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When plants are exposed to high-light conditions, the
potentially harmful excess energy is dissipated as heat, a pro-
cess called non-photochemical quenching. Efficient energy
dissipation can also be induced in the major light-harvesting
complex of photosystem II (LHCII) in vitro, by altering the
structure and interactions of several bound cofactors. In both
cases, the extent of quenching has been correlated with
conformational changes (twisting) affecting two bound carot-
enoids, neoxanthin, and one of the two luteins (in site L1). This
lutein is directly involved in the quenching process, whereas
neoxanthin senses the overall change in state without playing a
direct role in energy dissipation. Here we describe the isolation
of an intermediate state of LHCII, using the detergent n-
dodecyl-α-D-maltoside, which exhibits the twisting of neo-
xanthin (along with changes in chlorophyll–protein in-
teractions), in the absence of the L1 change or corresponding
quenching. We demonstrate that neoxanthin is actually a re-
porter of the LHCII environment—probably reflecting a large-
scale conformational change in the protein—whereas the
appearance of excitation energy quenching is concomitant with
the configuration change of the L1 carotenoid only, reflecting
changes on a smaller scale. This unquenched LHCII interme-
diate, described here for the first time, provides for a deeper
understanding of the molecular mechanism of quenching.

During the first steps of the photosynthetic process, solar
photons are absorbed by specialized light-harvesting com-
plexes (LHCs), and the resulting excitation energy is trans-
ferred to reaction center pigments, where it is converted into a
chemical potential. In low-light conditions, most of the pho-
tons absorbed lead to a charge separation event at the reaction
center (1, 2). However, when the absorbed energy is in excess
of that which can be used for energy transduction, the over-
accumulation of excited states can result in damage to the
photosynthetic membrane, in particular, via the production of
reactive oxygen species. In high-light conditions, the antenna
system of plants and algae reorganizes reversibly, creating
energy traps that dissipate the excess excitation as heat (3–5).
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This regulatory mechanism is known as non-photochemical
quenching of chlorophyll fluorescence (NPQ). NPQ is a multi-
component phenomenon whose fastest phase, qE (energy-
dependent quenching), is triggered by the ΔpH across the
thylakoid membrane, itself resulting from photosynthetic ac-
tivity. qE induction and relaxation occurs in seconds, and it
cannot involve de novo protein synthesis but rather corre-
sponds to a reorganization of the existing photosynthetic
membrane.

Over the last two decades, a large number of studies have
been performed to gain insight into the molecular mechanisms
underlying qE (6–11). Proteins of the LHC family have the in-
built capacity to quench excitation energy (6, 12–15). LHCII,
the major antenna complex in higher plants, occurs as a trimer
of nearly identical monomers. Each monomer binds 14 chlo-
rophyll molecules (8 Chl a and 6 Chl b), three tightly-bound
carotenoids (two luteins and one 9-cis neoxanthin), and one
weakly-bound violaxanthin carotenoid (16). Self-association of
this protein upon detergent removal causes a significant
quenching of excitation energy, first reported some
four decades ago (17). Femtosecond transient absorption
measurements conducted on LHCII aggregates showed that
excitation quenching occurs through energy transfer from Chl
a to the S1 excited state of a lutein molecule (6), more precisely
the LHCII-bound lutein absorbing at 495 nm, bound to the
protein site termed L1 (18, 19). The short lifetime of the
carotenoid S1 excited state ensures an efficient dissipation of
the excitation energy as heat (6, 20). More recently a similar
quenching mechanism was observed in several isolated high-
light-inducible proteins (21), members of the LHC superfam-
ily that are in a permanently-quenched state and that are
believed to be the ancestors of LHC antenna proteins (22, 23).
Excitation energy transfers from Chls to different carotenoid
states have been observed in quenched monomeric LHCII
(10), quenched LHCII trimers (24, 25), the minor antenna
CP29 (15), and in thylakoid membranes exposed to high light
(26).

