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Alzheimer’s disease (AD) has become a major disease contributing to human death and
is thought to be closely related to the aging process. The rich antioxidant substances in
plants have been shown to play a role in delaying aging, and in recent years, significant
research has focused on also examining their potential role in AD onset and progression.
Many plant-derived antioxidant research studies have provided insights for the future
treatment and prevention of AD. This article reviews various types of plant-derived
antioxidants with anti-aging effects on neurons. Also it distinguishes the different types of
active substances that exhibit different degrees of protection for the nervous system and
summarizes the mechanism thereof. Plant-derived antioxidants with neuroprotective
functions can protect various components of the nervous system in a variety of ways and
can have a positive impact on interventions to prevent and alleviate AD. Furthermore,
when considering neuroprotective agents, glial cells also contribute to the defense of
the nervous system and should not be ignored.
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INTRODUCTION

Plants have developed a wide variety of active substances, including many antioxidants, to adapt
to their constantly evolving environment. Accumulating evidence shows that some antioxidants in
plants can effectively scavenge free radicals, protect cells, delay aging, and prevent diseases related
to aging (Hassan et al., 2017). At present, three major diseases, including cancer, cardiovascular
disease, and Alzheimer’s disease (AD), are closely related to the aging of individuals. In particular,
AD is closely related to the pathological changes of nerve cells that manifest and persist across the
human lifetime. Such neuronal changes, or lesions, are characterized by tangles of nerve fibers and
the increased presence of β-amyloid and hyperphosphorylated tau in the brain, which ultimately
leads to a decline in nervous system function. Since there is no effective treatment for AD in modern
medicine, and since the prevalence of AD is positively correlated with an individual’s age, the risk of
AD can be effectively reduced by delaying or mitigating the negative effects on the nervous system
that are associated with the aging process (Goedert, 2015). As the main source of antioxidants in
humans, plants play an important role in the anti-aging process of the human body. At present, the
use of plant-derived antioxidants to reduce the damage caused by oxidative stress to nerve cells has
been well documented. Accordingly, various types of nerve cells strategically coordinate functions
to contribute to the collective well-being of the nervous system. Therefore, the function of plant
antioxidants applies not only to protecting nerve cells but also to protecting the entire nervous
system of the body. This article reviews the role of various antioxidants on AD progression and
describes the mechanistic role of such substances on the nervous system.
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THE PROTECTIVE EFFECT OF
PLANT-DERIVED ANTIOXIDANTS ON
NERVE CELLS

Plants contain a wide variety of antioxidants that resist
various naturally occurring environmental threats and which
are metabolized primarily during aerobic activities. Free
radicals become oxidized when they combine with oxygen-
containing substances and can damage the host organism by
stealing surrounding electrons (Wojtunik-Kulesza et al., 2016).
Antioxidants in plants can prevent the damage caused by free
radicals (Liochev, 2013) by preventing electron transfer. Free
radicals in the human body that are not cleared fast enough
can damage cells and eventually lead to local apoptosis and in
turn global aging of the body. For cells in the nervous system,
degenerative diseases that affect neurons and nerve bundles are
related to the damage caused by oxidative free radicals. The
ability of plant-derived antioxidants to scavenge free radicals
can reduce the damage of nerve cells caused by oxidative stress
and help maintain a more active physiological state. In addition,
plant-derived antioxidant substances have a wide range of cell
types that aid in the removal of nerve cell free radicals and
can effectively protect most of the nervous system. Antioxidants
such as polyphenols, vitamins, alkaloids, polysaccharides, and
active peptides (Figure 1) help to maintain the structure and
function of neurons and prolong their healthy state (Del Rio,
2015). In subsequent sections, we will briefly review each of these
substances and how they protect the brain and nerve cells against
the damaging effects of aging.

Polyphenols
Polyphenols are the most abundant antioxidant in plants and
have an excellent ability to capture oxidative free radicals
(Jiang et al., 2016). Polyphenols can be sub-classified into
flavonoids, phenolic acids, and tannins depending on their
physical structure.

