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ABSTRACT

Human pluripotent stem cells (hPSCs) have extensive applications in fundamental biology, regenerative medicine, disease
modelling, and drug discovery/toxicology. Whilst large numbers of cardiomyocytes can be generated from hPSCs, extensive
characterization has revealed that they have immature cardiac properties. This has raised potential concerns over their
usefulness for many applications and has led to the pursuit of driving maturation of hPSC-cardiomyocytes. Currently, the best
approach for driving maturity is the use of tissue engineering to generate highly functional three-dimensional heart tissue.
Although we have made significant progress in this area, we have still not generated heart tissue that fully recapitulates all the
properties of an adult heart. Deciphering the processes driving cardiomyocyte maturation will be instrumental in uncovering the
mechanisms that govern optimal heart function and identifying new therapeutic targets for heart disease.
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INTRODUCTION

The maintenance and expansion of embryonic stem cells in
a pluripotent state1 have been key to enabling the production of
a number of different human cell types, in particular, those that
were traditionally hard to expand and culture [e.g., cardiomyo-
cytes (CMs)]. Additionally, the discovery that differentiated adult
cells could be reprogrammed back to a pluripotent state using
defined factors, first in mouse cells2 and then in human cells,3

now enables the generation of pluripotent stem cells from
nearly any patient. These seminal discoveries, together with
advanced directed differentiation protocols,4 have led to wide-
spread international use of human pluripotent stem cell (hPSC)-
derived cells in both academic and industry led biomedical
research.

Human cardiomyocytes have many distinct features com-
pared to rodent cardiomyocytes, which have been used as the
model system of choice for decades (Fig. 1). To gain a closer rep-
resentation of human hearts, larger animal models such as rab-
bits, cats, dogs, sheep, pigs, and monkeys have also been utilized
throughout the literature for physiological studies. However,
ethical considerations, longer time frames, and higher costs are
inhibitory to the widespread use of these larger animal models
for routine studies. Therefore, hPSC-derived cardiomyocytes

(hPSC-CM) have become an integral part of biological studies
and drug discovery in the hope that they may help facilitate
translation of research to the clinic.

Many physiological properties such as the size, contraction
rate, cardiac output, and metabolism differ between human and
mouse hearts.5 Furthermore, around 20% of the protein coding
genes in the mouse do not have a single human orthologue.6

These differences give rise to many disparities in the biology of
the cardiomyocytes themselves. For example, mouse cardio-
myocytes are predominantly bi-nucleated7 compared to human
cardiomyocytes being predominantly polypoloid.8 This may
have substantial biological significance, as recent studies sug-
gest that that the fraction of binucleated cardiomyocytes has a
profound impact on the regenerative potential of the heart.9

Additionally, there are differences in which myosin heavy chain
isoforms are predominantly expressed. This impacts how ten-
sion and power are generated during contraction, affecting the
mechanisms underpinning cardiac disease and function.10–12

Finally, the action potential of mouse and human cardiomyo-
cytes is very different. In fact, this is not just a mouse versus
human difference, as the action potential duration tends to
scale with the animal size to maintain cardiac output.13–16

Interestingly, many of these differences between mouse and
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human cardiomyocytes observed in vivo are also observed in
CM when mouse pluripotent stem cell and hPSC-CM are com-
pared.17–20 This indicates that while some parameters are dic-
tated by animal physiology, many are also inherently encoded
in the genome.

