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ABSTRACT 
 

Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals 
are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants 
through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different 
materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. 
However, these materials have been reported to have limited clinical success. The excellent bioactivity of 
calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low 
mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a 
promising method, which improves their mechanical strength and chemical stability. In this review, the potential 
of trace element-modified silicate coatings on better bone formation of titanium implant is investigated.  
DOI: 10.7508/ibj.2016.04.002  
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INTRODUCTION 

 

ne of the most successful economical and 

surgical procedures for bone tissue repair is 

total joint replacement. This procedure could 

enhance function and movement and decrease pain in 

patients suffering from severe arthritis and skeletal 

tissue abnormalities
[1]

.  

 The successful performance of biomedical implant 

mainly relies on the suitable osseointegration at  

the interface of host tissue and biomaterial
[2]

. 

Osseointegration is occurred when functional integrity 

is created directly between the bone tissue and the 

surface under load implant
[3]

.  

 Ti-6Al-4V is a well-recognized biomaterial with 

proper mechanical features and biocompatibility, 

which are found in many biomedical implants such as 

bone screw. However, the lack of biodegradability, the 

slow rates of osseointegration and poor mechanical 

anchorage result in implant failure and loosening
[4-9]

. 

Furthermore, a fibrous layer is formed at the interface 

between the implant and tissue. Also, local 

inflammation and infection are occurred most probably 

due to the long-term presence of implant in vivo
[10]

.  

 The available synthetic implants still have 

restrictions in clinical practice and need revision 

surgery due to the formation of thick fibrous tissue at 

the tissue-biomaterial interface
[11,12]

. The revision 

surgery decreases the quality of the life of people 

suffering from hard tissue diseases, since it is more 

difficult than the initial surgery. Many attempts have 

been performed on the quality of available biomedical 

implants by surface modification.  As stated above, 

development of new implants coated with bioactive 

and functionally stable materials is necessary. Different 

surface modification methods have been employed to 

modify the surface of currently available biomedical 

metallic implants
[13]

. The coating materials play an 

O 
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important role in providing an environment in which 

bone formation ability is enhanced and in turn, better 

integration is established between the implant and bone 

tissue. Various surface modification methods have 

been used to encourage the bone formation between 

tissue and medical implant
[14-16]

, including chemical 

vapor deposition
[17,18]

, anodic oxidation
[19]

, sol-gel
[6,20]

, 

physical vapor deposition
[6,21]

, plasma spray
[22]

, 

electrophoretic deposition (EPD)
[23]

, anodic spark 

deposition
[2]

 and enameling
[24,25]

.  

 Bioceramics, such as calcium phosphate
[26]

, 

hydroxyapatite (HA)
[27,28]

 and calcium silicate (Ca-

Si)
[29]

 have been used as coating materials on the 

surface of biomedical implants. HA could directly 

bond with the bone tissue with no fibrous  

layer formation
[27,28]

. However, it possesses low 

osteogenic activity
[30,31]

, inadequate chemical 

stability
[32,33]

, mismatch of thermal expansion 

coefficient (CTE) with Ti-6Al-4V substrate
[34,35]

 and 

low bonding strength
[36,37]

, which lead to short-term 

osseointegration. The mismatch of CTE between HA 

coating and Ti substrate provides higher tensile 

strength at the interface, decreases the bonding strength 

of coating and may cause peeling and fatigue failure 

under tensile loading
[38]

. Also, bioglasses
[39,40]

 have 

been applied to modify the surface of medical 

implants. However, most of the bioglasses coatings 

have poor bonding strength due to the mismatch of 

their CTE with Ti-6Al-4V
[41]

 and high degradation 

rate
[42]

.  

 Ca-Si-based ceramics have shown to have higher 

bonding strength with Ti substrate compared to HA
[29]

. 

Further, they could support osteoblast attachment as 

well as proliferation and differentiation by the release 

of calcium (Ca
2+

) and silicon (Si
2+

) ions
[43-45]

. Also, the 

dose-dependent antibacterial activity of Ca-Si-based 

ceramics has been also demonstrated in some 

studies
[46,47]

. Silicate bioceramics possess comparable 

CTE with Ti-6Al-4V; as a result, the high bonding 

strength is provided and also the residual stress is 

decreased
[35,48,49]

. However, their chemical instability, 

inability to support human bone formation and poor 

mechanical properties limit their applications as a 

biomedical coating for long-term orthopedic 

implants
[50]

. 