Flavonoids
Flavonoids can be isolated from vegetables, fruits, and rice.
This class of polyphenols have a lower redox potential than
oxygen and superoxide radicals, making these antioxidants
better suited to bind active oxygen (Duthie and Crozier, 2000).
Recent studies have shown that flavonoids can be absorbed
into the blood and tissue through the intestine and can easily
reach the brain through the blood–brain barrier. Once in the
brain, flavonoids and their metabolites protect the cells inside
from oxidative stress (Pietta, 2000). These flavonoids can also
induce glial cell secretion of nerve growth factor to prevent the
degradation of dopaminergic neurons in the substantia nigra
(Jaeger et al., 2018). In an exemplary study, Zhao et al. (2013)
found that one specific flavonoid called apigenin protects the
extracellular environment in the nervous system (Jung and Kim,
2018) by scavenging free radicals through the release of anti-
amyloid proteins. This study also found that flavonoids can
protect neurons from axonal degradation, myelin rupture (Zhao
et al., 2013), trans-differentiation, and Schwann cell proliferation

(“Correction: Curcumin and Apigenin – novel and promising
therapeutics against chronic neuroinflammation in Alzheimer’s
disease,” No author, 2015) through the Krox20 pathway and
extracellular signal-regulated kinase-independent processes. In
another experiment, the hesperidin flavonoid activated the
secretion of superoxide dismutase and glutathione (Jeong et al.,
2019) in the mouse brain. Hesperidin (Matias et al., 2017), rutin
(El-Sayed el et al., 2008), and rhamno (Omar et al., 2017) can
reduce the amount of free Ca2+ located between brain cells
when fighting against neurogenic excitotoxicity and can attenuate
the decrease of the mitochondrial membrane potential and
increase caspase-3 activity (Lutz et al., 2015). In addition, recent
studies have shown that treating neurons in the cerebral cortex
with microglial cells cultured with agathisflavone may protect
them from oxidative stress by modulating estrogen signaling.
Agathisflavone has been found to significantly increase the
number of neuronal progenitor cells and mature neurons without
increasing astrocytes or microglia, and also to effectively reduce
the inflammatory factors factor-α, interleukin-6, interleukin-1β,
NO, and PGE2 (Bakhtiari et al., 2017). Other studies have shown
that agathisflavone, which regulates estrogen signaling, stimulates
neuronal production in vitro and enhances the neuroprotective
properties of microglia and astrocytes.

Phenolic Acids
Phenolic acid refers to a compound having several phenolic
hydroxyl groups on the same benzene ring and is an
allelochemical substance that regulates the growth state of plants
through the process of allelopathy. The antioxidant activity of
phenolic acids in organisms is easily affected by environmental
influences and often includes an oxidative effect under the action
of Cu2+.

Ferulic acid is a ubiquitous phenolic acid found in the leaves
and seeds of plants. The conjugated structure of the ferulic
acid molecule can form a relatively stable phenoxy radical in
ultraviolet light to terminate the free radical chain reaction
(Dos Santos Souza et al., 2018). Ferulic acid protects neurons
from oxidative stress by inhibiting the activation of p38 MAPK,
caspase-3, and COX-2 (Graf, 1992), and by downregulating
damage caused by the MEK/ERK/p90RSK signaling pathway
(Lin et al., 2015). In mice, it was found that ferulic acid
can increase SOD, CAT, and GSH-Px activity in the brains
of depressed mice and reduce TBA-RS levels in the blood,
hippocampus, and cerebral cortex (Lin et al., 2015). Additionally,
ferulic acid can significantly reduce seizure intensity, myoclonic
spasms, and cognitive decline in epileptic mice (Lenzi et al.,
2015), and can reduce the Bax/Bcl2 ratio in dopaminergic
neurons in the striatum in mice with Parkinson’s disease (PD)
(Hassanzadeh et al., 2017). Furthermore, ferulic acid treatment
in a mouse model of neuroinhibition reduces p-JNK, p-NFκB in
glial cells of the mouse hippocampus and activates mitochondrial
apoptotic molecules (Bax, cytochrome c, caspase-3, and PARP-
1) in small/medium glial cells to induce anti-inflammatory
effects by interfering with the TLR4/MD2 complex binding site
(Nagarajan et al., 2015).

