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Abstract: With the emerging interest of autonomous vehicles (AV), the performance and reliability
of the land vehicle navigation are also becoming important. Generally, the navigation system for
passenger car has been heavily relied on the existing Global Navigation Satellite System (GNSS) in
recent decades. However, there are many cases in real world driving where the satellite signals are
challenged; for example, urban streets with buildings, tunnels, or even underpasses. In this paper, we
propose a novel method for simultaneous vehicle dead reckoning, based on the lane detection model
in GNSS-denied situations. The proposed method fuses the Inertial Navigation System (INS) with
learning-based lane detection model to estimate the global position of vehicle, and effectively bounds
the error drift compared to standalone INS. The integration of INS and lane model is accomplished
by UKF to minimize linearization errors and computing time. The proposed method is evaluated
through the real-vehicle experiments on highway driving, and the comparative discussions for other
dead-reckoning algorithms with the same system configuration are presented.

Keywords: dead reckoning; lane detection; sensor fusion; multimodal system

1. Introduction

Precise positioning and localization techniques for modern land vehicles have been
widely implemented for the purpose of advanced driving assist system and autonomous
driving capability. Global Navigation Satellite System (GNSS) has been adopted as a
primary option to obtain the position and velocity of the vehicle. Since land vehicles are
designed to be driven on the road, the positioning accuracy of GNSS can be compensated
with the road map from Geographic Information System (GIS) [1–4] for the conventional
navigation purpose, and even with the real time kinematics (RTK) techniques [5,6], its
positioning performance can be improved up to centimeter-level accuracy.

Despite the outstanding accuracy and wide coverage of RTK GNSS, the satellite
signal outage and multipath error in GNSS-denied area, such as densely built city, under-
pass, or indoor area, significantly threaten the reliability of the GNSS measurement [7,8].
To overcome the environmental limitation of the GNSS measurement, several alternative
navigation methods with other types of measurements are introduced to ensure the con-
sistency of positional information and improve the minimum performance under a poor
satellite signal condition [9–11]. Those methods, well known as dead-reckoning (DR), are
based on the cumulative process of relative change in the speed and direction from the
latest known position.

Inertial Navigation System (INS) has been commonly adopted to complement GNSS [12–16].
During the period that GNSS signal is unavailable, INS estimate the position, velocity
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and attitude by integrating the inertial measurements, such as acceleration and angular
rate. With the advancement of computing technology, visual sensors have been used
as positioning devices [17–24]. Modern silicons allow the real-time processing of high-
resolution stereo images, which can directly compute the motion of camera set, and uses
machine learning to estimate 3-axis motion from a monocular system. Recently, lidar-based
localization methods are also introduced to perform precise positioning with point cloud
maps in sub-meter accuracy.

However, considering the fact that GNSS is still considered as a primary device for
navigation systems, it is obvious that those alternative positioning methods have their own
limitations. INS have been widely used in various fields, including military and aerospace
technologies, where the performance and reliability are top priorities. Although the nature
of INS convinces near-perfect motion estimation theoretically, there occurs an inevitable
error in reality without external aiding due to the imperfection of sensor measurements.
Visual odometry [25,26] and SLAM [27–29] estimate the ego-motion of the sensor, by com-
paring the positional changes of surrounding environments and reducing error accumula-
tion using the historical measurements. The main drawback of methods based on external
sensing is the result easily affected by the condition of surrounding environment. When
the surrounding environment is not suitable to perform feature extraction and matching,
for instance, foggy or rainy weather, low intensity, or highly homogeneous scenes, DR
based on environmental sensing easily fails.

On the other hand, applying those advanced positioning and localization techniques
on mass-production vehicles are considered premature for several reasons. Currently,
the mainstream environmental sensing equipment for consumer cars consists of monocular
vision for lane detection, frontal radar for collision avoidance, and GNSS for navigation
system. It is known that monocular vision system has scale ambiguity, which disturbs
absolute motion estimation, and radar has highly sparse feature points that can be easily
lost. Moreover, global positioning methods based on map-matching approaches require a
large amount of digital map data, and there still remain numerous works to implying the
high-definition map (HD map)-based localization in public.