 It has been reported that the positive ion modification 

(trace element) improves the biological and mechanical 

strength of Ca-Si-based ceramics
[51,52]

, which may 

increase their bone bonding ability
[53,54]

. Therefore, it is 

reasonable to use trace element-incorporated silicate 

bioceramic as coating materials for metallic implants. 

The objective of this review is to investigate whether 

the ion-modified Ca-Si coating can effectively improve 

the osseointegration of implant and, in turn, the quality 

of life of patients compared to conventional ceramic 

coatings.    
 

Various characteristics of ideal biomedical coating 

Structural properties 

 A coating material with ideal biocompatibility and 

bioactivity is considered as a perfect material for 

orthopedic applications because the direct contact 

between the underlying implant and bone tissue is 

inhibited and in turn, the release of challenging ions 

from the implant is decreased
[55]

. Further, high bonding 

strength may be provided with underlying substrate. 

The chemical stability and the low degradation  

rate in biological environment influences their long-

term durability
[6,34]

. Also, the coating material  

with nanostructural configurations is favorable  

for the absorption of ions such as Ca
2+

 and  

magnesium (Mg
2+

)
[56-59]

, which result in better 

osteoconductivity
[60]

. The other features that may 

influence the establishment of good bonding strength 

between the underlying implant and coating in  
vitro and in vivo include surface roughness, thickness, 

microstructures
[6,35,61]

, Young’s modulus and 

CTE
[62,63]

. Rough surface is favorable for cell 

attachment and proliferation, which are valuable for 

bone implant fixation
[64]

. However, the presence of 

microcracks in the surface is not advantageous for 

corrosion resistance and the good bonding strength
[65]

.  

 

Cell-coating interaction 

 Biological reactions are generally occurred on the 

surface; therefore, the surface characteristics of coating 

such as ion release and topography are key factors in 

the implant-cell interactions
[66-68] 

(Fig. 1). 

 As indicated in Figure 2, the surface properties of the 

implant are improved by coating, and apatite formation 

is  induced  on  the  surface  leading to a better bonding  
 

 
 

 
 

 Fig. 1. The effect of released ions on osseointegration and 

antibacterial properties. 
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 Fig. 2. The effect of ceramic coating on the Ti substrate. (A) The implant without coating leads to weak bone formation and the 

loosening of the implant; (B) the apatite formation on the implant with coating resulted in more bone formation and tight fixation of 

implant. 

 

with bone tissue (Fig. 2A) compared to uncoated 

substrate (Fig. 2B). The formation of a silica layer on 

the surface is beneficial to the adsorption of proteins. 

This silica layer supports and facilitates the 

interactions between proteins and the surface of 

material and, in turn, affects cell behaviors
[69]

. Hence, 

the cell-material interaction may be effective in 

establishing a tight bonding with the host bone tissue, 

which provides a suitable substrate for cell 

attachment. Also, it is notable that the cell 

proliferation rate is related to initial cell attachment 

density
[63]

.  

 The surface chemistry may affect the adsorption of 

proteins from the surrounding medium to facilitate 

the cell attachment
[70]

. Also, more binding sites can 

be provided for the adsorption of protein by Si
4+

 

ions
[71]

. Briefly, the molecular mechanism by which 

the interaction is established between the cells and 

underlying substrate may be described as follows.  

 After in vitro and/or in vivo implantation, several 

biological reactions occur on the surface of implant. 

First, proteins are immediately adsorbed to the 

surface of implant
[72]

. Next, integrins may be bound 

to proteins, which transduce extracellular signals 

inside the cells
[68,69]

. As a result of these signaling 

pathway, the cell behavior can be altered through the 

regulation of those genes whose functions are 

associated with attachment, proliferation and 

differentiation. Herein, the characteristics of the 

surface may determine the orientation of adsorbed 

proteins and the expression of integrins
[70]

.  

 When the coated implant is placed in vivo, the 

coating materials are exposed to physicochemical 

and/or cell-mediated dissolution and corrosion. As a 

result, it can be degraded and replaced by newly 

formed bone tissue
[73]

. Therefore, it is suggested that 

the release of ions from the bioceramic coating 

controls the local microenvironment, which 

determines the host cell behavior and supports the 

new bone formation process. It is thought that the 

chemistry and the microstructure of the surface are 

responsible for advantageous stimulatory effect.  