Another study using ellagic acid to treat oxygen-glucose
deprivation and reoxygenation models of rat cortical neurons
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FIGURE 1 | Protective method of plant-derived active substances on nerves. Active plant substances exhibit rich neuroprotective methods, which can be grouped
into seven categories: (1) promote the activation of glial cells, (2) promote cell proliferation, (3) regulation of Ca2+, (4) maintain nerve cell structure, (5) provide
resistance to oxidative stress, (6) reduce inflammation, and (7) anti-Alzheimer’s protein. The active substances falling into each of these seven categories are provide
in the respective boxes. All the active substances could resist oxidative stress, and some substances have similar protection patterns.

cultured in vitro found a significantly reduced volume of cerebral
infarction and improved neurological deficit score in rats by
increasing the Bcl-2/Bax ratio (Rehman et al., 2019). Similarly,
Wang et al. (2019) found that the antioxidant defense of ellagic
acid can cause astrocyte proliferation, glial cell line-derived
neurotrophic factor (GDNF) release, and Nrf2 activation (Liu
et al., 2017). Ellagic acid has also been shown to increase the
activity of GSH-Px and SOD and to decrease the level of MDA
in the striatum of PD mice (Wang et al., 2019). Even more,
ellagic acid has additionally been shown to increase monoamine
oxidase B (MAO-B), nuclear factor (erythrocyte derivation 2),
Nrf2, and heme oxygenase 1 (HO-1) and reduce the loss of
tyrosine hydroxylase (TH)-positive neurons in the substantia
nigra pars compacta (SNC) (Sarkaki et al., 2016). In a rat model
of arsenic-induced injury, the hippocampus was treated with
ellagic acid, which was shown to regulate total ROS production,
apoptosis markers, BAX and Bcl2, and inflammatory markers
IL-1β, TNFα, and INFγ. At the same time, ellagic acid also
prevented the decrease of the mitochondrial membrane potential
(Baluchnejadmojarad et al., 2017).

Yet another phenolic acid, rosmarinic acid, has been
found to reduce the amount of reactive oxygen species and
malondialdehyde, which in turn attenuates cellular oxidative
stress and protects hydrogen peroxide-treated glial cells (Firdaus
et al., 2018) by phosphorylating protein kinase B (Akt), Ser9
Glycogen synthase kinase-3β (GSK-3β), and Fyn. Rosmarinic
acid further regulates the activity of Nrf2 to protect PC-
12 cells from oxidative stress (Gao et al., 2005) induced by
amyloid β (Aβ). This substance can also reduce the oxidative

stress (Lee et al., 2008) on SH-SY5Y (human dopaminergic
neuron cells) by controlling the upregulation of Bax and the
downregulation of Bcl-2, and reduce mitochondrial membrane
potential by reducing reactive oxygen species. At the same
time, rosmarinic acid promotes the upregulation of TH and
brain-derived neurotrophic factor (BDNF) genes to alleviate the
cytotoxicity of H2O2-induced N2A cells (Ghaffari et al., 2014).
After cerebral ischemia/reperfusion in rats, rosmarinic acid was
found to increase the phosphorylation of Akt1, decrease the
phosphorylation of JK3, and decrease the expression of cleaved
caspase-3 to protect hippocampal neurons in the brain (Zhang
et al., 2017c). A rat AD model was established by injecting
Aβ4 into the bilateral lateral ventricle of rats, which resulted
in a decrease in acetylcholine content and acetylcholinesterase
activity. Treatment with rosmarinic acid prevented the observed
changes in the Aβ group and in another study attenuated Aβ

staining and astrocyte activation and enhanced auditory abilities
(Kantar Gok et al., 2018).

Tannins
Tannins are widely distributed in plants and usually refer to
plant polyphenols with a relative molecular mass of 500–3000 u.
The antioxidant ability of tannins is related to the position and
binding mode of the phenolic hydroxyl groups. Nevertheless,
the tannin-like antioxidant ability is significantly different across
different sub-structures.

Catechin and its derivatives are the main functional
components in tea and many studies have shown that the
effects of catechin on mitochondria-related pathways can
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prevent neurodegeneration and delay the decline of brain
function (Assuncao and Andrade, 2015). Catechin protects
Aβ- and 6-OHDA-induced neuronal apoptosis by activating
the protein kinase C (PKC) pathway and PI3K/AKT, which
inhibits the MAPKs pathway (Chen et al., 2018). Specifically,
epigallocatechin-3-gallate (EGCG) was found to enhance the
clearance of AD-associated phosphorylated tau species in
neurons (Chesser et al., 2016) and to improve cell metabolism
and reduce oxidative stress to protect motor neurons (Che
et al., 2017). The use of EGCG and related phenolic compounds
can also redirect the amyloid-forming aggregation pathway of
transgenic Caenorhabditis elegans strains that express amplified
ATX3 (amyloid) toward non-toxic aggregation and prevent
calcium influx-mediated cytotoxicity of nerve cells (Visentin
et al., 2017). When DOX has been used to induce memory
deficits in Wistar rats, catechin treatment was able to reduce
neuronal toxicity and improve cognitive performance in a time-
and dose-dependent manner (Cheruku et al., 2018).