In order to mitigate the shortcomings of DR performance of monocular vision and
inertial measurement, this research focused on lane detection results from camera. Unlike
feature extraction, learning-based lane detection gives a highly consistent result from same
images. Recently, as a remarkable evolution in neural-network and artificial intelligence,
learning-based lane detection models [30–32] shows better robustness than conventional
machine vision approaches in challenging situations, such as varying shadows and image
occlusions by moving objects. Figure 1 presents the lane detection results from both
feature-based and learning-based approaches. For real driving scenes like highway driving,
those challenges happen everyday, and therefore, learning-based lane detection is widely
adopted in production vehicles.

(a) (b) (c) 

Figure 1. Example for lane detection output difference according to approaches. (a) Original Image,
(b) Feature-based Lane Detection, (c) Learning-based Lane Detection.



Sensors 2021, 21, 6805 3 of 19

In this paper, we propose a DR method that uses robust lane detection results from the
learning-based lane detection model [32]. As explained above, using standalone INS will
gradually lead to drifting issues for vehicle kinematic/dynamic state variables, e.g., vehicle
roll angle, bank angle of road surface and vehicle heading angle. By using the robust
lane detection results, these drifting problems are to be compensated and therefore will be
regulated to much smaller magnitudes compared to standalone INS. Moreover, using lane
detection results for correction show higher performance and better computational cost
than the state-of-the-art vision-based methods in real-world experiments.

We summarize the main contributions of our work as below:

• We proposed a novel filter design that combines learning-based lane detection results
with IMU mechanization for accurate vehicle localization in GNSS denied environ-
ments.

• Accurate online vehicle localization was achieved for various road geometry and
environment conditions, verifying the robustness of our proposed method.

The rest of the paper is organized as follows. In Section 2, vehicle kinematics model
and observer model are introduced. In Section 3, filter selection and implementation
process are illustrated. In Section 4, experiment scenarios, vehicle set up and various
dataset from the experiment are explained. In Section 5, the result of lane detection-aided
DR is presented and is compared with other visual odometry-based localization algorithms.
Finally, in Section 6, the conclusion of this research will be illustrated.

2. System Modeling

In this section, vehicle kinematics and observer model design process will be explained
thoroughly. To design a kinematic model that operates inside the filter, we first need to
consider the overall framework of our research. From Figure 2, we can see that, using
IMU measurement and lane detection results, the system should output reliable vehicle
localization data.

Acceleration

Angular Rate

Road Image

Lane Detection Network

INS Pre-Integration

Position

Velocity

Heading
Navigation

Solution

Lane Points

Odometer Aid

Lane-aided Dead-Reckoning

UKF

Figure 2. Overall architecture of land-aided dead-reckoning system.

As shown in Figure 3, the result from vision-based lane detection might be degraded
for various reasons, such as motion of vehicle, luminous intensity or shape and color of
lane lines. In the purpose of rejecting outliers in the lane detection results and securing the
consistent performance of position estimation, a vehicle kinematics-based observer model
will be implemented based on this general framework.
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(a) (b) (d)

(c)

Figure 3. Potential error sources when using lane detection for vehicle localization: (a) Original road
image in perspective view; (b) Blurred lane estimation accuracy along preview distance in global
frame; (c) Effects of vehicle attitude and road inclination in lane detection result; (d) Mismatched
lane lines in successive frames.

2.1. Vehicle Kinematics Model

Vehicle kinematics follow the process of INS mechanization and a total of 9 vehicle
states are propagated. Vehicle states and inputs are shown below.

Xk−1 =
[

xk−1 yk−1 zk−1 vx
k−1 vy

k−1 vz
k−1 φk−1 θk−1 ψk−1

]T
(1)

uk−1 =
[

ax
k−1 ay

k−1 az
k−1 ωx

k−1 ω
y
k−1 ωz

k−1

]T
(2)

φ, θ, ψ represent the Euler angles of the vehicle frame. At the initial step, we initialize
all the states and vehicle attitude matrix according to the IMU measurements. Suppose
that the vehicle attitude matrix at timestep (k− 1) is (Cn

b )k−1, skew matrix computed from
Euler angles is Sk−1 and norm of ω3×1

k−1 T as ||ω3×1
k−1 T||, then we can first update the vehicle

attitude matrix using the angular velocity input and compute the vehicle acceleration in
the navigation frame.