Directed differentiation of hPSC into cardiomyocytes

Decades of research in developmental biology have been
essential for the generation of hPSC-CM.This research provided
the developmental blueprint to differentiate hPSCs into cardio-
myocytes. Originally, non-directed spontaneous differentiation
approaches were used (through withdrawal of stem cell mainte-
nance factors). However, these protocols are inconsistent and
generate very low percentages of cardiomyocytes. Over the past
15 years, directed differentiation protocols have greatly
advanced and have now improved the efficiency of cardiac dif-
ferentiation to yield greater than 95%. Directed differentiation
protocols enable robust and reproducible differentiation and
follow known developmental stimuli such as endoderm co-cul-
ture,21 growth factor signaling,22–26 and biological pathway
manipulation through small molecules.27,28 It is even possible to
now purchase hPSC-CM commercially or buy differentiation
kits, making hPSC-CM more widely available. These protocols
tend to generate predominately ventricular cardiomyocytes
although protocols have been recently developed to also effi-
ciently produce nodal29 and atrial cardiomyocyte30,31 sub-types.
Therefore, the three major cardiomyocyte sub-types are now
readily accessible for biomedical research.

Maturity of hPSC-CM

hPSC-CMs cultured in 2D have many of the key features of
their in vivo counterparts. This makes them a very useful and
predictive model for many applications including studying
hypertrophy, electrophysiology, drug toxicity and discovery, and
fundamental biology (reviewed in Ref. 32) However, due to the
relative immaturity of 2D hPSC-CM cultures, they have failed as
a model for some applications (reviewed in Ref. 33). Responses
inconsistent with adult hearts have been observed in studies on:

sarcomeric cardiomyopathies such as TITIN mutations associ-
ated with dilated cardiomyopathy,34 metabolic syndromes such
as mutations in tafazzin,35 cell cycle re-entry where 2D cells
respond tomitogens,36 and discovery of bona fide inotropes.37,38

Therefore, induction of hPSC-CM maturation is required to
improve modelling capabilities of hPSC-CM.

Why are hPSC-CMs not mature?

Why has maturity similar to that of the adult human heart
not yet been achieved? Directed differentiation of hPSC into CM
has been very successful, as it builds on decades of research into
developmental biology. This research identified the processes
that govern the specification and differentiation of early meso-
derm and subsequently cardiomyocytes in vivo, which could
then be applied to hPSC-CM differentiation. However, the pro-
cesses known to govern postnatal maturation of the heart are
limited and the molecular mechanisms of cardiac maturation
remain to be deciphered.

Typical 2D cultures of hPSC-CM cultures fail to reach adult
transcriptional maturity even after prolonged culture times
(i.e., 1 year).39,40 This indicates that either (1) the development of
a fully differentiated adult cardiomyocyte is genetically pro-
grammed and may take up to 20 years8 or (2) we have not yet
found the key drivers and molecule mechanisms driving adult
maturation. Interestingly, some maturation processes such as
the cell cycle exit and loss of regeneration capacity occur in a
similar time window after birth in both small41,42 and large
mammals.43,44 This therefore indicates that some environmen-
tal factors are key upstream drivers of maturation and matura-
tion is not solely a genetically timed process. Understanding
the environmental drivers of maturation and how they impact
cardiomyocytes may therefore help us drive adult maturation
in hPSC-CM.

What is maturation?

hPSC-CM maturation is not defined by a single property
nor is it driven by a single stimulus. There are a wide array of
properties which need to be assessed, covering many aspects of

FIG. 1. Differences in characteristics of mouse versus human cardiomyocytes.
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cardiac biology and function (Table I). These require a wide array
of assays which need to be performed to assess the different
aspects of maturation.39,40,45,46 This is an important point, as
adult maturation cannot be stated unless all these properties
have been obtained by the hPSC-CM. As Table I highlights, car-
diomyocyte properties that change during postnatal heart mat-
uration gear them towards a highly functional and efficient cell.
Hence, the key measures that encapsulate multiple aspects of
cardiomyocyte maturity are related to their functional proper-
ties [Table II (Refs. 8, 9, 36, 39, 40, and 47–64)].