Tannin is the main enzyme involved in the production and
deposition of Aβ peptide, which regulates β-secretase (BACE1)
activity and is a natural inhibitor of protein expression. Tannin
also destabilizes neurotoxic Aβ fibrils and inhibits in vitro
aggregation of tau peptides (Braidy et al., 2017) and can also
reduce MDA-enhanced SOD activity and higher respiratory
factor-1 (NRF-1) in ischemic rats.

Grapes and lotus roots contain a wide range of tannins, the
main functional component of which is proanthocyanidin (PC).
Song et al. (2019) first confirmed that treatment of glutamate
with PCs induced HT22 cells to block the phosphorylation of
MAPK, including ERK1/2 and p38. Lotus anthocyanins can
also regulate the activation of the Bcl-2 and Bcl-xl proteins,
the latter of which protects hippocampal neurons from damage
in extremely low-frequency electromagnetic fields and increases
in Ca2+ levels. Damage to mice by extremely low-frequency
electromagnetic fields revealed that lotus root PCs can mediate
calcium signals and double the activity of messenger systems
through Ca2+, CaMK II/CREB, BDNF, and the DG/PKC/MAPK
signaling pathways to reverse mouse hippocampal cell oxidative
stress and BDNF levels. Additionally, behavioral changes in the
6-OHDA mouse model were reversed by the PI3K/Akt signaling
pathway (Zhang et al., 2017a), and the reduced number of
dopaminergic cells and the levels of dopamine and its metabolites
DOPAC and HVA were restored (Datla et al., 2007) when
treated with PCs.

Vitamins
Vitamins in the body have always been regarded as one of the
most bioavailable nutrients. Some vitamins, such as vitamin
C, vitamin E, and carotenoids, have strong antioxidant and
neuroprotective effects and are commonly found in plants.

Vitamin C, also known as ascorbic acid, has four hydroxyl
functional groups, two of which are enol hydroxyl groups.
Therefore, vitamin C is easily oxidized and dehydrogenated,
which makes it extremely reductive and therefore also a highly
effective antioxidant. The vitamin C transporter SVCT2 (Berger
et al., 2003) can be expressed in both neurons and glial cells, and
can regenerate the myelin of neuronal cells (Rohr et al., 2017).

The regenerative function of vitamin C can further produce
glial cells (Guo et al., 2018) and cells of the sciatic nerve (Li
et al., 2019), but there is no evidence yet that such an effect
extends to neurons. Vitamins have excellent neuroprotective
effects against the oxidative stress induced by metal and non-
metals, and can protect against lead-induced neuronal apoptosis
in rats (Ebrahimzadeh-Bideskan et al., 2016), aluminum-induced
neuronal apoptosis in Nile perch (Khalil and Hussein, 2015),
iron-induced oxidative stress in rat brain tissue (Ganie et al.,
2014), and arsenic-related neurological damage in rats (Sarkozi
et al., 2016). Specifically, the ability of vitamin C to scavenge free
radicals can reduce the degree of oxidative stress and increase
the viability of nerve cells in the cerebral cortex and striatum
(Ballaz and Rebec, 2019).

Vitamin E mainly differs from vitamin C in the sense that
it is fat-soluble. Vitamin E features hydroxyl hydrogen on
a diacetyl alcohol ring, which produces a strong reduction
effect on oxygen free radicals and effectively inhibits lipid
peroxidation. Therefore, vitamin E can reduce oxidative stress
and the production of free radicals and prevent cognitive decline
caused by aging. In an accelerated aging rat model, vitamin E
supplementation reduced the number of nerve cells lost due
to aging (La Fata et al., 2017), and improved memory and
cognitive decline due to the loss of prefrontal cortical cells (Rafati
et al., 2017). Vitamin E also increased the neuronal cell area of
prefrontal cortical cells, the number of glial cells and neurons,
the length of synapses, and plasticity effects (Rafati et al., 2018).
It also prevented changes in the shape of dendrites of nerve
cells that lead to learning deficits (Veinbergs et al., 2000) and
increased the density of neuroreceptors in the hippocampus
of rats with neurological injury (Sayyahi et al., 2018). The
concentration of vitamin E in the brain is negatively correlated
with the concentration of Aβ in the brain (Morris et al.,
2015) and can help reduce the accumulation of Aβ in the rat
brain and increase the clearance of Aβ in the blood (Nishida
et al., 2009). Vitamin E also prevents the metabolism of 12-
LOX, a key mediator of glutamate-induced neurodegeneration,
by preventing arachidonic acid from entering the catalytic
site of 12-LOX and enabling vitamin E to effectively prevent
neuronal degeneration (Khanna et al., 2003). Furthermore,
vitamin E can interact with vitamin C and flavonoids to
enhance the ability of antioxidants to scavenge free radicals
(Kadoma et al., 2006).