(ax
k−1)n

(ay
k−1)n

(az
k−1)n

 = (Cn
b )k−1


ax

k−1

ay
k−1

az
k−1

−
 0

0
9.8

 (3)

Sk−1 = skew
([

ωx
k−1T ω

y
k−1T ωz

k−1T
])

= skew
((

ω3×1
k−1

)T
T
)

(4)

(Cn
b )k = (Cn

b )k−1 + I3×3 +

(
sin ||ω3×1

k−1 T||
||ω3×1

k−1 T||

)
Sk−1 +

(
1− cos ||ω3×1

k−1 T||
||ω3×1

k−1 T||2

)
S2

k−1 (5)

T is the timestep interval and is 0.05 s (20 Hz) during the simulation process. Using
the updated vehicle attitude matrix and acceleration data, we can propagate the updated
Euler angles, velocity vector and position vector.

xk = xk−1 + vx
k−1T +

1
2
(ax

k−1)n T2 (6)

yk = yk−1 + vy
k−1T +

1
2
(ay

k−1)n T2 (7)

zk = zk−1 + vz
k−1T +

1
2
(az

k−1)n T2 (8)

vx
k = vx

k−1 + (ax
k−1)n T (9)

vy
k = vy

k−1 + (ay
k−1)n T (10)

(11)
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vz
k = vz

k−1 + (az
k−1)n T (12)

φk = atan2( (Cn
b )k(2, 2) , (Cn

b )k(3, 3) ) (13)

θk = − arcsin ( (Cn
b )k(1, 3) ) (14)

ψk = atan2( (Cn
b )k(1, 2) , (Cn

b )k(1, 1) ) (15)

Arranging the results above, propagated vehicle states can be written as following.

Xk =
[
xk yk zk vx

k vy
k vz

k φk θk ψk
]T

= f(Xk−1, uk−1) (16)

2.2. Observer Model

In order to update the vehicle states by using lane detection results, we can first think
of using the previous step lane geometry, as shown in Figure 4.

Body x-axis

Pose Update 
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tegratio
n)

(Pk-1 , Vk-1)

(Pk|k-1 , Vk|k-1)

d0

d1
d2

dn

Preview Step

0m

10m
20m

n*10m

Previous Lane Detection
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b
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l 
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Figure 4. Observer Model: Predicting lateral distance to the previewed lane.

Considering filter implementation at Section 3, previous step lane detection results
and previous step vehicle position estimates are used to create the previewed lane geometry
(previous sample points) at the (k− 1)th step. After the IMU pre-integration introduced at
Section 2.1, we can resample points on the previous lane geometry by linear interpolation.
This can be compared with the actual measurement made at the kth step (current sample
points) for vehicle position error compensation.

The actual implementation starts off with creating the lane geometry information
with (k− 1)th step updated vehicle position and (k− 1)th step lane detection results.
Suppose that we are obtaining the global coordinates for nth previewed left lane point(
(xl

n)k−1, (yl
n)k−1

)
. The coordinates can be computed as below.

(xl
n)k−1 = xk−1 + 10n cos (ψk−1)− (ln)k−1 sin (ψk−1) (17)

(yl
n)k−1 = yk−1 + 10n sin (ψk−1) + (ln)k−1 cos (ψk−1) (18)

(ln)k−1 is the lateral distance to the 10 nm (longitudinal) previewed left lane point
measured by the lane detection model. These coordinates for all the previewed points
are the previous sample points in Figure 4. Then, we convert previous sample points
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coordinates from global frame to kth vehicle body frame (IMU pre-integrated). Frame
transformation of nth previewed left lane point can be done as follows.

(ψrel
n )k = ψk − atan2

(
(yl

n)k−1 − yk, (xl
n)k−1 − xk

)
(19)

(Ll
n)k =

√
((xl

n)k−1 − xk)2 + ((yl
n)k−1 − yk)2 (20)

(xl
n)

b
k−1 = (Ll

n)k cos (ψrel
n )k (21)

(yl
n)

b
k−1 = (Ll

n)k sin (ψrel
n )k (22)

(ψrel
n )k in Equation (19) represents the relative angle of the previewed lane point

measured from the vehicle body x axis. (Ll
n)k in Equation (20) is the 2D Euclidean distance

from the IMU pre-integrated vehicle position and the nth left lane point. The superscript b
at Equations (21) and (22) mean that they are measured from the vehicle body frame. Note
that the subscript of (xl

n)
b
k−1 in Equation (21) is (k− 1) because we are simply transforming

(xl
n)k−1, which is the x coordinate of the previous sample point.