 

Trace element-modified calcium silicate ceramic 

coating  

 The CaSiO3 and Ca2SiO4 coatings have shown to 

have excellent in vitro bioactivity. In addition, these 

types of coatings demonstrate a rough microstructure 

and higher bonding strength compared to HA
[6,29,32,33]

. 

Nonetheless, both HA and CaSiO3 coatings possess 

rapid degradation rate, which resulted in 

disintegration of the coatings and compromising their 

bonding strength and implant fixation
[74]

. Although 

there are no microcracks between the Ca2SiO4 coating 

and the substrate
[29]

, the short-term osseo-

integration
[29,75,76]

 and poor chemical stability
[49]

 are 

major problems that hinder the in vivo long-term 

durability of implants.  

(A) 

(B) 

 
Firm fixation 

 
Loose fixation 
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 It is known that the incorporation of ions into CaO-

SiO2 improves the chemical stability and mechanical 

properties compared to HA and CaSiO3. In addition, 

ion-modified CaO-SiO2 materials have apatite-

forming ability in simulated body fluids
[51,52]

.  

 The feedstock (CaO-ZrO2-SiO2 [CZS]) is one of the 

Zr-modified materials. The atmospheric plasma or air 

plasma (APS)-sprayed CZS on Ti-6Al-4V 

substrate
[77]

 has exhibited a higher bonding strength 

than plasma-sprayed HA coating
[22]

. This higher 

bonding strength of CZS coating is attributed to the 

large content of zirconia in the CZS coating. Also, 

CZS coating has high strength and good toughness 

due to the comparable CTE of CZS coating and Ti-

6Al-4V
[78,79]

. It has been shown that the in vitro 

cytocompatibility of CZS coating on Ti substrate can 

promote the adherence of a large number of canine 

marrow stem cells (MSCs) to the material
[77]

. 

Furthermore, the MSCs well proliferate on CZS, 

which can be due to the rough surface of coating. 

However, the cell proliferation rate of CZS and HA is 

similar. A report has demonstrated that bone marrow-

derived stromal cells (BMSCs) firmly adhere to the 

surface of CZS coating and show a considerably 

faster cell proliferation compared to HA coating
[79]

. It 

has been suggested that the presences of Si
4+

 ions 

positively affect the cell behavior. In addition, 

silicon-enriched layer formed on the surface of CZS 

is beneficial to protein adsorption and cell 

attachment
[79]

.  

 The second Zr-modified material is Baghdadite 

(Ca3ZrSi2O9). The Ca3ZrSi2O9 coating on the Ti-6Al-

4V substrate using APS has been shown to have 

stronger bonding strength with Ti substrate
[80]

 

compared to plasma sprayed-HA coating
[81]

. 

Although the surface roughness of Ca3ZrSi2O9 is 

higher than CZS, it possesses lower bonding strength. 

 There are different Mg-modified compounds that 

show good bonding strength and better biocorrosion 

and antibacterial properties compared to HA and β-

TCP. These compounds include akermanite 

(Ca2MgSi2O7), diopside (CaMgSi2O6), bredigite 

(Ca7MgSi4O16), merwinite (Ca3MgSi2O8) and 

monticellite (CaMgSiO4)
[52]

.  

 The Ca2MgSi2O7-coated Ti-6Al-4V by APS
[48]

 

indicated that the bonding strength of the coating is 

much higher than HA
[22,36,82]

. However, the mismatch 

of CTE between Ca2MgSi2O7 and underlying Ti 

substrate leads to the formation of longitudinal cracks 

inside the coating. Thus, the bonding strength of 

Ca2MgSi2O7 is lower than CaMgSi2O6 due to the 

presence of microcracks.  

 The CaMgSi2O6-coated Ti-6Al-4V using plasma 

spray has exhibited higher bonding strength compared 

to HA
[34]

. This higher bonding strength is due to the 

comparable CTE of CaMgSi2O6 and underlying Ti 

substrate, which prevents the formation of 

microcracks at the interface
[34]

.  