The formation of the quenching site in LHCII involves
structural changes in a number of bound cofactors, revealed by
resonance Raman spectroscopy (12). Changes in the interac-
tion state of several chlorophylls with the protein host were
observed, as well as in the configuration of the neoxanthin
molecule (27), and more recently, in that of L1 lutein (14),
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An unquenched LHCII intermediate
consistent with the role of L1 as the quenching species. The
amplitude of the neoxanthin change is strictly correlated with
the extent of quenching in LHCII as well as in intact chloro-
plasts and leaves (6), and this carotenoid thus appears as a
reporter of structural changes leading to quenching, a propo-
sition that has recently been supported by molecular dynamics
simulations (28). LHC proteins were proposed to be the major
site of quenching in plants, which would occur through a
subtle equilibrium between two LHC conformations (29, 30).

The LHCII structure is very sensitive to its environment (12,
24, 25, 27, 28, 31, 32). LHCII purified in the presence of either
α- or β-dodecyl-D-maltoside (α-DM or β-DM) displays slightly
different electronic properties (31, 33), and the H-bonding
interactions of two bound chlorophyll a molecules are sensi-
tive to the detergent used (34). In this work, we have studied
the vibrational properties of the different pigments bound to
LHCII in the presence of α-DM or β-DM. We show that the
Raman signals of Chls a and b and neoxanthin that were
previously associated with LHCII quenching are already pre-
sent in LHCII purified in the presence of α-DM—even though
this preparation is unquenched—while aggregation-induced
quenching affects the L1 carotenoid-binding site alone. The
molecular structure of Chl a, Chl b, lutein and neoxanthin
pigments and those of the detergents used for the purification
of LHCII are dispayed in Figure 1.

Results

Influence of the stereochemistry of dodecyl-maltoside on LHCII
electronic properties

As already reported (31, 33, 34), both the carotenoid and
chlorophyll absorption regions of LHCII exhibit differences
between the α-DM-solubilized versus the β-DM-solubilized
protein (Fig. 2A). In the blue region, the Soret absorption
transition of Chl is perturbed—in α-DM, an increase in in-
tensity is seen at 432 nm, concomitant with a loss at 438 nm.
The carotenoid contributions appear to lose intensity at 480
and 472 nm and gain intensity at 457 nm. In the Chl Qy region,
a new band is present at 660 nm in LHCII isolated in α-DM,
Figure 1. Molecular structures of the LHCII tightly bound pigments and
rophyll a, chlorophyll b, 90-cis neoxanthin, all-trans lutein, α-dodecyl-D-maltos
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while the intensity of the transitions at 676 and 672 nm is
reduced. All these changes are more easily observed in the
difference spectrum (Fig. 2B). None of these changes in ab-
sorption induces any observable differences in fluorescence
properties (e.g., Fig. 2C).

Influence of DM stereochemistry on LHCII chlorophylls

Resonance Raman spectroscopy has seen extensive appli-
cation to the assessment of pigment structure and in-
teractions in photosynthetic proteins (35–37) and played a
vital role in revealing the modifications to cofactor structure
associated with the LHCII “conformational change” model of
NPQ (12, 27). The Raman spectra of chlorophyll molecules
are particularly rich, containing a number of bands that are
sensitive to the chlorophyll conformation and to its in-
teractions with the immediate environment. Upon
aggregation-induced quenching in LHCII, two bound Chl a
molecules lose a hydrogen bond to their conjugated keto
carbonyl group on position C131, while one or two Chls b
gain H-bonds to their conjugated formyl group at position
C7 (observed for excitations at 413.1 and 441.6 nm,
respectively [27]).

Chlorophyll resonance Raman spectra of the two LHCII
preparations at 77 K are presented in Figure 3. Comparing α-
DM-LHCII relative to β-DM-LHCII for the Chl a excitation at
413.1 nm (Fig. 3A), there is a clear increase in contributions on
the high-frequency side of the envelope of bands in the 1660 to
1700 cm−1 region, which corresponds to stretching modes of
Chl a keto groups conjugated with the macrocycle. This in-
crease around 1690 cm−1 is accompanied by a corresponding
decrease at lower frequency at �1670 cm−1 (shown by black
arrow heads in Fig. 3A). As discussed elsewhere (34), this re-
flects the loss of an H-bond to probably two LHCII-bound Chl
a molecules, at the level of their conjugated keto carbonyl
group.

Excitation at 441.6 nm yields spectra in which Chl b
vibrational modes dominate. The high-frequency region thus
corresponds to stretching modes of both conjugated
the detergents used for LHCII purification. Molecular structures of chlo-
ide (α-DM), and β-dodecyl-D-maltoside (β-DM).