For measurement update, we can compare (yl
n)

b
k−1 with (ln)k, which is the kth step

lane detection result of nth previewed left lane point. IMU pre-integration process error can
be compensated through this step. Other than the lane information, we also use vehicle
longitudinal velocity for the measurement model.

vb
k = vx

k cos(ψk) + vy
k sin(ψk) (23)

Combining the lateral distances of previewed points(n points for left and right lanes)
and vehicle longitudinal velocity, the measurement prediction matrix can be written as
follows.

Zk =
[
vb

k (yl
1)

b
k−1 (yr

1)
b
k−1 · · · (yl

n)
b
k−1 (yr

n)
b
k−1

]T

= h(Xk, uk−1) (24)

Having n preview points for each lane, the size of the measurement prediction matrix
will be R(2n+1)×1. For measurement update, we organize the actual measurement matrix
as below.

Yk =
[(

vb
k

)m
(l1)k (r1)k · · · (ln)k (rn)k

]T
(25)(

vb
k

)m
represents the longitudinal velocity actually measured by IMU.Using Zk, Yk,

we can update the vehicle states at the measurement update step, introduced at the next
section.

3. Filter Design
3.1. Filter Selection and Framework

Nearly every vehicle localization problem is approached by using a filter that fits
the proposed prediction/observation model and available data type well. The most
popular filters are extended Kalman filter(EKF), unscented Kalman filter(UKF), and particle
filter(PF) which show reliable performance for nonlinear or complex models.

Extended Kalman filter solves the nonlinear estimation problem by linearizing state
and/or measurement equations and applying the standard Kalman filter formulas to the re-
sulting linear estimation problem. The linearization yields to approximation errors, which
the filter does not take into account in the prediction/update steps. Therefore, EKF error
estimates tend to underestimate state uncertainties. In comparison, UKF picks so-called
sigma point samples from the filtering distribution and propagates/updates them through
the nonlinear state and measurement models. The resulting weighted set of sigma points
represents how the updated filtering distribution, which is then approximated as a moment
matched Gaussian distribution. This state estimation results represent the state uncertainty
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better than the estimates obtained from the EKF with an increased computational cost. Sim-
ilar to UKF, the PF method propagates particles, but the main difference is that the particles
are selected in a probabilistic manner. Generally, PF shows higher time complexity than
EKF and UKF, because a lot of particles are needed to represent the entire nonlinear model.

Since one of our goals in this research is to implement the real-time vehicle localization
method, we can see that PF is not an appropriate candidate for filter design. Taking our sys-
tem into consideration, for GNSS denied situations with no precise map available, the only
applicable measurement for update step is lane detection result. However, the output of
lane detection model has high uncertainty for far preview distances, which may lead to
huge error accumulation for EKF update process. Cancelling out the candidates, we finally
have UKF as our filter structure.

From the subsections below, simple implementation of the UKF will be illustrated in
the same order as the flowchart shown in Figure 5. Note that the variables used in this
section are slightly modified from the ones at Section 2, adopting the Kalman filter notation.

Figure 5. Simplified framework of UKF method.

3.2. Prediction Step

Before entering the main filtering loop, the initialization of all the state variables is
done by using the GNSS/INS and vision data. Assuming that at least the initial conditions
are very accurate, the variance values of all the states inside the covariance matrix were
initially set as low quantities. Using the state variable format from Section 2, we can rewrite
the state propagation equation in the KF notation,

uk−1 =
[

ax
k−1 ay

k−1 az
k−1 ωx

k−1 ω
y
k−1 ωz

k−1

]T
(26)

Xk|k−1 = f(Xk−1|k−1, uk−1) (27)

where function f is the state propagation function introduced at Section 2.
Then, the measurement prediction step can also be rewritten as follows.

Zk = h(Xk|k−1, uk−1) (28)

For the simplicity of an explanation, extracting sigma points and performing un-
scented transform were not mentioned in the Equations (27) and (28). Furthermore, the pre-
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diction step for state covariance matrix was skipped. Detailed information about the
implementation process is shown in Figure 5.

3.3. Update Step

At the update step, we have to compare the predicted measurement with the actual
measurements. Referring to the observer design at Section 2.2, state update can also be
described in the KF form.

Xk|k = Xk|k−1 + Kk(Yk − Zk) (29)

The remaining filter implementation is done according to the flowchart of Figure 5.
As the simulation loop continues, Xk|k and Pk|k are saved for data analysis at Section 5.

4. Experiment

As mentioned in Section 1, our goal is to achieve accurate online vehicle localization for
GNSS denied situations. Therefore, we have to compare the result of our proposed model
with ground truth and other state-of-the-art visual odometry-based methods to prove
the performance. The following sections describe the equipment used in the experiment,
the geographical information of the test site, lane detection model, and its results in detail.

