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Autism spectrum disorder is a neurodevelopmental disorder characterized by difficulties in social communication and interaction,

as well as repetitive and characteristic patterns of behaviour. Although the pathogenesis of autism spectrum disorder is unknown,

being overweight or obesity during infancy and low weight at birth are known as risks, suggesting a metabolic aspect. In this study,

we investigated adipose tissue development as a pathophysiological factor of autism spectrum disorder by examining the serum lev-

els of adipokines and other metabolic markers in autism spectrum disorder children (n¼123) and typically developing children

(n¼92) at 4–12 years of age. Among multiple measures exhibiting age-dependent trajectories, the leptin levels displayed different

trajectory patterns between autism spectrum disorder and typically developing children, supporting an adipose tissue-dependent

mechanism of autism spectrum disorder. Of particular interest, the levels of fatty acid binding protein 4 (FABP4) were significantly

lower in autism spectrum disorder children than in typically developing subjects, at preschool age (4–6 years old: n¼ 21 for autism

spectrum disorder and n¼ 26 for typically developing). The receiver operating characteristic curve analysis discriminated autism

spectrum disorder children from typically developing children with a sensitivity of 94.4% and a specificity of 75.0%. We re-

sequenced the exons of the FABP4 gene in a Japanese cohort comprising 659 autism spectrum disorder and 1000 control samples,

and identified two rare functional variants in the autism spectrum disorder group. The Trp98Stop, one of the two variants, was

transmitted to the proband from his mother with a history of depression. The disruption of the Fabp4 gene in mice evoked autism

spectrum disorder-like behavioural phenotypes and increased spine density on apical dendrites of pyramidal neurons, which has

been observed in the postmortem brains of autism spectrum disorder subjects. The Fabp4 knockout mice had an altered fatty acid

composition in the cortex. Collectively, these results suggest that an ‘adipo-brain axis’ may underlie the pathophysiology of autism

spectrum disorder, with FABP4 as a potential molecule for use as a biomarker.
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Introduction
Autism spectrum disorder (ASD) is a neurodevelopmental

disorder characterized by persistent difficulties in social

communication and social interaction. The prevalence of

ASD, now estimated to be 1–2%, is increasing annually

(World Health Organization; https://www.who.int/news-

room/fact-sheets/detail/autism-spectrum-disorders, last

accessed 9 September 2020) (Weintraub, 2011; Lai et al.,

2014). Although ASD is thought to be caused by com-

plex interactions between genetic and environmental fac-

tors, the detailed mechanism of the pathogenesis of ASD

remains unclear (de la Torre-Ubieta et al., 2016;

Rylaarsdam and Guemez-Gamboa, 2019).

ASD children show various developmental differences

compared with typically developing (TD) children in early

childhood. For example, early brain overgrowth at 6–

24 months of age has been frequently reported as a

neuroanatomical feature of ASD children (Courchesne

et al., 2011). Another study reported on the aberrant de-

velopment of white matter tracts in the first year of life

of ASD children (Wolff et al., 2012). In addition to brain

development, ASD children present several characteristics

relevant to the lipid metabolism, particularly in early de-

velopment. Adipose tissue secretes hundreds of bioactive

molecules (adipokines) (Luo and Liu, 2016), some of

which modulate brain functions (Parimisetty et al., 2016).

ASD children show changes in the levels of adipokines,

including increased leptin levels (Ashwood et al., 2008;

Blardi et al., 2010), decreased adiponectin levels (Fujita-

Shimizu et al., 2010) and increased monocyte chemotactic

protein-1 (MCP-1) levels (Ashwood et al., 2011) in early

childhood.

Fatty acid binding protein 4 (FABP4, also known as

adipocyte-FABP or aP2), a member of the FABP family

(Zimmerman and Veerkamp, 2002), is thought to form a

complex with fatty acids (FAs) (Gillilan et al., 2007) and

functions as a chaperone for FAs within cells (Furuhashi

and Hotamisligil, 2008). FABP4 was recently identified as

a novel adipokine and may play a role as an adipokine

in the pathology of metabolic syndromes (Furuhashi and

Hotamisligil, 2008; Prentice et al., 2019). In our previous

study, FABP4 expression was found to decrease in the

scalp hair follicles of patients with schizophrenia

(Maekawa et al., 2015). However, to date, the relation-

ship between FABP4 and autism has not been

investigated.