Carotenoids are widely present in plant pigments, and
their chemical structure is a polymer of 8 isoprene and an
oxidized derivative thereof, which is a precursor of vitamin
A. Since the chemical structure of carotenoids contains many
conjugated double bonds, electrons can enrich the structure while
maintaining high chemical stability and fighting free radicals.
At the same time, carotenoids also exhibit obvious effects for
inhibiting lipid peroxidation, which can effectively prevent brain
aging. According to nutrition epidemiology research, the middle-
aged population consuming a diet rich in carotenoids generally
scores higher on neuropsychological tests than that consuming
an ordinary diet (Kesse-Guyot et al., 2014). This concept is
supported by the fact that carotenoids can inhibit the formation
of Aβ in the AD brain (Obulesu et al., 2011) and improve the
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secretion of oxidative stress and pro-inflammatory mediators
(Mohammadzadeh Honarvar et al., 2017).

In the past 10 years, natural carotenoids, such as astaxanthin
(Hussein et al., 2006), crocin (Asdaq and Inamdar, 2010),
and lycopene (Agarwal and Rao, 2000), have been found to
exhibit neuroprotective effects. Astaxanthin is the most potent
antioxidant in flavonoids and is found in the leaves and
fruits of plants. When supplementing with astaxanthin in the
hippocampus, neonatal mice were found to show enhanced
cognitive ability compared to adult mice (Yook et al., 2016).
In terms of mechanism, astaxanthin can cross the blood–brain
barrier (Petri and Lundebye, 2007) to exert its antioxidant
(Pan et al., 2017), anti-inflammatory (Zhang et al., 2017b), and
neuroplastic effects on the brain. Astaxanthin also attenuates the
increase in CHOP and ER chaperone protein via the MAPK
pathway and inhibits the influx of calcium ions (Grimmig et al.,
2019) and upregulates HO-1 via the ERK1/2 pathway to protect
against the neurotoxicity of Aβ (Lin et al., 2017). It is generally
known that Aβ causes long-term dysfunction in the hippocampus
of mice; however, the injection of crocin can improve the
physiological state of cells in the hippocampus and the overall
memory of mice (Lin et al., 2017). In experiments examining
oxidative stress and inflammation, crocinin was shown to protect
cells against neurodegeneration by activating the Akt/GSK,
CREB/BDNF, and NF-κB signaling pathways (Zhang et al., 2018;
Motaghinejad et al., 2019).

Finally, lycopene is widely present in tomatoes and has high
neurotrophic value (Shi and Le Maguer, 2000). In a model of
Aβ-induced neuronal injury, lycopene did not activate NF-κB,
p65, or TLR4 expression (Tripathi et al., 2018), but restored
mitochondrial morphological membrane potential and ATP
levels (Qu et al., 2016) and inhibited Bax and mitochondria.
The associated decrease in the level of Bcl-2 (Feng et al., 2016)
created protective effects against inflammation and oxidative
stress in nerve cells. In fact, after 14 days of eating tomatoes,
the expression of dopaminergic neurons in the substantia nigra
and striatum of small mammals was not reduced even under
increased oxidative stress (di Matteo et al., 2009).

Alkaloids
Alkaloids are strong antioxidants with a complex structure;
the more nitrogen atoms that are exposed in the heterocyclic
structure, the easier it is to combine with reactive oxygen
and free radicals. There are many naturally occurring plant-
derived alkaloids that have long been used to develop useful
pharmaceutical substances (Khadem and Marles, 2011). The
astragalus alkaloid and its derivatives are an important target
for biological research because they are commonly found in
food sources such as coffee, tea, and potatoes (Monteiro et al.,
2016). The main derivatives of astragalus are methylxanthine,
theophylline (1,3-dimethylxanthine), theobromine (3,7-
dimethylxanthine), and caffeine (1,3,7-trimethylxanthine) (Li
et al., 2017). Caffeine is considered to be a more beneficial
derivative of astragalus to humans (Machnik et al., 2017) and
can excite the central nervous system. Therefore, proper caffeine
intake can be very beneficial to the nervous system in general
(Cappelletti et al., 2015). Caffeine is an antagonist of adenosine