4.1. Experiment Setup and Scenarios

In this research, we focus on the outdoor, especially highway (i.e., challenging feature
extraction) situations because urban and indoor (e.g., parking lot) online vehicle localization
can be achieved in high accuracy by existing visual odometry(VO) or SLAM methods. The
experiment is carried out on the highway located in Daejeon, South Korea, and as shown
in Figure 6a, the vehicle traveled approximately 52 km.

The test vehicle used for the research is GENESIS G80 Sedan, as shown in Figure 6b,
and the camera used for forward view recording is the FLIR BLACKFLY model. Two
monocular cameras are attached to the vehicle in Figure 6c to perform as stereo camera. In
order to compare the proposed methods with other VO methods, an industrial grade IMU,
Xsens MTi-670g is also fastened to the stereo vision system, and calibrated with the vehicle
body coordinate [33,34]. Finally, the CPU used for simulation is Intel Core i5-4690 CPU @
3.50 GHz, and RAM of 16 GB.

For the performance evaluation of our proposed method in various situations, there
is a need to slice the total vehicle trajectory into some specific scenarios. The scenarios
are chosen mainly according to the lane geometry and the surrounding environments.
The localization performance of our proposed method will be illustrated for each scenario
at Section 5. At the beginning of each scenario, we assume that there is GNSS initialization.
After the initialization, our proposed method and the other comparison methods are
propagated without any GNSS update.

(a) (b) (c)
Figure 6. Test Environment and Experimental Setups are described in the figure. The experiment was done in Daejeon,
South Korea, with a stereo camera-attached test vehicle (GENSIS G80 Sedan). (a) Experiment Trajectory, (b) GENESIS
G80 Sedan (c) Stereo Camera.
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4.2. Lane Detection Model

In order to obtain lane fragments from collected images, a CRNN-based lane detection
model, named “supercombo”, is adopted [35], which is currently implemented in com-
mercial aftermarket ADAS systems. The model takes its input as two successive image
frame and latest fully connected layer. The output of the model consists of four lane line
candidates, two road boundary for left and right edge, lead vehicle position estimation,
and path planning results. In this research, we use only two lane lines, for left and right
lanes, since those two lane lines are also presented in other types of lane detection methods
as the essential output. It is worth noting that the detected lane lines have their preview
length up to 100 m, while the estimated accuracy decreases as preview length increases.

4.3. Lane Detection Results

Before proceeding to DR implementation, we perform a pre-test of lane detection to
validate the performance and reliability. Since the lane detection model is designed for a
single-camera setup, the left camera from the stereo setup is used. The inference results
of the lane detection model are presented in Figure 7, which describes the reprojected
lane lines in the global coordinate. Ground truth of vehicle trajectory is obtained by OxTS
RT3100, a commercial INS system for land vehicle test and survey.

Figure 7. Lane Detection Results (0.5–7.5 s) with 70 m preview distance.

Figure 7 shows lane points for 3 different time steps with 70 m preview distance.
Extending the preview distance up to 100 m and plotting for full simulation time of
Scenario 1 (refer to Section 5.2), we can obtain Figure 8. Due to transformation error from
image to real world coordinates and image distortion for far previewed distances, it is
obvious that lateral distance data of 0 m previewed lane point is much more trustworthy
compared to 100 m previewed lane point. As we can see in Figures 7 and 8, further
previewed lane points show huge deviations, especially at curvy road segments. However,
this does not mean that the previewed lane point data should be discarded due to the
high uncertainty. Although further previewed lane points have larger position errors,
their existence implies curvature of the previewed lanes and restrains kinematic/dynamic
vehicle states from diverging. This is a trade off problem, and will be discussed intensively
at Section 5.6.1.

To sum up, the most accurate mapping possible from this dataset would be merging all
the 0 m previewed lane points. Ground truth for this research can be thought of as 2 parts.
First is the accurate vehicle position measured by RT and the second is 0m previewed lane
points transformed into global fixed coordinates.

At Section 5, localization error will be computed by using the ground truth vehicle
position obtained above. Other than the Euclidean distance error, heading angle difference
will also be considered for analysis.
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Figure 8. A lane detection result including up to 100 m previewed points is plotted with the vehicle
position measured by OxTS RT3100 (vehicle position marked blue). As shown in the figure, longer
preview distance show huge lateral deviation from the ground truth.

