to chest RT, we have found reduced GCS,

FIGURE 2 | CT images in a 73-year-old man with lung cancer—Axial, coronal, sagittal, and 3D CT images with color-washed dose distribution. The heart is depicted
in yellow and is not in the planned radiation field. The patient received a total of 50.4 Gy of which the mean dose to the left ventricle was 0.02 Gy. Cardiac magnetic
resonance (CMR) images at baseline with normal LVEF (65%), normal native T1 mapping (1,043 ms), normal T2 mapping (47 ms), and elevated T1ρ at 78 ms.
Follow-up CMR in 6 months showed no significant difference in native T1 and T2 values and the T1ρ values remained elevated.
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FIGURE 3 | CT images in a 73-year-old man with lung cancer: Axial, coronal, sagittal, and 3D CT images with color-washed dose distribution. The heart depicted in
the yellow is in the radiation field. The patient received a total of 66.6 Gy of which the mean dose to the left ventricle was 31.6 Gy. Cardiac magnetic resonance
(CMR) images at baseline with normal LVEF (60%), normal native T1 mapping (983 ms), normal T2 mapping (43 ms), and elevated T1ρ at 87 ms.

TABLE 3 | Cardiovascular magnetic resonance (CMR) characteristics pre- and post-RT in different radiation doses to the heart and left ventricle.

Variables Absolute change p-Value % Change p-Value

Patients with minimal
radiation (n = 6)

Patients with partial/full
radiation (n = 5)

Patients with minimal
radiation (n = 6)

Patients with partial/full
radiation (n = 5)

Peak LV GLS (%) –1.3 ± 0.7 –3.6 ± 3.7 0.144 –6.8 ± 3.1 –15.2 ± 15.2 1

Peak LV GCS (%) –0.6 ± 1.0 –1.4 ± 2.4 0.583 –4.0 ± 6.9 –8.4 ± 14.5 0.584

LVEDVi (mL/m2 ) 0.6 ± 7.4 –5.3 ± 10.2 0.465 0.7 ± 8.4 –7.8 ± 15.8 0.465

LVEF (%) –5.1 ± 4.8 –6.2 ± 4.4 0.465 –8.9 ± 8.6 –10.4 ± 7.7 0.584

LVmassi (g/m2 ) 1.0 ± 1.9 –0.5 ± 2.7 0.361 2.3 ± 4.0 –1.8 ± 7.5 0.361

Peak RV GLS (%) 2.5 ± 4.3 2.7 ± 5.6 0.715 13.0 ± 22.1 18.4 ± 36.6 0.584

RVEDVi (mL/m2 ) –4.5 ± 7.5 –7.7 ± 13.0 1 –5.7 ± 10.2 –11.2 ± 19.0 1

RVEF (%) –1.3 ± 1.8 –1.7 ± 4.8 0.584 –2.5 ± 3.7 –3.1 ± 9.0 0.584

T1 (ms) –38.6 ± 21.7 –14.1 ± 37.9 0.273 –3.7 ± 2.0 –1.3 ± 3.7 0.273

T2 (ms) –2.4 ± 7.5 1.7 ± 4.3 0.361 –3.4 ± 12.1 3.9 ± 9.5 0.273

T1ρ (ms) –3.9 ± 5.4 0.8 ± 11.4 0.67 –4.7 ± 6.6 1.0 ± 14.6 0.67

ECV (%) –3.5% ± 5.9% –2.1% ± 0.7% 0.513 –11.5 ± 20.8 –8.1 ± 2.9 0.513

CMR, cardiovascular magnetic resonance; ECV, extracellular volume; GCS, global circumferential strain; GLS, global longitudinal strain; LGE, late gadolinium enhancement;
LV, left ventricle; LVEF, left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume indexed; RT, radiation therapy; RV, right ventricle; RVEF, right ventricular
ejection fraction; RVEDVi, right ventricular end-diastolic volume indexed.

elevated T2 and T1ρ values in patients compared to controls
indicating myocardial edema and subclinical functional changes
after chemotherapy. After RT, a 6-month follow-up CMR showed
no change in LV and RV EF, LV and RV GLS, LV GCS, T1/ECV,
T2, and T1ρ values.

All patients in this study received chemotherapy prior
to RT and 11/17 patients received anthracycline-based
chemotherapy. When compared to controls, patients who
underwent chemotherapy had elevated T2 and T1ρ values at
baseline, which were possibly related to chemotherapy and
active inflammation/fibrosis (23). Both T2 and T1ρ mapping
are sensitive to myocardial edema with T1ρ also sensitive to
fibrotic changes. T1ρ is a novel imaging parameter and has been

TABLE 4 | The interclass correlation and intraclass correlation of tissue
characterization.