In this study, we systematically measured the serum lev-

els of various adipokines, including FABP4, in subjects

aged 2–12 years (preschool to elementary school age) and

found that serum FABP4 levels were reduced in ASD

children at the preschool stage. Based on these results,

we further investigated a possible link between the patho-

genesis of ASD and the functional disturbance of FABP4

Graphical Abstract

Genetic factors
Environmental factors
(e.g. low nutrition during pregnancy)

Modification
in Adipose tissue

of FABP4

Functional modification
(including synaptogenesis)

Modulated secretion

The adipo-brain axis

Behavioral
alternation

blood

blood

Brain

2 | BRAIN COMMUNICATIONS 2020: Page 2 of 15 M. Maekawa et al.

https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders
https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders
https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders


by leveraging human genetics and analysis of gene-defi-

cient mice.

Materials and methods

Human serum samples

All subjects were Japanese living in central or eastern

Japan, including the Hokuriku, Chubu, Tokai, Kanto and

Tohoku regions. The clinical diagnosis of ASD was made

by board-certified child psychiatrists based on the

Diagnostic and Statistical Manual of Mental Disorders,

fourth edition, text revision (American Psychiatric

Association, 2000) using the information of developmen-

tal history. The ASD diagnosis was confirmed by a struc-

tured developmental interview with the subject’s parents

(Autism Diagnostic Interview-Revised) (Lord et al., 1994;

Le Couteur et al., 2008; Falkmer et al., 2013). One of

the authors (K.J.T.) previously attended an Autism

Diagnostic Interview-Revised research training workshop

and established research reliability with Weill Cornell

Medicine Psychiatry. The ethics committees of the partici-

pating institutes approved the study protocols, and writ-

ten informed consent was obtained from the parents of

all participants. The current study was conducted in ac-

cordance with the Declaration of Helsinki.

The first sample set included 102 ASD and 87 TD chil-

dren, which were divided into a preschool-aged group

(4–6 years old) (ASD: 18 men, 3 women; mean age,

5.70 6 0.96 years; TD children: 14 men, 12 women, mean

age 6.05 6 0.64 years) and an elementary school-aged

group (7–12 years old) (ASD: 93 men, 9 women, mean

age 10.08 6 1.55 years; TD children: 55 men, 11 women,

mean age 10.47 6 1.70 years) (Supplementary Table 1).

The second sample set included 21 ASD (2–4 years old)

(14 men, 7 women; mean age, 3.79 6 0.74 years) and 24

TD children (2–4 years old) (13 men, 11 women; mean

age, 3.72 6 0.82 years) (Supplementary Table 2). Fasting

blood samples were collected between 6:00 and 9:00 by

venipuncture from all the participants, and the samples

were kept at room temperature for 30 min. They were

then centrifuged, divided into 200-ll aliquots and stored

at �80�C until use.

Measurement of adipokines and
metabolic biomarkers in serum
samples

Serum FABP4 concentrations were measured using en-

zyme-linked immunosorbent assay (ELISA) kits (Cayman

Chemical, Ann Arbor, MI, USA). Levels of insulin, MCP-

1, and leptin were measured using Multiplex Assay kit

‘Human Metabolic Disease Panel’ (Merck Millipore,

Darmstadt, Germany). The adiponectin levels were deter-

mined using sandwich ELISA kits (R&D Systems Inc.,

Minneapolis, MN, USA), according to the manufacturer’s

instructions. The glucose concentrations were measured

using a commercial kit (Glu-CII; Wako Pure Chemical

Industries, Ltd., Osaka, Japan). The levels of free fatty

acid were measured using a Free Fatty Acid Fluorometric

Assay Kit (Cayman Chemical). Each serum sample was

analysed in duplicate, and the mean value of the two

measures was used for analysis.

DNA samples

DNA samples were collected from Japanese subjects who

were born and living in central Japan separately from the

serum samples. ASD was diagnosed based on the Autism

Diagnostic Interview-Revised . Control subjects were

recruited from volunteers with no present or previous evi-

dence of psychosis during brief interviews by psychia-

trists. The DNA sample set comprised 659 subjects with

ASD (529 men, 130 women; mean age,

12.13 6 7.82 years) and 1000 controls (500 men, 500

women; mean age 41.40 6 14.37 years).