A(1) and A(2A) receptors, which are closely related to the
regulation of synaptic plasticity and energy metabolism in
neurons (Cellai et al., 2018). This is particularly important for
neurodegenerative diseases such as epilepsy (Masino et al., 2014),
in which changes in the level of adenosine can be quite prevalent.
Additionally, memory loss caused by chronic stress is linked to
the A2AR receptor and caffeine acts as an antagonist to prevent
and treat such symptoms (Kaster et al., 2015). Additionally,
when considering cognitive decline caused by aging, dietary
intake of caffeine can protect the brain by regulating the
Bax/Bcl2 ratio, caspase-3, and PARP-1 levels to reduce oxidative
stress, and COX-2, NOS-2, TNFα, and IL-1β to further reduce
D-galactose-induced neuroinflammation and neurodegeneration
(Ullah et al., 2015).

Another common alkaloid that affects the nervous system is
the nicotine commonly found in tobacco. A large amount of
smoking and nicotine intake is an important risk factor for death.
By controlling the intake of nicotine, this recognized “killer” can
become a “doctor.” The level of nicotine acetylcholine in the
brain of smokers has been found to be much higher than in
that of non-smokers and can promote the release of dopamine
in the striatum (Jasinska et al., 2014). Nicotine acetylcholine
receptors (nACHRs) (Hogg et al., 2003) can control the resting
potential and excitatory conduction in neurons. In the AD
brain, the α7 nicotinic acetylcholine receptor (α7nAChR) can be
damaged with Aβ knots to form a complex that disrupts synaptic
function (Ni et al., 2013) and using an antagonist of α7nAChR
can actually inhibit the proliferation of microglia and reduce
the expression of inflammatory factors IL-1β and TNF-α (Guan
et al., 2015). Furthermore, it has been found in humans and
animals that nicotine enhances the learning ability (Poorthuis
et al., 2009), improves neuronal plasticity in the hippocampus
(Alkadhi, 2018), treats depression (Motaghinejad et al., 2016),
and can treat excitotoxicity at low concentrations (Sieber, 2012).
Through the ERK1/2 pathway (Ju et al., 2017), the PI3K–AKT
pathway (Huang et al., 2012), and the mitochondrial apoptotic
pathway (Akaike et al., 2010), nicotine can also protect neurons
from oxidative stress-induced apoptosis.

Polysaccharides
A polysaccharide refers to the natural substance formed by
polymerizing more than 10 monosaccharide molecules. Many
polysaccharides have a scavenging effect on reactive oxygen
species and free radicals and are responsible for many basic
functions of the brain. They can bind to proteins and lipids,
stabilize the structure of nerve cells and synapses (Martin, 2002),
and are used as a source of cellular energy (Falkowska et al.,
2015) and as a neurotransmitter precursor substance (Varki,
2017), which are essential nutrients for the brain (Nelson et al.,
2012). Polysaccharides can exert many functions through the
metabolism of the brain and can contribute to the formation of
neurites and synapses in neurons (Miyata and Kitagawa, 2017).
They can also provide energy substances such as lactic acid
to neurons through the metabolism of glial cells (Falkowska
et al., 2015) and in the AD brain can reduce the production
of Aβ to reduce toxicity (Timmer et al., 2010), inhibit certain
inflammatory factors, and increase resistance to oxidative stress
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(Jia et al., 2015). Polysaccharides are also known to exert
neuroprotective effects on mitochondria by reducing the ratio of
Bax/Bcl-2, caspase-3 (Yu et al., 2017), P-AKT, and phosphoric
acid. Similar protective effects can be observed across numerous
types of nerve cells by inhibiting GSK-3β (Hu et al., 2016) and
activating ERK (Zhang et al., 2017d) to reverse oxidative damage.