5. Results
5.1. Comparison Method: VO

In order to evaluate the dead-reckoning performance of the proposed method, state-
of-the-art visual odometry methods are also implemented. We chose VINS [36–39], top-
ranked VO method in KITTI benchmarks, as competitive methods, since VINS have been
designed for various types of system configurations, such as monocular vision, stereo
vision, visual-inertial fusion, and even vehicle model fusion. It is worth noting that, for the
fair comparison, the intrinsic and extrinsic parameters for cameras and IMU have been
pre-calibrated with an open-sourced visual-inertial calibration library, kalibr [40]. Figure 9
shows the baseline of the stereo setup.
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Figure 9. Extrinsic calibration result of stereo vision.



Sensors 2021, 21, 6805 11 of 19

However, unlike the indoor situation or urban driving scenes, the performance of VO
is figured out to be degraded in the highway environment. Figure 10 shows the feature
matching and calculated optical flow from a given image sequence. Since the background
scene is nearly homogeneous, a large portion of features are extracted from surrounding
vehicles. Moreover, the feature points on surrounding vehicles are relatively closer; hence,
the effect of that points can be emphasized in the pose estimation result, while learning-
based lane line detection shows consistent result, with or without surrounding vehicles.

(c) 

(d) (b) 

(a) 

Figure 10. Disturbances on optical flow with moving traffics. (a) Matched Feature, (b) Optical Flow,
(c) Static Scene, (d) Moving Scene.

In order to improve the performance degrading under the homogeneity of the scenery,
the direct approach, specifically direct sparse odometry(DSO) [41], that uses the photo-
metric error rather than the matching of selected set of feature points, has been adopted
to competitive methods. The direct method shows more consistent ego-motion tracking
performance. The sparse points from DSO also reflect the distinguishable characteristics in
the middle of road surface, while the feature points from VINS tend to be biased on the cor-
ners on images as shown in Figure 11. However, under rapid changes in illuminance in the
surrounding environment, such as direct sunlight toward camera or insufficient intensity
in tunnels, the direct method shows the degraded performance, or fails occasionally.

Considering the drawbacks of comparison methods and to evaluate localization
performance of our proposed method for specific lane geometry conditions, we extracted
4 scenarios from the highway drive. The result of localization for various scenarios will be
presented in the following subsections, and overall analysis will be done at the end of the
section. For simplicity, VINS Stereo + IMU is written as VINS1, VINS Stereo as VINS2 and
VINS Mono + IMU as VINS3 for the RMSE comparison.

Figure 11. Point selection for VO in the homogeneous environment with moving traffic: (a) Selected
points using feature matching. (b) Selected points using direct method.

5.2. Scenario 1: Initial Stage

The first scenario is the initial stage of the experiment, where a vehicle passes the
tollbooth and enters the highway. This scene was chosen for evaluating standardized
highway road geometry. As we can see from Figure 12, the ground truth lane does not have
any extreme road geometry (high curvature, long straight path). The total travel distance
and travel time of scenario 1 is approximately 992 m and 60 s, respectively. Localization
comparison of methods is shown in Figures 12 and 13 and Table 1.
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Figure 12. Scenario 1: Vehicle Localization with Various Methods.

Figure 13. Scenario 1 (40 m Preview) (a) Longitudinal Error (b) Lateral Error (c) Heading Angle Drift.

Table 1. Scenario 1 Localization Results (Trajectory Length: 992 m).

Dataset 10 m 20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m INS DSO VINS1 VINS2 VINS3

RMSE (m) 14.56 15.79 8.09 5.06 7.34 9.32 9.31 9.75 9.83 41.11 48.66 132.4 55.89 456.0

RMSE Lat (m) 4.26 12.22 7.15 3.52 5.06 6.61 6.62 6.98 7.05 37.13 17.04 82.14 50.51 216.4

RMSE Long (m) 13.92 10.00 3.78 3.63 5.32 6.57 6.55 6.81 6.86 17.63 45.58 103.9 23.95 401.4

Max Error (m) 24.87 35.31 19.65 6.84 10.19 14.75 14.89 15.98 16.21 111.3 62.82 230.5 98.18 869.2

5.3. Scenario 2: Straight Road

Scenario 2 represents the case for a long straight road. This is to evaluate and analyze
the longitudinal error magnitude for our proposed method. The total travel distance and
travel time of scenario 2 are approximately 4.6 km and 200 s, respectively. Localization
comparison of methods are shown in Figures 14 and 15 and Table 2. VINS1(VINS Stereo +
IMU) method failed in scenario 2.
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Figure 14. Scenario 2: Vehicle Localization with Various Methods.