Re-sequencing analysis of FABP4

All coding exons and exon/intron boundaries of the

FABP4 gene were screened for polymorphisms by direct

sequencing using the BigDye Terminator v3.1 Cycle

Sequencing kit (Applied Biosystems, Foster City, CA,

USA) and an ABI 3730xl sequencer (Applied Biosystems).

Polymorphisms were detected using SEQUENCHER soft-

ware (Gene Codes Corporation, Ann Arbor, MI, USA)

(Balan et al., 2014). The genomic structure of FABP4

(RefSeq: NM_001442.2) was based on the UCSC hg19

draft assembly of the human genome database (http://

www.genome.ucsc.edu, last accessed 9 September 2020).

The NCBI database (https://www.ncbi.nlm.nih.gov/snp/,

last accessed 9 September 2020) was searched for known

single nucleotide polymorphisms (SNPs).

Construction of plasmids

Human FABP4 cDNA was obtained by PCR using

Human Fetal Brain Marathon-Ready cDNA (Clontech,

Mountain View, CA, USA) and the following primer set:

forward: 50-ATTGAATTCATGTGTGATGCTTTTGTA-30,

reverse: 50-TGAGTCGACTTATGCTCTCTCATAAAC-30.

The amplified cDNA was cloned into the mammalian ex-

pression vector pcDNA3 (Invitrogen, Grand Island, NY,

USA). The Thr8Ala mutant was created by conventional

site-directed mutagenesis. For the bacterial expression

construct, a PCR fragment from the pcDNA3-FABP4

construct was inserted into the bacterial expression vector

pGEX-6P-3 (GE Healthcare Life Sciences, Tokyo, Japan)

using XhoI/BamHI. The structures of the generated plas-

mids were validated by Sanger sequencing.
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Recombinant FABP4 protein

Recombinant FABP4 proteins (WT and Thr8Ala) were

obtained as reported previously (Shimamoto et al., 2014).

Briefly, the proteins were produced using Escherichia coli

BL21 (DE3) (BioDynamics Laboratory Inc., Tokyo,

Japan) and purified using glutathione sepharose 4B (GE

Healthcare Life Sciences). After the GST moiety was

removed by digestion with PreScission protease (GE

Healthcare Life Sciences) on the beads, the resulting re-

combinant proteins were de-lipidated using a

Lipidex1000 column (PerkinElmer, Waltham, MA, USA).

Binding assay

The fluorescent FABP ligand 1-anilinonaphthalene-8-sul-

fonic acid (ANS) was purchased from Cayman Chemical

(Ann Arbor, MI, USA). Binding assays using ANS were

based on a previously described procedure (Shimamoto

et al., 2014). Fluorescence was measured using a multi-

label counter (excitation at 355 nm and emission at

460 nm) (Wallac 1420 ARVO MX-2; Perkin Elmer). The

dissociation constant (Kd) values were calculated by non-

linear regression analysis using GraphPad Prism software

(version 8, GraphPad Software, San Diego, CA, USA).

Animals

Fabp4-disrupted mice (gifted from Prof. Hotamışlıgil)

were established as described in Hotamisligil et al. (1996)

and maintained as a closed colony. The mice were main-

tained as a closed colony and heterozygotes were inter-

crossed to produce wild-type (WT) and Fabp4-null mice.

The animals were housed in groups of four or five in

standard cages in a temperature- and humidity-controlled

room with a 12 h light/dark cycle (lights on at 08:00).

The animals had free access to standard lab chow (CRF-

1) (Charles River formula; purchased from Oriental

Yeast, Tokyo, Japan) and tap water. All animal experi-

ments were performed using male animals (7–16 animals/

group, depending on the experiment). The experimental

procedures were approved by the RIKEN Animal Ethics

Committee (permission number: H30-B030139).