Bioengineering for maturation

As Table I shows, many functional properties that charac-
terize maturation are the result of the highly controlled organi-
zation and compartmentalization of sub-cellular structures.
This includes sarcomere alignment, t-tubule organization, for-
mation of sarcoplasmic reticulum adjacent to the t-tubules and
sarcomeres, polarized cardiomyocyte-cardiomyocyte junctions
to couple both tension and ion flux, organized mitochondria
adjacent to the sarcomeres, and cell-cell interactions between
different cell types. One way to promote these features is to cre-
ate a bioengineered environment, allowing the formation of a
complex 3D tissue and thus recapitulating in vivo organ-like
structures.67 Cells in vivo behave very differently from their
in vitro counterparts on stiff, flat, un-patterned 2D substrates.68

Therefore, researchers have used bioengineering to produce
cell culture substrates to help mature some properties of cardi-
omyocytes, including soft hydrogels,69,70 substrate pattern-
ing,71–74 or flexible substrates that can deform.74–76 While some
of these approaches have generated constructs that achieve
high forces of contraction indicative of maturation (up to
10mN/mm2), a wider array of properties resembling an adult
heart have only been shown thus far within 3D engineered heart
tissue (EHT) formats.77–79

EHT has been used for decades to create highly functional
heart muscle. EHTwas originally derived from isolated chicken or
neonatal rat heart cells and cultured inside collagen I/Matrigel
hydrogels.80,81 Later, fibrin/thrombin based methods have also
been used to form EHT.82,83 It is apparent that themost important
factor for the extracellular substrate is the ability of the cells to
interact with the matrix. By using native ECM such as collagen I/
Matrigel/fibrin, the cells can: (1) produce their own matrix which
interlocks with these matrices, (2) secrete matrix metalloprotei-
nases to re-arrange the matrix, and (3) bind the matrix for migra-
tion, tension generation, and tissue condensation. In addition, it
has been shown that co-cultures of different cell types are
required in EHT for optimal cardiac function.24,39,84–86 Having a
3D environment based on native matrices enables self-
organization of cell-types into in vivo-like cardiac organization,40

thus promoting effective cell-cell communication.

TABLE I. Properties of immature versus mature cardiomyocytes. F-S: Frank-Starling mechanism where increased sarcomere length leads to increased force of contraction.

Property

Immature
Mature

Impact with maturation

Sarcomeres Irregular, 10% volume47 Organized, 40% volume47 "Force generation
1.8lm sarcomere spacing48 2.2 lm sarcomere spacing48 "Force generation (F-S)
Proteins are fetal isoforms40 Proteins are adult isoforms40 Power generation,10–12 "stiffness,40,50 signalling51

Calcium handling Immature48,52 Mature48,52 "Calcium amplitude48,52

"Force generation
"Faster activation and decay48,52

T-tubule system Poorly developed and organized53 Highly developed and organized54 "Synchronous and efficient calcium
activation throughout the cell54

Ion channel expression Fetal isoform of INa
55 Adult isoform of INa

55 "Upstroke velocity55
Low expression of IK

40 High expression of IK
40 #Resting membrane potential56

Gap junction organization Circumferential57,58 Polarized to ends (at intercalated discs)57,58 "Anisotropic conduction velocity
"Anisotropic force generation

Metabolism Glycolytic 10% mitochondria59 Oxidative phosphorylation 30% mitochondria60,61 "ATP production60,61

"Oxygen usage59–61
"Fatty acids > glucose60,61

Cell Cycle Mitogens drive proliferation36,40 Mitogens drive hypertrophy62 "Cardiomyocyte size62
#Regenerative potential62

Nucleus/DNA content Mono-nucleated monoploid8 25% binucleated #Regenerative potential?9
50% mono-nucleated polyploidy
25% mono-nucleated monoploid8

ECM binding b1 integrin collagen I/fibronectin63,64 Laminin/basement membrane63,64 #Proliferation63,64
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In addition to cellular organization, the EHT approach
enables precise mechanical loading of the sarcomeres. In the
native heart, most of the mechanical tension is actually
imposed on the sarcomeric giant protein TITIN at physiolog-
ical strains.87 Having a hydrogel full of interconnected car-
diac cells is one of the best ways to achieve sarcomeric
loading in vitro. This may be an important step for matura-
tion, as tension through cardiomyocyte-substrate binding in
stiff 2D environments imposes different biological effects
and may actually keep the cardiomyocytes in an immature
state63 or impose disease-like states.88 This is also a key
consideration for the design of synthetic biomaterials for
cardiac tissue engineering, as a stiff polymer or an environ-
ment preventing mechanical loading through intercalated
discs may be more representative of a 2D rather than a 3D
environment.