Active Peptides
A biologically active peptide, known as a polypeptide, can be
obtained via the process of protein hydrolysis. The function
of a polypeptide is related to its amino acid composition
and structure. When ingested by humans, plant proteins are
hydrolyzed by the digestive system and many small peptides
and amino acids are obtained. These amino acids often activate
PKA while glutamate transporters of neurons and astrocytes can
promote the cascade of the MAPK reaction (Steyfkens et al.,
2018). There are a wide variety of active peptides that include
antioxidant peptides and opioid peptides that have important
neuroprotective effects. Glutathione is an essential peptide in
plant growth and development and plays an important role
in the antioxidant system of animals. Specifically, glutathione
peroxidase can remove large numbers of free radicals for
antioxidant metabolism (Noctor et al., 2012). The mitochondrial
metabolism of reactive oxygen species also requires the use of
glutathione (Fernandez-Checa et al., 1998). These processes are
important to counteract oxidative stress (Dukhande et al., 2013)
by causing an increase in Bcl-2. Recently, it has been confirmed
that in the ischemia–reperfusion model in rodents, cerebral
nerve cell damage is associated with glutathione depletion, and
post-ischemia recovery is associated with an increase in the
concentration of glutathione (Won et al., 2015). By detecting
the concentration of glutathione in the brain of AD patients,
it was found that the concentration of glutathione was less
than that of normal brains and showed an age preference (Rae
and Williams, 2017). Furthermore, peptides of soy protein, rice
protein, and hydrolysate of wheat gliadin derived from wheat
(Teschemacher, 2003) have opioid activity and can cause an
increase in the antioxidant and methylation capacity of nerve
cells (Trivedi et al., 2014) and lower the NO level across
the cellular environment (Yin et al., 2015). Opioid peptides
act in conjunction with opioid receptors, the activation of
which can inhibit P38 phosphorylation via PCK and MAPK
activation, prevent cell apoptosis, and scavenge free radicals to
protect nerve cells (Staples et al., 2013). In addition, scientists
have recently extracted Rubisco peptides from spinach leaves
that have been shown to have significant anti-anxiety effects
(Kimura et al., 2018).

PLANT ANTIOXIDANTS PARTICIPATE IN
THE COORDINATED PROTECTION OF
THE NERVOUS SYSTEM

The nervous system is integrated with the entire human body,
and plant-derived antioxidant substances are absorbed by the
digestive system and then circulated throughout the body.
Therefore, nerve cells in the whole body may be protected. In the

nervous system, some nerve cells regulated the immune response
and cell repair. Plant-derived antioxidants can protect this part of
the nervous system with immune function, thereby increasing its
ability to resist damage and repair itself.

The Protective Effect of Glial Cells on
Neurons
Two of the most prevalent cell types in the brain are neurons
and glial cells. The primary function of neurons and glial
cells is to transmit information and to provide nutrients,
respectively. Through co-culture experiments with glial cells
and neurons, it was found that glial cells can help neurons
resist oxidative stress by secreting antioxidants or helping
antioxidant precursors. Glutathione has important functions in
the antioxidant metabolism of the brain, but different cells in
the brain have different requirements for glutathione precursors,
which provide a defense against oxidation (Dringen, 2000).
Plant nutrients eventually enter the bloodstream through dietary
digestion, but due to the presence of the blood–brain barrier,
substances in the blood are not fully absorbed and utilized by the
brain. The neuro-glio-vascular unit, which is mainly composed
of glial cells, is formed around the blood vessels of the brain;
however, connexin (Cx) channels allow nutrients to enter the
brain and leave harmful substances in the blood vessels. The
pathological state of glial cells regulates the blood–brain barrier
(De Bock et al., 2017) and therefore these cells can be thought
of as guardians that protect neurons against oxidative stress
(Liu et al., 2018) via the Saposin C/GPR37L1/GPR37 pathway.
When the brain is exposed to a certain degree of oxidative stress,
glial cells can cause neuronal damage, but also secrete a large
amount of neuropeptides to protect both glial cells and neurons,
and improve the brain’s defense against oxidative stress (Ghouili
et al., 2018). Overall, glial cells can play an important role in
the recovery of brain function (Toledano et al., 2016), so the
protection of glial cells can be considered directly related to
nervous system protection.

Protective Effect of Microglia on Neurons
Microglia are monocytes that can enter the central nervous
system and generally exhibit either the M1 or M2 phenotype.
Microglia with the M1 phenotype can show signs of
inflammation under specific environments whereas those
with the M2 phenotype generally do not. Microglia have a
unique immune function in the brain (Tang and Le, 2016)
by activating synaptic plasticity. Microglia also help remove
brain toxins and cellular metabolic waste to maintain the
homeostasis of the brain (Chen and Trapp, 2016). In a study
of aging mice, neuronal degeneration was clearly seen as
a function of aging (Hasegawa-Ishii et al., 2011) and the
degradation and morphological changes of microglial cells
increased the risk of brain damage. Nevertheless, through
the timely treatment with polyphenols, the brain’s ability
to resist neurodegenerative diseases significantly improved
(Conde and Streit, 2006; Bickford et al., 2017). Microglial
cells can also be activated to clear the accumulated Aβ