Behavioural analyses

The behavioural profiles of the Fabp4 KO mice were

assessed using the three-chamber social interaction,

Morris water maze, and other behavioural tests at

6 weeks to 6 months, as well as with ultrasonic vocaliza-

tion tests at postnatal day 5 (P5) to P14. The protocols

for behavioural tests were as described in the

Supplementary Methods and the literature (Ohnishi et al.,

2010; Shimamoto et al., 2014).

Spine analysis

Mice were deeply anaesthetized with isoflurane and per-

fused transcardially with 4% paraformaldehyde in phos-

phate-buffered saline (PBS). The brains were trimmed and

cut into 200-lm thick coronal sections using a vibratome.

Lipophilic dye (DiI, Invitrogen) was coated onto tungsten

particles (Bio-Rad, Hercules, CA, USA). DiI-coated particles

were delivered to the slices using the Helios Gene Gun sys-

tem (Bio-Rad). A polycarbonate filter with 8.0-lm pores

(Beckton Dickinson, Franklin Lakes, NJ, USA) was inserted

between the gun and the preparation to remove clusters of

large particles. The density of labelling was regulated via

gas pressure (95–105 psi helium) (Mataga et al., 2004). A

confocal laser-scanning microscope FV1000 (Olympus,

Tokyo, Japan) was used to image the labelled structures.

Randomly labelled typical pyramidal neurons were selected

from layers II–III and V in the temporal cortex. Images at

0.45-lm steps were acquired and stacked for 3D recon-

struction using ImageJ (https://imagej.nih.gov/ij/, last

accessed 9 September 2020) and Spiso-3D (mathematical

and automated software calculating geometrical parameters

of spines) (Mukai et al., 2011). Spines were counted along

an apical dendrite for each neuron in eight mice per group.

Spine density on apical dendrites was averaged at 50–100-

lm from the cell body (Hutsler and Zhang, 2010).

Fatty acid analysis

Tissue samples were homogenized in ice-cold saline, and

aliquots were used for lipid analysis. Total lipids were

extracted according to the method described by Bligh and

Dyer (1959). Total phospholipid fractions were separated

by thin-layer chromatography. After transmethylation

with HCl-methanol, the FA composition was analysed by

gas chromatography (GC-2014; Shimadzu Corporation,

Kyoto, Japan) with a DB-225 capillary column (length,

30 m; internal diameter, 0.25 mm; film, 0.25 lm; J&M

Scientific, Folsom, CA, USA). The entire system was con-

trolled using gas chromatography software GC-solution

version 2.3 (Shimadzu Corporation). Each FA was

expressed as a percentage of the total FA content.

Data availability

The data supporting these findings are available upon

request.

Statistical analysis

The data were analysed using Prism 8 or SPSS version

16 (SPSS Inc., Chicago, IL, USA). Continuous data are

expressed as median and range or mean 6 standard error

(SE). Outliers were removed based on the 1.5� interquar-

tile range (IQR) rule. Statistical analyses were performed

using the Mann–Whitney U test for mean differences and

the Spearman rank test for correlation. P< 0.05 was con-

sidered significant.
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Results

Serum levels of adipokines in
childhood

The demographic data of the participants are summarized

in Supplementary Table 1. No significant differences in

age, intelligence quotient, weight, height, body mass

index (Supplementary Table 1) or blood biochemical

markers were found between the ASD and TD groups

(Supplementary Table 3) in the all-age group and in each

specific age group.

We measured the serum levels of adipokines which

have been reported to be altered in ASD, including leptin,

adiponectin and MCP-1 (Ashwood et al., 2008; Blardi

et al., 2010; Fujita-Shimizu et al., 2010; Ashwood et al.,

2011), except for FABP4, which, to the best of our

knowledge, was first examined here. We also measured

other metabolic parameters (insulin, glucose and free fatty

acid) in the sera of ASD and TD children. The FABP4

and MCP-1 levels were negatively correlated with age in

TD children, but not in ASD children (Fig. 1A and B).

Leptin levels were positively correlated with age in ASD

children but not in TD children (Fig. 1C). Adiponectin

and free fatty acid levels were negatively correlated with

age (Fig. 1D–G), while insulin and glucose levels were

positively correlated with age in both the TD and ASD

groups. Leptin level trajectories showed a significant dif-

ference between the ASD and TD groups in terms of the

Spearman’s correlation coefficients, while the other meas-

ures did not (Fig. 1H).