A variety of different loading regimes have been utilized in
the EHT format. Auxotonic mechanical loading, rather than
static stretching or phasic stretching, is the most physiological
means of EHTmechanical loading and results in enhanced func-
tionality.89–91 This is not surprising as myocardial tissue is inher-
ently designed to respond to mechanical loading for proper
heart function. For example, the Frank-Starling mechanism
whereby increased preload results in increased force of con-
traction normalizes beat-to-beat variations in ventricular filling.
It is therefore paramount that bioengineering applications care-
fully consider mechanical loading regimes, as non-physiological
loading may have considerable consequences on signaling92

(Table I) and has even been used to model heart disease in
EHT.90,93

Overall, the EHT approach has many advantages in creating
the most accurate model of heart tissue in vitro. The application
of auxotonic mechanical loading and pacing77,79,94 has enabled
the production of adult maturity in EHT derived from neonatal

rat hearts. Therefore, this approach may also be one of the best
methods to achieve adult maturation in hPSC-CM.

Maturation of hPSC-CM

Advanced maturation of hPSC derived-EHT has been
achieved by optimizing multi-cellularity and mechanical loading
and pacing [Table III (Refs. 20, 23, 39, 40, 45, 46, 65, 93, and
95–107)]. A key finding in multiple studies is that these stimuli
drive an increase in EHT function via maturation of the attrib-
utes required for optimal cardiac function (see Table I).
However, the goal of full adult maturity has not yet been
achieved using these approaches, potentially because we do not
yet understand all the key drivers and molecular mechanisms of
cardiac maturation.

In addition to the aforementioned stimuli, metabolism has
also been recently identified as a major driver of maturation (Table
III). In the EHT environment40,106 or even in prolonged 2D cul-
ture59,100 (but not to the same extent106), hPSC-CMs increase their
capacity for energy production via increased production of mito-
chondria and in-turn oxidative phosphorylation capacity. This
increased respiratory capacity seems to be induced via a
contraction-tension based mechanism,106 but further work is
required to elucidate the detailedmolecular mechanisms involved.
Further downstream, PGC-1a has been identified to be likely
involved in coordinating these metabolic changes.59,106 While oxi-
dative phosphorylation can increase in the EHT environment with
mechanical loading, switchingmetabolic substrates from glucose/
carbohydrates to fatty acids significantly alters cellularmetabolism
towards oxidative phosphorylation and promotes further matura-
tion.40,100 Exactly how this drives maturation remains to be deci-
phered, but it is known to be associated with a DNA damage
response and the repression of Wnt-b-catenin and yes-associated
protein 1/tafazzin signaling.40 Determining the mechanisms

TABLE II. Key measurements of maturity. Properties and references are outlined in Table I.

Contractile force and kinetics
Mature cardiomyocytes produce higher forces and have faster upstroke and decay rates. Changes in sarcomere proteins and their organization, calcium handling, t-tubule
organization, ion channel expression, and ECM binding all influence contractile force and kinetics.

Response to adrenergic stimulation
In mature cardiomyocytes, there is a chronotropic, lusitropic, and inotropic response to adrenergic stimulation. Changes in sarcomere proteins and their organization, calcium
handling, t-tubule organization, and ion channel expression all influence this response.

Increased force-frequency relationship
Mature cardiomyocytes increase force as their rate increases (positive staircase). This is heavily influenced by the proteins involved in calcium handling and cellular compart-
ment organization.

Conduction velocity
Electrical conduction velocity is faster in mature cardiomyocytes. This is regulated by cardiomyocyte coupling via cell-cell connections and gap junctions and by ion channel
expression and regulation. Additionally, resting membrane potential of the cardiomyocytes influences this property.