c Intraclass correlation P Interclass correlation P

T1 0.922 <0.001 0.938 <0.001

T2 0.892 <0.001 0.896 <0.001

T1ρ 0.964 <0.001 0.929 <0.001

shown to be elevated in myocardial infarction and hypertrophic
cardiomyopathy (20, 24). These findings along with reduced
LV GCS indicate the myocardial effect of chemotherapy prior
to initiation of RT. The SUCCOUR (Strain Surveillance of
Chemotherapy for Improving Cardiovascular Outcomes) trial,
an international multicenter prospective randomized controlled
trial, showed that changes in echocardiographic GLS in patients
undergoing cardiotoxic chemotherapy predict incident LV
systolic dysfunction (25). In our study, LV GLS trended toward
significance, but LV GCS was more sensitive to detect subclinical
LV dysfunction after chemotherapy using CMR. However,
neither GCS nor GLS was further reduced in 6 months after RT
in our cohort. These strain markers for subclinical functional
changes and myocardial tissue characterization showed no
significant change in the short-term with RT, but the long-
term effect of these changes would need longer studies to
elucidate.

A few studies in patients receiving anthracycline-based
chemotherapy have shown elevated T1 and ECV which can
occur as early as 3 months after initiation of therapy (26–28).
However, other studies have shown an acute decrease in T1 values
48 h after anthracycline administration (29). A porcine model
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of doxorubicin toxicity showed an early increase in T1 values
(2 weeks after three doses of doxorubicin) with unchanged T2
and ECV values (30). Takagi et al. (31) prospectively assessed
changes in LV volumes, native T1, and ECV in 24 patients with
esophageal cancer receiving RT with CMR at baseline, 6-month,
and 1.5 years using a 3 Tesla MRI scanner. Their study showed
early myocardial changes with elevated native T1 and ECV in
the septum at 6-month compared to baseline (1257.0 ± 6.4 ms
vs. 1183.0 ± 6.5 ms; 32.0 ± 6.3% vs. 26.0 ± 6.3%; p < 0.01 for
both) and LV stroke volume index reduced and more patients
had LGE at 1.5 years compared to baseline (36 ± 9 mL/m2 vs.
41 ± 11 mL/m2; p = 0.046; 78% [11/14] vs. 7% [1/14]; p < 0.01)
(31). The mean radiation dose to the septum and apical lateral
wall was 43 ± 4 Gy and 3 ± 4 Gy respectively which is higher
compared to our cohort. Patients in our study cohort underwent
CMR 6 months post-RT which did not show an elevation in
native T1/ECV compared to baseline. This difference might be
explained by the newer radiation techniques with lower mean
radiation dose to the heart and the lack of esophageal cancer
patients who tend to receive higher cardiac doses.

Several other studies utilized LGE/T1 sequences to detect
fibrosis post-RT. Ricco et al. (32) studied 28 patients with chest
tumors who underwent CMR on average 46.4 months post-RT
on a 1.5 Tesla MRI scanner. The average heart dose in this cohort
was 50.9 Gy (maximum heart dose) and 8.2 Gy (mean heart
dose). LGE was present in 9 (32%) patients and there was no
significant difference in cardiac radiation doses between patients
who had LGE and those who did not. The average T1 value of
the LV septum in this study was 1,009 ms (range 933–1,117 ms),
similar to our study. However, patients in this study did not
have a baseline CMR, so it is unclear if LGE developed post-
RT (32). Another study by Umezawa et al. (33) evaluated 24
esophageal cancer patients who were treated with concurrent
radiation therapy and found that 50% of the patients had LGE
at a median time of 23.5 months to CMR after completion of RT.
The LGE was present only within the segments of 40 Gy or 60 Gy
isodose distribution (33). Another study by Tuohinen et al. (34)
in 20 left breast cancer patients on a 3 Tesla MRI scanner showed
elevated T1 values of 6 years after RT within the inferoseptal walls
of the LV with mean heart dose being a predictor of elevated
T1 values. All these studies examined the cardiac effects of RT
later than our study.

The time to development of fibrosis with RT is not well-known
but based on previous studies and our current study, it does not
seem to develop until after 6 months of radiation therapy and is
heart-dose dependent. Additional tissue characterization markers
such as T2 and T1ρ may indicate ongoing myocardial edema
that was a consequence of chemotherapy, but the long-term
implications of these findings will need to be studied in the future.

LIMITATIONS

Our study has several limitations. First, our sample size is small
with a few different types of cancers/chemotherapy regimens and
radiation fields. Second, patients did not have baseline CMR prior
to chemotherapy. The mean cardiac dose in our cohort is low
considering that less than 5% of lung cancer patients have mean
cardiac doses below 10 Gy. To further study myocardial tissue
changes in RT, a larger population study is needed.

CONCLUSION

Six-month follow-up CMR in patients undergoing chest radiation
therapy showed no change in LV and RV EF, LV and RV GLS, LV
GCS, LGE, T1/ECV, T2, and T1ρ values. Prior to chest RT, we
found reduced GCS, and elevated T2 and T1ρ values in patients
after chemotherapy as compared to controls. Contemporary
chest radiation with a low heart dose may not have short-
term effects on the heart although future studies are needed to
confirm these findings.
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