Figure 2. Absorption and time-resolved fluorescence spectra of LHCII. A, absorption spectra at 4.2 K of LHCII in α-DM and β-DM (blue and red,
respectively). B, difference spectrum “α-DM-LHCII minus β-DM-LHCII.” C, time-resolved fluorescence of α-DM-LHCII (blue) and β-DM-LHCII (red), excited at
405 nm with emission recorded at 680 nm. The grayed region represents instrumental response function in time domain.
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carbonyl groups of Chl b – C7-formyl and C131-keto, in the
1620 to 1660 and 1660 to 1700 cm−1 ranges, respectively.
When the two preparations are compared at this wavelength
(Fig. 3B), an intense contribution is observed for α-DM-
LHCII at 1637 cm−1 that is not present in β-DM-LHCII,
accompanied by a decrease in the intensity of the contri-
bution at 1666 cm−1 (shown by black arrow heads in Fig. 3B).
This indicates that the formyl carbonyl of at least one Chl b,
which is free from interactions in β-DM-LHCII, becomes
strongly H-bonded in α-DM-LHCII. It is particularly inter-
esting to note that the changes in Chl a and b interactions
observed for α-DM-LHCII are strikingly similar to those
Figure 3. High-frequency region of resonance Raman spectra of LHCII.
Resonance Raman spectra at 77 K in the 1540 to 1720 cm−1 region for α-
DM-LHCII (blue), β-DM-LHCII (red), and LHCII aggregates (black) excited at (A)
413.1 and (B) 441.6 nm.
seen upon aggregation-induced quenching in LHCII (27)
(see spectra of aggregates in Fig. 3).

Influence of DM stereochemistry on LHCII-bound neoxanthin

Carotenoid resonance Raman spectra are mainly composed
of four groups of bands, termed ν1–ν4. The ν1 band above
1500 cm−1 arises from stretching vibrations of C=C double
bonds, and its frequency depends on the length of the π-
electron conjugated chain and on the molecular configuration
of the carotenoid (38–43). The ν2 band at 1160 cm−1 contains
contributions from stretching vibrations of C–C single bonds,
coupled with C–H in-plane bending modes. This ν2 region is a
fingerprint for the assignment of carotenoid isomerization
states (40, 44). At 1000 cm−1, the ν3 band arises from in-plane
rocking vibrations of the methyl groups attached to the con-
jugated chain, coupled with in-plane bending modes of the
adjacent C–H’s (38). It was recently shown to be a fingerprint
of the conjugated end-cycle configuration (45, 46) and sensi-
tive to the presence of a conjugated allene group (47, 48).
Finally, the ν4 band, around 960 cm−1, arises from C–H out-of-
plane wagging motions coupled with C=C torsional modes
(38). When the carotenoid conjugated system is planar, these
out-of-plane modes are not coupled with the electronic tran-
sition and thus exhibit little intensity. However, distortions
around C–C single bonds increase the coupling of (some of)
these modes with the electronic transition, resulting in an
increase in their intensity (49).

Excitation of LHCII at 488.0 nm yields Raman spectra in
which contributions of the bound neoxanthin molecule domi-
nate (19). The spectra of α-DM- and β-DM-LHCII excited at
488.0 nm at 77 K do not exhibit substantial differences in their ν1
and ν2 regions (data not shown). Hence, this indicates that the
conjugation length of Neo and its configuration (cis) are not
J. Biol. Chem. (2021) 296 100322 3



Figure 4. ν3 and ν4 regions of resonance Raman spectra of LHCII.
Resonance Raman spectra at 77 K in the 930 to 1050 cm−1 region for α-DM-
LHCII (blue), β-DM-LHCII (red), and LHCII aggregates (black) excited at
488.0 nm.