 Ca7MgSi4O16 can also be applied as a coating 

material on the implant surface. When Ca7MgSi4O16 

is coated on the Ti-6Al-4V surface
[83]

, the bonding 

strength is higher than HA
[22]

, wollastonite
[84]

, 

Ca2SiO4
[29]

, CaMgSi2O6
[34]

, CaTiSiO5
[35]

 and 

Ca2MgSi2O7 coatings
[48]

. This high bonding strength 

is mainly due to the tight interface between coating 

and underlying surface, no clear microcracks and 

well-melted Ca7MgSi4O16 powder. The BMSCs 

adhere well on the surface with a higher proliferation 

rate than HA. This is ascribed to the capability  

of bone-like apatite layer enhancing the osteoblastic 

activity
[85-87]

 and stimulating the role of Mg
2+

 and  

Si
4+

 ions
[88-91]

. Although both Ca2MgSi2O7  

and Ca7MgSi4O16 showed bonding strength higher 

than HA, Ca2MgSi2O7 had lower bonding strength 

compared to Ca7MgSi4O16 due to microcracks  

(Fig. 3). 

 Ca3MgSi2O8 and CaMgSiO4 are the next materials 

with a potential use as coating. The CTE of both is 

closer to that of Ti-6Al-4V alloy
[92]

. However, no data 

are available in the literature focusing on their 

applications as coating on Ti-6Al-4V substrate. 

 Ca2ZnSi2O7 is the other ion-modified material with 

enhanced    mechanical, biological   and antibacterial 

properties.  The  coating  of  Ca2ZnSi2O7  on  Ti-6Al-

4V surface through  APS  obtained  the  higher  

bonding  strength compared HA coating
[93]

 mainly 

because  of  their  comparable   CTE
[94]

.  The  plasma-  
 

 
  Fig. 3. Bonding strength of coating reported in  

the literatures for hardystonite (Ca2ZnSi2O7)
[49,93], akermanite 

(Ca2MgSi2O7)
[48], sphene (CaTiSiO5)

[20,35,93], baghdadite 

(Ca3ZrSi2O9)
[80], CaO-ZrO2-SiO2 feedstock (CZS)[77], bredigite 

(Ca7MgSi4O16)
[83], diopside (MgSi2O6)

[34], Sr2MgSi2O7 

(SMS)[42], Sr2ZnSi2O7 (SZS)[100], CaSiO3
[6], Ca2SiO4

[29], 

hydroxylapatite (Ca5(PO4)3OH)[6,22,29,32-34,36,49,81,82] and 

chitosan[13,111]. Also, for baghdaditeand akermanite, there was 

no accurate value for bonding strength; a range of bonding 

strength value was reported. 
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sprayed Ca2ZnSi2O7 on Ti-6Al-4V surface also 

showed a significantly higher bonding strength than 

HA
[49]

. Further, the coating supported primary human 

osteoblasts cell and osteoblast-like cell line (MC3T3-

E1) attachment, spreading and proliferation
[49,55,95]

 

due to the presence of Ca
2+

 and Si
4+

 ions
[93]

. 

Moreover, this coating demonstrated a higher bone 

interface contact and faster osseointegration 

compared to CaSiO3 without the formation of fibrous 

tissue. Besides the osteogenic properties, Ca2ZnSi2O7 

is able to show antibacterial effect against 

Escherichia coli and Staphylococcus aureus
[49,95]

. 

This antibacterial activity is thought to be related to 

the initial damage to cell wall and cell membrane.  

 CaTiSiO5 is a Ti-modified material used as a coating 

due to the close CTE to Ti-6Al-4V
[35,96]

. The 

CaTiSiO5 coating on Ti-6Al-4V demonstrated a 

bonding strength considerably higher than HA and 

Ca2ZnSi2O7
[93]

. This superior bonding strength of the 

CaTiSiO5 compared to Ca2ZnSi2O7 is probably due to 

the presence of Ti
4+

 in the CaTiSiO5, which may 

improve the chemical and diffusion bonding between 

CaTiSiO5 and the underlying Ti-6Al-4V substrate
[97]

. 

However, the Ca2ZnSi2O7 showed a rougher surface 

compared to CaTiSiO5. It should be noted that 

CaTiSiO5 coating on Ti-6Al-4V can be prepared by 

sol-gel spinning
[20]

. The prepared CaTiSiO5 showed a 

higher bonding strength than HA but lower than 

plasma-sprayed CaTiSiO5. The higher bonding 

strength is thought to be related to the inherent 

properties of CaTiSiO5. However, both soaking the 

Ti-6Al-4V implant in CaTiSiO5 sol-gel solution and 

HA showed high bone-implant contact, while 

uncoated Ti-6Al-4V revealed a significant poor bone-

implant contact due to the presence of wide fibrous 

tissues.  Moreover, both HA and CaTiSiO5 coatings 

exhibited comparable mechanical fixation but 

CaTiSiO5 showed considerably higher mechanical 

fixation compared to the uncoated Ti-6Al-4V
[96]

. 