Figure 15. Scenario 2 (90 m Preview) (a) Longitudinal Error (b) Lateral Error (c) Heading Angle Drift.

Table 2. Scenario 2 Localization Results (Trajectory Length: 4628 m) VINS1 Failed.

Dataset 10 m 20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m INS DSO VINS1 VINS2 VINS3

RMSE (m) 447.9 161.6 62.26 22.24 12.56 9.05 8.89 8.60 8.56 1175 334.5 x 1315 342.4

RMSE Lat (m) 423.7 156.7 59.93 20.28 10.38 6.86 6.40 6.07 6.04 1161 93.63 x 1214 182.5

RMSE Long (m) 145.3 39.6 16.86 9.13 7.07 6.28 6.16 6.08 6.07 166.9 321.1 x 465.6 289.6

Max Error (m) 771.2 339.2 127.6 38.05 19.01 13.58 12.80 12.71 12.77 2984 490.7 x 1981 650.5

5.4. Scenario 3: Curved Road

Scenario 3 represents the case for curvy roads. High curvature trajectory was chosen
from the ground truth data. The total travel distance and travel time of scenario 3 is approx-
imately 1077 m and 60 s respectively. Localization results are shown in Figures 16 and 17
and Table 3. Note that VINS1(VINS Stereo + IMU) localization result is close to the ground
truth (marked yellow).
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Figure 16. Scenario 3: Vehicle Localization with Various Methods.

Figure 17. Scenario 3 (90 m Preview) (a) Longitudinal Error (b) Lateral Error (c) Heading Angle Drift.

Table 3. Scenario 3 Localization Results (Trajectory Length: 1077 m).

Dataset 10 m 20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m INS DSO VINS1 VINS2 VINS3

RMSE (m) 25.94 13.69 7.88 4.57 4.13 4.03 3.91 3.84 3.81 13.57 284.9 28.02 65.93 428.3

RMSE Lat (m) 23.80 13.08 6.00 2.57 2.68 3.08 3.01 3.05 3.05 12.85 130.9 11.33 31.81 379.4

RMSE Long (m) 10.32 4.03 5.09 3.78 3.15 2.61 2.49 2.33 2.28 4.36 253.0 25.62 57.75 198.6

Max Error (m) 67.87 37.57 19.32 7.95 6.46 6.45 6.24 6.12 6.07 35.5 723.2 61.04 196.5 632.5

5.5. Scenario 4: Tunnels

As illustrated in Section 5.1, VO shows generally degraded performance at highway
situations, and this is predicted to be more intensified in tunnels. In order to compare the
localization performance of VO and proposed method for challenging feature extraction
environments, scenario 4 was tested at Figure 18. Scenario 4 consists of 3 consecutive
tunnels at the highway, as shown in Figure 18. The total travel distance and travel time
of scenario 4 are approximately 5290 m and 225 s, respectively. Localization comparison
of methods is shown in Figures 19 and 20 and Table 4. In this scenario, DSO algorithm
has failed.
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Figure 18. Scenario 4: GNSS signal outage in tunnels. Green denotes low dilution of precision, and
red denotes high.
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Figure 19. Scenario 4: Vehicle Localization with Various Methods.

Figure 20. Scenario 4 (50 m Preview) (a) Longitudinal Error (b) Lateral Error (c) Heading Angle Drift.

Table 4. Scenario 4 Localization Results (Trajectory Length: 5290 m).

Dataset 10 m 20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m INS DSO VINS1 VINS2 VINS3

RMSE (m) 753.5 152.1 46.21 10.92 5.12 5.26 5.43 5.61 5.66 990.6 x 1146 3914 1489

RMSE Lat (m) 695.0 146.9 44.67 10.32 4.31 4.44 4.63 4.85 4.92 950.8 x 1111 3647 313.0

RMSE Long (m) 291.2 39.32 11.84 3.57 2.78 2.82 2.83 2.82 2.80 277.9 x 280.8 1422 1422

Max Error (m) 1576 337.5 100.5 17.65 8.20 9.79 10.70 10.93 10.81 2088 x 2583 6946 2429
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5.6. Result Analysis
5.6.1. Localization Performance for Varying Preview Distances

For 4 scenarios and their localization results from Tables 1–4, we can observe that the
localization performance of our proposed method is generally enhanced for further preview
distances. As shown in Figure 8, although further previewed points have higher positional
uncertainty, vehicle localization is stabilized by introducing forward lane geometry to
the model update. Predicting the previewed point positions using the previous step
lane detection measurements and vehicle position estimate “push” or “pull” the IMU
mechanized vehicle position to the accurate location.