Figure 5. ν3 region of LHCII resonance Raman spectra of LHCII. Reso-
nance Raman spectra at 77 K in the ν4 region for LHCII in α-DM (red), β-DM
(blue), and in the aggregated form (black), for excitation at 488.0 (A) and
496.5 nm (B).
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altered by purification with different detergents. However, sig-
nificant differences are observed in the ν3 and ν4 bands (Fig. 4).
In the ν4 region, both samples display a band at 963 cm−1,
whereas an additional component at 952 cm−1 gains intensity for
α-DM-LHCI, indicating that neoxanthin undergoes a twist in the
presence of this detergent, which is not present in β-DM-LHCII.
This is accompanied by a change in the structure of the ν3 band.
In the latter region, α-DM- and β-DM-LHCII both show a
doublet characteristic of allene-containing carotenoids. Howev-
er, the relative intensity of the two components at 1003.3 and
1006.6 cm−1 is different, consistent with a structural change of
the neoxanthin between the two samples. Once again, the
changes observed for α-DM-LHCII are similar to those seen in
the quenched state of LHCII (see spectrum of LHCII aggregates
in Fig. 4). However, the spectrum for aggregated LHCII displays
additional components at 956 and 971 cm−1, which are absent in
the spectrum of LHCII in α-DM. Note that LHCII aggregation
produces identical spectra, whether the starting point is α-DM-
or β-DM-LHCII. These specific features at 956 and 971 cm−1

have previously been assigned to a distortion of the lutein1
carotenoid (14), the pigment identified as the quenching species
in aggregated LHCII (6).

Structure of the lutein1 carotenoid

As discussed, the resonance Raman spectra obtained for
LHCII when solubilized in α-DM or in the aggregated form
display no significant differences at 413.1 and 441.6 nm,
where Chl a and b molecules contribute, respectively.
Excitation at 488.0 nm generates very similar spectra be-
tween these two samples, but with small differences in the
ν4 region. A zoom of this region is presented in Figure 5, for
excitation at 488.0 and 496.5 nm (dominated by neoxanthin
and lutein1, respectively) for LHCII in β-DM, in α-DM, and
upon aggregation by detergent removal. The spectra of α-
DM-LHCII are globally similar to the quenched aggregates,
reflecting the major twisting of the neoxanthin carotenoid,
whereas aggregated LHCII exhibits additional components
at 956 and 971 cm−1, which are absent for α-DM-LHCII.
These bands are more clearly seen for excitation at
4 J. Biol. Chem. (2021) 296 100322
496.5 nm, corresponding to the absorption peak of lutein1
(18, 19).

These differences between α-DM-LHCII and the quenched
aggregates are strikingly similar to those observed upon ag-
gregation of LHCII purified from the npq2mutant, which lacks
neoxanthin. In the latter case, the spectral changes were
attributed to a change in conformation of the lutein1 carot-
enoid, which in the WT complex is considerably masked by
the larger changes in neoxanthin signal (14).

Discussion

Changes in pigment conformation in the major plant an-
tenna protein LHCII, associated with the appearance of fluo-
rescence quenching, have been documented for some 25 years
(27). Removal of the solubilizing detergent in β-DM-purified
LHCII leads to a tenfold or more decrease in its fluorescence
level, along with structural changes in the binding pockets of
two Chls a, one or two Chls b, and the neoxanthin and lutein1
carotenoids. Here we show that LHCII purified using the
stereoisomer α-DM exhibits intermediate properties, where all
of the quenching-associated changes are already present apart
from that in L1, even though this LHCII preparation is
unquenched (see fluorescence lifetimes in Fig 2C). Aggrega-
tion of α-DM-LHCII induces quenching, with the change in
the L1 carotenoid now present. Note that the presence of
additional LHCII conformations (i.e., more than two) has
already been inferred from single-molecule and time-resolved
fluorescence experiments on LHCII, as well as molecular dy-
namics simulations (13, 29).

All these pigment structural changes were up to now
directly associated with the appearance of quenching. The
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ability of the detergent α-DM to stabilize an unquenched in-
termediate, which has not been observed previously, allows us
to disentangle the molecular changes leading to quenching in
LHCII. Indeed, the only change directly associated with
quenching is that occurring in the L1 binding pocket. A careful
analysis of the 488.0-nm resonance Raman spectra obtained
previously for quenched LHCII, whether in aggregates, crys-
tals, or gels (6, 12, 14, 27), reveals that all the samples display
the additional components at 956 and 971 cm−1 in the ν4 re-
gion. This indicates that, in each case, the change in L1
configuration associated with quenching has indeed occurred.
Thus the configuration of the L1 carotenoid is intrinsically
linked with the quenching process, consistent with its attri-
bution as the site of quenching (6, 15).