Considering the age-dependent changes in the levels of

the above molecules, we divided the cohort into two

groups: preschool-aged (4–6 years old) and elementary

school-aged (7–12 years old) groups, and compared the

mean levels of the molecules between the ASD and TD

groups (Supplementary Table 1). In the preschool-aged

group, the levels of FABP4 in ASD children were signifi-

cantly lower than those in TD children (Fig. 1H), how-

ever, the levels of other molecules did not differ

significantly between the ASD and TD groups

(Supplementary Fig. 1). In the elementary school-aged

group, the levels of MCP-1 and free fatty acid were sig-

nificantly higher in the ASD group than in the TD group,

but the levels of other markers were not significantly dif-

ferent between the ASD and TD groups (Supplementary

Fig. 2).

FABP4 as an early biomarker of
ASD

Since the early diagnosis and early intervention of ASD

are important for prognosis (Lai et al., 2014) and the

FABP4 levels in ASD children were low, specifically at

the preschool stage (Fig. 1H), we subsequently focused

on FABP4 and evaluated its potential as an early

diagnostic biomarker. A receiver operating characteristic

curve analysis determined the cut-off level at 16.7 ng/ml

(Fig. 1I). The sensitivity, specificity, positive predictive

values and negative predictive values were 94.4%,

75.0%, 5.6% and 25.0%, respectively. We did not ob-

serve any correlations between the levels of FABP4 and

the psychological scores on ASD (intelligence quotient

and items in Autism Diagnostic Interview-Revised)

(Supplementary Table 4). The levels of FABP4 did not

differ between the male and female samples

(Supplementary Table 5). The serum levels of FABP4 are

associated with obesity (Aeberli et al., 2008; Krzystek-

Korpacka et al., 2011; Dencker et al., 2017). However,

we found no correlations between the levels of FABP4

and physical indices (body mass index, height and

weight) (Supplementary Table 6).

To determine whether the serum level of FABP4 could

serve as a useful biomarker in the earlier stage, we

examined the second set of samples at the toddler stage

(2–4 years old), consisting of 21 ASD and 24 TD children

(Supplementary Table 2). Again, the FABP4 levels were

significantly lower in ASD children than in TD children

(Fig. 1J). A receiver operating characteristic curve deter-

mined the cut-off level at 12.7 ng/ml. The sensitivity, spe-

cificity, positive predictive values and negative predictive

values were 81.0%, 71.4%, 19.1% and 28.6%, respect-

ively (Fig. 1K). These results demonstrate that the serum

levels of FABP4 could be a versatile diagnostic biomarker

for ASD at an early stage (at least 2–6 years old).

Exon resequencing analysis of the
FABP4 gene

To search for a genetic underpinning of FABP4 abnor-

mality seen in ASD, we conducted an exon resequencing

analysis of the FABP4 gene using 659 ASD and 1000

control subjects. We identified one case with the missense

mutation Thr8Ala and one case with the nonsense muta-

tion Trp98Stop (Table 1 and Fig. 2A). FABP4 Thr8 is

highly conserved among species and is located within a

b-strand (Fig. 2B). The in silico web tool ‘PolyPhen2’

(http://genetics.bwh.harvard.edu/pph2/, last accessed 9

September 2020) estimates the possible impact of an

amino acid substitution on the structure and function of

the protein. This algorithm predicted that the FABP4

Thr8Ala mutation could be ‘possibly damaging’. Pedigree

samples were unavailable for this mutation. The FABP4

Trp98Stop mutation would result in the loss of 33 amino

acids at the C-terminus, which is highly conserved and

includes three b-strands (Fig. 2B) and three amino acids

needed for FA binding (Cys118, Arg127 and Tyr129)

(BioLiP database: https://zhanglab.ccmb.med.umich.edu/

BioLiP/, last accessed 9 September 2020) (Supplementary

Table 7). It is also possible that this transcript may be

rapidly degraded by the nonsense-mediated mRNA decay

system (Maquat, 2005; Behm-Ansmant et al., 2007;