Transcriptome
The adult cardiomyocyte transcriptome is distinct from an immature cardiomyocyte. There are extensive changes in expression of sarcomeric protein isoforms, metabolic genes,
and cell cycle genes during this process.65 The transcriptome can be potentially used as an unbiased holistic measure of maturity40,66 but should be used in combination with
functional assays.

Metabolism
During maturation, there is a switch from glycolysis to fatty acid metabolism. This facilitates a high metabolic capacity and increased mitochondrial biogenesis.
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TABLE III. Properties of EHT benchmarked against 2D culture and adult hearts. Note: Parameters were selected based on analyses of the function (Table II) and those that
were measured in the majority of studies. #Tissue produced by the Eschenhagen Lab are more diffuse than other formats, and the functionality seems to be low; but the cardio-
myocytes on a per cell basis display a high degree of maturation and are highly functional.

Approach
Force

(mN/mm2)
Isoprenaline force

increase (% at EC50 Ca
2þ) Mechanical loading regime

Adult heart 2595 20096 Sarcomeres loaded
Auxotonic

Preload: ventricular filling
Afterload: systolic blood pressure

2D cardiomyocytes 0.25–0.5101 Inconsistent Dependent on the substrate
Tissue culture plastic has an elastic modulus 100 000 times the heart

Most mechanical loading through ECM-integrin rather than sarcomere loading

Bursac Lab Fibrin 70 Loaded 3D gel facilitating sarcomeric loading

Zhang et al.45 Stromal cells Auxotonic

Jackman et al.98 6 Medium convection �12/þ23 Preload: endogenous cell tension

Shadrin et al.102 Afterload: undefined–Velcro frame

Zimmermann Lab Collagen I 6.2 80–90 Loaded 3D gel facilitating sarcomeric loading

Tiburcy et al.39 Stromal cells Auxotonic
Preload: 10% strain and endogenous cell tension

Afterload: controlled by elastic posts

Vunjak-Novakovic Lab Fibrin 4 75 Loaded 3D gel facilitating sarcomeric loading

Ronaldson-Bouchard et al.46 Stromal cells Auxotonic
Pacing Preload: endogenous cell tension

Afterload: controlled by elastic posts

Sniadecki/Murry Lab Fibrin 0.4 Loaded 3D gel facilitating sarcomeric loading

Leonard et al.93 Stromal cells Auxotonic
Preload: endogenous cell tension

Afterload: controlled by elastic posts

Murry Lab Collagen I/Geltrex 1.3 Loaded 3D gel facilitating sarcomeric loading

Ruan et al.103 Stromal cells Static loading
Pacing Preload: endogenous cell tension

Afterload: dependent on force generation

Conklin/Healy Lab No ECM 4 �50 Cardiomycyte/stromal cell mixture adhered to 2D substrate at either end

Huebsch et al.104 Stromal cells Static loading
Preload: endogenous cell tension

Afterload: dependent on force generation

Hudson/Porrello Lab Collagen I/Matrigel Loaded 3D gel facilitating sarcomeric loading

Voges et al.23 Stromal cells Auxotonic

Mills et al.107 6Metabolic maturation 7 50 Preload: endogenous cell tension

Mills et al.40 Afterload: controlled by elastic posts
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behind this maturation process may help us further advance mat-
uration of hPSC-CM.

Similarities to in vivo maturation

In hPSC-CM studies so far, the drivers of maturation are
consistent with environmental changes that occur in vivo. In the
early postnatal window, there is a shift in many cardiac parame-
ters and recapitulating some of these in hPSC-CM has been
shown to result in maturation (Table III). However, there are a
considerable number of changes in the postnatal environment
(Table IV), and it is still unclear to what extend each of them
influences maturation of the heart. Additionally, there are con-
siderable changes in multiple organs during postnatal

development, and therefore, inter-organ communication and
even interactions between the microbiome and the host108 may
be important. The study of these processes not only is pertinent
to cardiac maturation but may also be critical of other organ
types, as many hPSC-derived cell types are considered
“immature.”