The significance of the changes affecting Chls a and b and
neoxanthin, upon aggregation of β-DM-LHCII, may thus be
questioned. It could be argued that β-DM stabilizes LHCII in a
non-native state, which relaxes upon detergent removal, and
that α-DM-LHCII and the aggregates represent the only two
states observed in vivo (in unquenched and quenched condi-
tions, respectively). However, it was shown that the changes
occurring upon qE induction in chloroplasts and leaves do
indeed involve twisting of the bound neoxanthin, and this
twisting signal is proportional to the extent of quenching (6),
just as for aggregation of β-DM-LHCII (and not of α-DM-
LHCII). This rather suggests a two-step mechanism for qE: a
state similar to β-DM-LHCII is the major light-harvesting
state, and this converts to the quenched (aggregate-like)
state via an unquenched intermediate similar to α-DM-LHCII.
The fact that the “α-DM effect” has not been observed before
tends to suggest that this intermediate is at least relatively rare.
However, given the complexity of these kinds of measure-
ments on intact chloroplasts and leaves, and the small sizes of
the changes involved, they have generally been performed in
fully-unquenched and fully-quenched states, and not so much
at intermediate levels of quenching. It is therefore possible that
conditions do exist where a structure similar to α-DM-LHCII
is present in vivo to a more significant extent. It could also be
hypothesized that this intermediate state is involved in an as-
yet-unknown aspect of qE or its regulation and/or in a
different regulatory process requiring tuning of the pigment
structure of LHCII. It is worth noting, in this regard, that qE
in vivo is tightly regulated, and in a somewhat complex manner
(e.g., zeaxanthin, produced during exposure of leaves to high
light, accelerates the onset of qE upon a second illumination
(50)), whereas other (non-qE) phases of NPQ may also involve
LHCII quenching (51). Further investigations along these lines
should lead to a more profound understanding of the
remarkable flexibility exhibited by the LHCII protein.

Experimental procedures

α-DM- and β-DM-LHCII were isolated from Arabidopsis
thaliana plants as described (52, 53). Thylakoid membranes at
a Chl concentration of 1 mg/ml were solubilized by adding the
same volume of buffer containing 1.2% α-DM or 2% β-DM,
respectively. The mixture was gently vortexed for a few
seconds, and unsolubilized material was removed by centri-
fugation at 17,000g for 10 min. The supernatant was then
loaded onto a 0 to 0.1 M sucrose density gradient containing
10 mM Hepes pH 7.5, with 0.03% α-DM or 0.06% β-DM,
respectively. The LHCII band was collected after overnight
ultracentrifugation at 280,000g.

Quenched LHCII was prepared by detergent removal using
SM-2 bioabsorbent beads (Bio-Rad), allowing for a tenfold
reduction in fluorescence yield as determined by a mini PAM-I
fluorimeter (Heinz Walz).

Time-resolved photoluminescence decay curves were ac-
quired on an EI fluorescence plate reader (Edinburgh In-
struments) using 4000 detection bins of 2 μs integration time.
Excitation was with an Edinburgh EPL 405-nm picosecond
diode laser, with a repetition rate of 5 MHz, and a 716/40
bandpass filter was placed between the sample and the
detection system. All samples were measured in black 96-well
plates with an optimal working volume of 150 μl. photo-
luminescence decay curves were mathematically fitted using
FAST software (Edinburgh Instruments).

UV-visible absorption spectra were measured using a Varian
Cary E5 double-beam scanning spectrophotometer, with a 1.0-
cm pathlength cuvette. Samples were maintained at low tem-
perature in a helium bath cryostat (Maico Metriks); 60%
glycerol (v/v) was added to the sample to prevent
devitrification.

Resonance Raman spectra at 77 K were obtained in a liquid
nitrogen flow cryostat (Air Liquide), using a Jobin-Yvon U1000
Raman spectrophotometer equipped with a liquid-nitrogen-
cooled, charge-coupled-device detector (Spectrum One,
Jobin-Yvon). Laser excitations at 488.0, 496.5, and 501.7 nm,
and 413.1 nm, were obtained with Coherent argon (Sabre) and
krypton (Innova 90) lasers, respectively. Excitation at 441.6 nm
was obtained with a Liconix helium–cadmium laser.

Data availability

All data are contained within the article. Additional raw data
are available upon request to the corresponding author.
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