However, naively increasing the preview distance is not the optimal solution to
accurate localization. Results from Tables 1 and 4 show degrading localization performance
after 40 m and 50 m preview distance, respectively. This is due to the inherent uncertainty
of the lane detection results for far preview distances.

Therefore, we can conclude that optimal preview distances are different for various
scenarios tested in this research, but localization performance is generally enhanced for
longer preview distances.

5.6.2. Longitudinal, Lateral Error and Heading Angle Drift of Proposed Method

It is intuitive that lane detection information helps vehicle localization in the lateral
direction, but not for longitudinal direction. Observing the localization results for scenarios
1 to 4, we can see that our method shows accurate enough localization for both vehicle
longitudinal and lateral directions. This is because previewed road curvature information
“attracts” vehicle to the appropriate longitudinal position by measurement prediction
model in Section 2.2, compensating for the accumulated longitudinal error.

If the road has high curvature, as shown in Section 5.4, longitudinal error is bounded
with the help of previewed lane geometry. On the other hand, for scenario 2 (Figure15),
the error keeps on increasing because there is little feedback on the longitudinal direction for
long straight road section (low road curvature). However, considering that the longitudinal
error reached only 11 m after 4.6 km drive, this implies that even with small lane curvature
feedback, longitudinal diverging tendency is maintained at a slow increasing rate.

Other than 2D Euclidean localization error, vehicle heading angle drift should also be
considered for accuracy evaluation. For all the scenarios, we can see that the heading angle
drift is regulated below 2 degrees of magnitude, even for long vehicle trajectories. Similar
to the longitudinal error, heading angle is bounded by using the previewed lane geometry.

5.6.3. Comparison with Other Methods

As we can see from Figures 12, 14, 16 and 19 and RMSE comparison table for each
scenario, our proposed method shows much better performance in estimating the vehicle
position accurately, compared to other VO and standalone INS methods.

Except for scenario 4, at least 1 VO method showed adequate localization performance
for each of the scenarios. However, in scenario 4, as mentioned in Section 5.5, the accuracy
of VO methods is severely degraded. DSO failed, and VINS Stereo also totally diverged
from the ground truth, and the same for the remaining 2 methods. This is due to the
moving and homogeneous feature extraction in 3 consecutive tunnels. Our proposed
method, however, uses the robust learning-based lane detection model, which means that
“features” extracted for implementation(i.e., lane information) are consistent and very stable
for analysis. Based on these lane detection results and proposed model, we succeeded in
achieving accurate localization performance, even for the tunnel scenario.

6. Conclusions
6.1. Overall Summary

This study proposed a novel lane detection-based online dead-reckoning method
in GNSS denied situations. Using IMU measurements and robust learning-based lane
detection results as input to the system, vehicle kinematics and observer were designed.
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Vehicle position estimation was implemented by using unscented Kalman filter with the
model structure at Section 2. For the various highway drive scenarios, the evaluation of
localization performance of our proposed method was done by comparing with state-of-the-
art VO methods and standalone INS results. Although positional shifting was inevitable for
long trajectories, the proposed method showed much better results than the comparison sets
by successfully restraining the diverging vehicle states with the previewed lane geometry.
Moreover, it was verified that using previewed lane information up to certain distances
enhanced the vehicle localization accuracy, but showed degrading performance when
using too far-previewed lane detection results.

6.2. Future Research Direction

In this paper, we have implemented the vehicle localization method by fusing learning
based lane detection results with IMU mechanization. However, this method does not
take into account the pitching and rolling motion of the vehicle during the highway drive.
Underestimation of these additional vehicle states may have caused unwanted localization
errors in the proposed model and filter design. For further research, expansion of the
vehicle and lane kinematics model to 3D scale, considering the rolling and pitching motion
of vehicle, can be done to enhance localization accuracy.

Moreover, together with the loop closure algorithm, the proposed method could be
further improved to create an accurate digital lane map along the vehicle trajectories,
and is also expected to show enhanced performances when the lane lines are not presented
continuously or rapidly changing.
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