Nonetheless, CaTiSiO5 coating indicated higher 

bonding strength compared to sol-gel spinning but 

lower strength than plasma-sprayed coating.  

 The CaTiSiO5 coating on Ti-6Al-4V through plasma 

spray shows no microcracks at the interface and 

reveals a strong bonding strength
[35]

 higher than 

HA
[22,33,81,98]

. Additionally, the CaTiSiO5 coating 

could support human osteoblast-like cell attachment, 

spreading and proliferation, which is due to the 

presence of Ca
2+

 and Si
4+

 ions. The Ca2ZnSi2O7 

coating, however, demonstrates a higher proliferation 

rate than CaTiSiO5 and Ti-6Al-4V substrate, which is 

related to the release of Zn
2+

 ions from the 

Ca2ZnSi2O7
[93]

.  

 Evidence has shown that different methods can be 

used for preparation of CaTiSiO5 coating. Each of the 

preparation methods has its own advantages and 

disadvantages. According to the previous reports, the 

plasma spray technique produces a much denser 

microstructure compared to the sol-gel method. 

Nonetheless, using sol-gel method, the coating could 

be sintered in low temperatures since at higher 

temperature, it will oxidize and damage the surface of 

underlying substrate. In addition, the problem of low 

temperature sintering is that a completely dense 

microstructure cannot be obtained as observed for 

sol-gel method, thus affecting the bonding 

strength
[35]

. However, the advantages of the plasma 

spray method as a frequently commercial method for 

the preparation of coating is high deposition rate and 

rough surface, which is favorable for bone 

substitute
[6,21]

. 

 It is worth noting that the simultaneous 

incorporation of ions into Ca-Si system is also 

possible to further improve biological and mechanical 

integrity. Recently, Sr
2+

 and Ti
4+

 have incorporated 

into Ca-Si and improved the bioactivity and the 

proliferation of mesenchymal stem cell compared to 

Ca2ZnSi2O7
[99]

. This nanocomposite may have the 

potential to be used as a coating. An investigation has 

indicated that when Sr
2+

 and Zn
2+ 

are incorporated 

into Ca-Si structure, Sr2ZnSi2O7 (SZS) is formed. The 

SZS considerably controlled the inflammation, 

decreased the osteoclastogenesis and improved 

osteogenesis with higher bonding strength compared 

to HA
[100]

. The reason is that both Sr
2+

 and Zn
2+

 are 

found in the structure of natural bone tissue and have 

stimulatory effect on bone formation. In addition, 

there were no microcracks at the interface mainly due 

to the similarity of CTE. Moreover, the presence of 

Zn
2+

 may induce anti-inflammatory effects after 

implantation.  

 Other study has reported that the incorporation of 

Sr
2+

 and Mg
2+

 into Ca-Si system results in the 

formation of Sr2MgSi2O7 (SMS). This modified 

coating represented higher capacity to prevent 

osteoclastogenesis with stronger bonding strength 

compared to HA. This property is due to the 

similarity of CTE of coating and substrate as well as 

the absence of microcracks on the surface of 

coating
[42]

. Also, this coating has higher bonding 

strength than SZS (Fig. 3). 

 As an example of the in vitro bioactivity of these 

modified ceramic coatings, after soaking SMS in 

simulated body fluids solution, a lath-like apatite is 

formed  on  the  surface (Fig. 4).  Unlike HA coating, 

the  SMS   coating  is  able  to  prevent   inflammatory  
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 Fig. 4. Scanning electron microscopy images of (A) the apatite layer formed on the surface of SMS coating after immersion in 

simulated body fluids, (B) lath-like morphology of apatite layer and (C) Ti alloy without coating, indicating that the SMS coating 

improves the bioactivity if Ti alloy. (D) Release of Sr2+ from SMS coating, which is considerably higher than that observed for HA 

coating, showing possible mechanism for reduced osteoclastogenesis of SMS coating. Reproduced with permission[42], Copyright 

2014, ACS applied materials & interfaces. 
 