Deciphering maturation programs is important for
cardiac disease and regeneration

Cardiac dysfunction during disease has many facets and
can be attributed to many different processes.119,120 It is well
established that the neonatal heart is better adapted to many
insults in comparison to the adult heart121 and can functionally

TABLE IV. Factors changing in the postnatal environment (non-exhaustive)

Oxygen tension
Before birth, the arterial oxygen tension is only PO2 ¼ 30 mmHg and increases around 3-fold after birth to 100 mm Hg. This has a large impact on metabolism, and the heart
transitions from a relatively hypoxic environment where glycolysis is the primary form of energy production to oxidative phosphorylation after birth.97,109 This also creates reactive
oxygen species affecting cardiac maturation and additionally has widespread consequences throughout the body.110

Catecholamines (norepinephrine, epinephrine, and dopamine)
There is a release of catecholamines following birth to: (1) increase cardiac output, (2) stimulate gluconeogenesis and glycogenolysis in the liver, (3) release free fatty acids,
and (4) regulate blood pressure.111

Metabolic substrates
Energy production undergoes a switch, as there is a shift from a carbohydrate based to a fatty acid dominated metabolism the newborn starts feeding on breast milk. This indu-
ces widespread physiological adaptations such as induction of mitochondrial biogenesis, gluconeogenesis, glycogenolysis, and ketogenesis in the liver to supply other metabolic
substrates.112

Serum proteome
The serum proteome undergoes major changes after birth.113 Considerable work is required to determine the impact of these changes and which factors are important for car-
diac maturation.

Cellular composition
The cellular composition in the myocardium changes during postnatal maturation. There are varying estimates in the percentage of cells that are cardiomyocytes; however, the
general consensus is that the fraction of cardiomyocytes decreases during the maturation period.114–116 The stromal fraction also changes during postnatal maturation;117 in
some papers, this has been shown to change from 52:41:6.5 to 52:25:20 endothelial cells:fibroblasts:leukocytes during postnatal maturation and is thus a major change in the
fibroblast to leukocyte/macrophage ratio.65 It is still unclear how this influences cardiac maturation and how the different cell populations interact with each other, but there is
increasing evidence of complex interplay between the cell types.118

TABLE III. (Continued.)

Approach
Force

(mN/mm2)
Isoprenaline force

increase (% at EC50 Ca
2þ) Mechanical loading regime

Eschanhagen/Hansen Lab Fibrin 0.06# 41 Loaded 3D gel facilitating sarcomeric loading

Schaaf et al.105 6Stromal cells Auxotonic

Hirt et al.94 6Pacing Preload: endogenous cell tension

Mannhardt et al.20 Afterload: controlled by elastic posts

Ulmer et al.106

APL Bioengineering PERSPECTIVE scitation.org/journal/apb

APL Bioeng. 3, 010901 (2019); doi: 10.1063/1.5070106 3, 010901-6

VC Author(s) 2019

https://scitation.org/journal/apb


regenerate after injury.41–44 Therefore, understanding the matu-
ration process may also lead to the understanding of how the
adult heart becomes more susceptible to injury and thus unlock
new therapeutic targets for disease. It has been a central dogma
for decades that there is a reversion to a fetal phenotype in
many disease states, including glycolysis, expression of fetal car-
diac proteins, and a growth program (note: hypertrophy not
hyperplasia). Reversion of some processes can be cardiac pro-
tective, but others can be detrimental. Given the reversion of
some properties but not others in disease,65 it is critical that we
gain a better understanding of the maturation process so that
we can determine the most beneficial adaptions to be exploited
as therapeutics.