in the brain (Lee and Landreth, 2010), while resveratrol
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(Cai et al., 2017), sinomenine (Feng and Zhang, 2019),
and ganoderma polysaccharide (Shukla and Sharma, 2011)
can induce protection against Aβ damage. Recently, it was
also found that plant extracts can regulate microglia to
express the M2 phenotype more than the M1 phenotype
(Yang et al., 2017) to reduce neuroinflammation and nerve
cell damage and to clear Aβ (Figure 2). Additionally, oral
theaflavin can improve the cognitive behavior of LPS-induced
neuroinflammation by inhibiting the activation of M1-type
microglia (Ano et al., 2019). Curcumin can also protect BV-
2 microglia by effectively reducing the index of oxidative
stress in glaucoma mice (Yue et al., 2014). Furthermore,
flavonoids in plants have the ability to regulate microglial
activation (inhibiting M1-type activation), which allows
flavonoids to reduce various inflammatory factors in the brain
(Spagnuolo et al., 2018).

Protection Against the Effects of
Nervous System Aging on Degenerative
Diseases
Aging is the biggest cause of AD, mainly manifesting as
the accumulation of Aβ cell tangles, which eventually lead
to memory (Crowther and Goedert, 2000; Selkoe and Hardy,
2016) and cognitive decline (De-Paula et al., 2012). Microglia

play important roles in the immune regulation in the brain,
monitoring CNS and inflammatory factors, and clearing Aβ

and cell debris (Sarlus and Heneka, 2017). Antioxidants such
as glutathione and vitamin C cooperate with microglia to
respond to acute and chronic oxidative stress (Freitas et al.,
2017). The lack of vitamin B affects the health of the entire
nervous system and the gradual degradation of neurons can
lead to PD, AD, or amyotrophic lateral sclerosis. Vitamin B
deficiency can affect the health of the entire nervous system;
AD and PD are caused by the gradual degeneration of nerve
cells in the brain and amyotrophic lateral sclerosis (Freitas
et al., 2017). The specific combination of folic acid and vitamins
B, C, and E as well as others has improved the plasticity
of nerve cell synaptic dysfunction (Kihara and Shimohama,
2004) and has restored the cognitive ability and memory in
AD patients in various clinical trials (van Wijk et al., 2014).
Furthermore, neurotrophic and antioxidant substances in plants
have anti-aging effects on the nervous system and promote
the functional integrity of nerve cells. On one hand, nutrients
and antioxidants can promote and activate immune cells in
the nervous system, which can provide antioxidant and anti-
inflammatory effects and nutrient supply to protect the health
of the brain and the integrity of CNS function. On the other
hand, antioxidant substances in plant cells can enter the brain
and the whole body through the blood and can play an important

FIGURE 2 | Neuronal protection by the immune nervous system. Schematic of an immune-functioning nervous system that is protecting neurons through the
combined action of astrocytes and microglia. Astrocytes tightly combine with the blood vessels of the brain to form a blood–brain barrier to filter out harmful
substances and allow beneficial nutrients to enter the brain. Moreover, astrocytes can secrete glutathione precursors to strengthen the oxidative defense of neurons.
Microglia in this example are depicted as exhibiting the M2 phenotype with immune function rather than the M1 phenotype that can trigger neuroinflammation. M2
microglia can recognize and break down Aβ and inflammatory factors and reduce damage to neurons.
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role in the enhancement of the antioxidant defense of the
whole nervous system.

The functional integrity of the nervous system is inseparable
from the cooperation of the nerve cells. Nerve cells each carry
out their normal functions and ensure the reasonable operation
of the nervous system. In terms of anti-oxidation, anti-aging,
and neuroprotection, plant-derived antioxidants can eliminate
free radicals in cells of various parts of the nervous system to
achieve neuroprotection. The elimination of free radicals can also
activate the immune regulation mechanism in the nervous system
to achieve neuroprotection. In the treatment and prevention of
nerve-related diseases, plant-derived antioxidants can affect both
nerve cells and the nervous system as a whole. In the process
of research and development of plant antioxidants, the effects
of nutrients on nerve cells and the nervous system should be
more widely linked so that the nutrients in plants are fully
developed and utilized.
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