 

reaction.  The  mechanism  by which SMS coating 

inhibits the inflammatory response is that a 

significant decrease in Ca
2+

 and an increase in Mg
2+ 

and Sr
2+

 concentration are occurred, and the 

formation of fibrous capsule is inhibited by  

Wnt/Ca
2+ 

pathway after implantation
[101]

. Also, Mg
2+

 

and Sr
2+

 can decrease inflammatory cytokine 

production
[102,103]

. Mg
2+ 

is known to suppress 

inflammatory cytokine production via the inhibition 

of toll-like receptors pathway
[104]

 (Fig. 5). However, 

the mechanism for inhibitory effect of Sr
2+

 is not fully 

understood. It may be speculated that the possible 

mechanism for reduced osteoclastogenesis of SMS 

coating is due to released Sr
2+

 from the coating (Fig. 

4)
[105]

. However, the osteogenic differentiation of 

BMSCs on SMS is similar to HA. This fact reveals 

the similar in vitro osteogenic-inducing capability of 

SMS and HA.  

 EPD accompanied with micro arc oxidation (MAO) 

is another known method for coating of modified Ca-

Si ceramic coating on the metallic substrate
[106]

. The 

advantages of the EPD method include the possibility 

of using versatile materials, cost-effectiveness, 

application of simple equipment, storage at room 

temperature, coating in a short time and less 

restriction applied to substrate shape
[107]

. In particular, 

the EPD method is able to produce uniform coating 

on the substrate compared to other coating 

techniques. In addition, it has been found that MAO 

layer is porous with high adhesion strength
[108]

. 

Furthermore, MAO is recognized as an effective 

approach to control the corrosion rate of 

biodegradable Mg alloy. Therefore, both corrosion 

resistance and bioactivity of substrate could be 

enhanced
[109,110]

. Best of our knowledge, this method 

has not been used for preparation of modified Ca-Si 

ceramic coating on Ti substrate. Thus, the preparation 

of modified Ca-Si ceramic on the Ti substrate using 

EPD could be the topic of studies in the future. 

Moreover, the biological response at the tissue-

implant interface of surface-modified metallic 

implants and their in vivo mechanism must be 

carefully identified for new applications and enhance 

the functionalities of the future generations of 

medical implants. 

 
  

(D) 
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 Fig. 5. The mechanism by which SMS coating hinders the inflammatory response. A significant decrease in Ca2+ and an increase in 

Mg2+ and Sr2+ concentrations inhibit the formation of fibrous capsule by Wnt and Ca2+ pathway (Wnt/Ca2+)-related genes and toll-like 

receptors pathway. (A) Expression of calmodulin-dependent protein kinase II (CaMKII) and nuclear factor of kappa light polypeptide 

gene enhancer in B-cells inhibitor, alpha (IkB-α). (B) Chages of inflammation-related genes including interleukin 10 (IL-10), 

interleukin-1 receptor antagonist (IL-1ra), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin 6 (IL-6) and 

oncostatin M (OSM). (C) the activities of osteoclastogenesis- and osteoclast-related genes, including macrophage-colony stimulating 

factor (MCSF), tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), carbonic anhydrase II (CA2), receptor activator of 

nuclear factor k B (RANK), calcitonin (CT) and matrix metalloproteinase-9 (MMP9). (D) ALP activities of HA and SMS coatings (E). 

Osteogenesis-related gene expression, including alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), collagen type I 

(COL1) and integrin-binding sialoprotein (IBSP) by BMSCs in days 3 and 7. (F) Bone mineralization of HA and SMS coatings.  

* shows significant difference (P<0.05). Reproduced with permission[42], Copyright 2014, ACS applied materials & interfaces. 
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 In summary, all modified Ca-Si ceramic coatings 

show higher bonding strength compared to HA and 

polymeric coating such as chitosan. This high 

bonding strength can be mostly due to the comparable 

CTE between coating and substrate, their 

microstructure and preparation method. This silicate 

coating improves degradation rate and forms an 

apatite layer on the surface. In addition, the higher 

bonding strength of these coating materials is 

valuable for in vivo implant tissue integration, 

indicating that the stress at the implant-tissue 

interface is decreased, and biological stability and 

lifetime of the implant are improved. 

 This review discussed that the methods of coating 

preparation would lead to different bonding strength 

values. For example, the CaTiSiO5 prepared by sol-

gel spinning has shown to have a bonding strength 

considerably lower than that of prepared by plasma 

spray method. This issue indicates that different 

preparation methods may have influence on the 

properties and the performance of coatings. Also, 

there are few in vivo studies focusing on these 

modified coating Ti-6Al-4V substrate. In addition, 

post-real time evaluations such as magnetic resonance 

imaging are useful for better understanding of their 

biological performance.  
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