Application of mature hPSC-CM

Whilst we have not yet produced hPSC-CMs that are equiv-
alent to adult cardiomyocytes, they are still very useful in a wide
array of academic and industry based applications, including
fundamental science, cell therapy, disease modelling, and drug
discovery studies. Furthermore, it should be highlighted that
adult hPSC-CMmay not be the optimal maturity stage for some
applications. For example, for cell therapy applications, engraft-
ment and proliferation following implantation are improved if
relatively immature hPSC-CMs are used.122,123 On the other
hand, more mature hPSC-CMwill be essential for modelling dis-
eases such as Barth syndrome where metabolically mature car-
diomyocytes are required.35 Therefore, the bioengineering
approach used for different applications may vary considerably
(as they currently do), and the optimal bioengineered platform
needs to be carefully considered for each specific application.

Scaling of EHT for different applications is also an impor-
tant consideration. Production and banking of billions of hPSC-
CM are now achievable and have already been implemented by
some academic labs and within industry. This topic has many
aspects requiring consideration and has been extensively
reviewed.124 More pertinent to this perspective is the scaling of
EHT technologies, especially as culture formats become more
and more complex and technically challenging to fabricate. It
should also be noted that different applications require different
scales. Miniaturization of hPSC-CM36 or EHT40 cultures is
required for large-scale drug discovery or biological screening.
Conversely, EHT patches for heart regeneration require larger
formats.39 When scaling EHT, there are a number of aspects
which may require considerable engineering for optimization.
Two of the most important considerations are as follows.

Complexity

For all applications, it is essential that the EHT approach
used is consistent and reproducible. Therefore, when introduc-
ingmore complexity into EHT systems, such as pacing, mechan-
ical loading, metabolic substrates, or greater complexities in cell
composition, increased quality control is required. When using
EHT as a model system, electrically paced EHT formats require
that all tissues are paced at the same rate with the same current.
In low throughput systems, this is easily managed; however, this
becomes increasingly difficult in higher throughput systems

where potentially 1000s of miniaturized EHTs are cultured.
Furthermore, incorporating more complexity into larger
implantable EHT results in additional costs for both the fabrica-
tion of the EHT and the additional impact to the Good
Manufacturing Practice production pipelines. Overall, additional
EHT complexity to enhance maturity requires careful consider-
ation of cost versus benefit when scaling the technology for
drug screening or regenerative medicine applications.

Size

The heart is the most metabolically active organ and con-
sumes roughly 20 times its weight in adenosine triphosphate
(ATP) daily.125 This has huge consequences on EHT design to
ensure sufficient oxygen and nutrient supply. In miniaturized
formats where the cell layers are only �60lm (a few cell layers
thick) ,40 metabolite or oxygen diffusion is not limited. However,
larger formats require strategies to improve supply in order to
avoid formation of a necrotic core. A variety of techniques have
been successful in achieving this, including having more diffuse
muscle bundles,94 incorporating perfused endothelial tubes,126

or having dynamic culture vessels to increase media
convection.98

CONCLUSION—HOW CLOSE ARE WE?

The holy-grail of cardiac bioengineering is the production
of fully mature adult hPSC-CM, which is also a pursuit for many
other organ and cell types.127,128 Driving full adult hPSC-CMmat-
uration will not only result in a better model for many applica-
tions but also decipher the poorly understood maturation
process of the heart. There has been great progress in this area,
and bioengineered models have been instrumental for advanced
maturation of many hPSC-CM properties. However, further
work is required to progress maturation to an adult state, which
will require determination of how the postnatal environment
drives maturation. Due to the large number of postnatal physio-
logical changes of the heart, it is likely a multi-faceted approach
that mimics mechanical loading, pacing, metabolic substrates,
and cellular-composition of the adult heart will be required to
drive adult maturation of EHT. How each of these factors influ-
ence cardiac maturation and their underpinning molecular
mechanisms require detailed follow-up investigations.
Understanding of these processes will enable not only the gen-
eration of more mature hPSC-CM cultures but also the under-
standing of how heart biology and function are governed, which
in itself may lead to novel therapeutic targets.
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