Kurosaki and Maquat, 2016). This mutation was
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Figure 1 Serum levels of adipokines and other metabolic parameters in ASD and TD subjects. (A–G) Correlation between age

and the levels of adipokines or other metabolic parameters: (A) FABP4, (B) leptin, (C) MCP-1, (D) adiponectin, (E) insulin, (F) glucose and

(G) free fatty acids. (H) Comparison of correlation coefficients between ASD and TD groups. (I) FABP4 levels in ASD and TD groups of 4–6

years old. P-values were calculated using two-tailed Mann–Whitney U tests. (J) receiver operating characteristic curve for FABP4 at 4–6 years

old. (K) FABP4 levels in ASD and TD groups at 2–4 years old. P-values were calculated using two-tailed Mann–Whitney U tests. (L) receiver

operating characteristic curve for FABP4 at 2–4 years old.
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transmitted from his mother with a history of depression

(Fig. 2C), suggesting that the mutation may co-segregate

with psychiatric illnesses. The serum FABP4 level of the

proband (12 years old) was 7.3 ng/ml, which is nearly

half of the average levels of the TD group (14.4 ng/ml)

and the ASD group (14.1 ng/ml) of the similar ages

(elementary school ages) (Supplementary Fig. 2). These

results suggest that although rare, there are ASD cases

where FABP4 gene defects may be involved in the patho-

genesis of ASD.

Binding property of the FABP4
mutant to the fluorescent ligand
ANS

To investigate the biochemical effects of the FABP4

Thr8Ala variant, we measured the binding potential of

the recombinant FABP4 mutant protein to 1-anilinonaph-

thalene-8-sulfonic acid (ANS). ANS is a fluorescent dye

that binds with a high affinity to the ligand-binding

pocket of the FABP proteins. In addition to the WT and

the Thr8Ala mutant, we prepared a double mutant,

FABP4 Arg107Ala/Arg127Ala, as a binding pocket-de-

structive mutant (Shimamoto et al., 2014). We were able

to purify these proteins to an almost homogeneous level

(Supplementary Fig. 3). We performed titration analyses

of their affinities to the ANS (Fig. 2D). The dissociation

constant (Kd) of the double mutant (FABP4 Ala107/

Ala127) to ANS was significantly higher than that of

WT. In contrast, the Kd value of the Ala8 mutant to

ANS was significantly lower than that of WT (Fig. 2E),

demonstrating that the missense mutation increases the

binding affinity to ANS, and probably to natural ligands

such as fatty acids. However, the in vivo nature of the

FABP4 Trp98Stop and Thr8Ala variants remains elusive.

Expression of FABP4 in postmortem
brains

It has been reported that FABP4 is expressed in the

human brain during both childhood (Human Brain

Transcriptome, http://hbatlas.org/, last accessed 9

September 2020) and adulthood (Supplementary Fig. 4)

(Maekawa et al., 2015). We examined the expression lev-

els of FABP4 in postmortem brain samples from autistic

subjects in Broadmann area 9 (control: n¼ 10, ASD:

n¼ 10), Broadmann area 21 (control: n¼ 14, ASD:

n¼ 14), Broadmann area 40 (control: n¼ 13, ASD:

n¼ 14) and dorsal raphe nucleus (control: n¼ 8, ASD:

n¼ 8) (Supplementary Table 8). However, the expression

of FABP4 was unchanged between the ASD and control

groups in any brain region (Supplementary Fig. 4B).

These results may correspond to the results in a Japanese

cohort in which there were no significant differences in

the FABP4 serum levels between the ASD and TD groups

at the elementary school age. The ages of the postmortem

brain samples ranged from elementary school ages and

above. Extended brain samples, in terms of both age

span and sample size, will need to be examined in a fu-

ture study.

ASD-like behavioural phenotypes of
Fabp4 KO mice

To investigate the effects of a functional disturbance of

FABP4, we evaluated the behaviours of Fabp4 KO mice.

The Fabp4 KO mice were healthy with no visible abnor-

malities in terms of growth or morphology. In the three-

chamber test (Fig. 3A), a reduced exploratory behaviour

toward a stranger mouse was observed in Fabp4 KO

mice (Fig. 3B). In the Morris water maze test (Fig. 3C),

Fabp4 KO mice exhibited reduced spatial learning and

memory, represented by the lack of a clear increase in

the time spent in the target quadrant (platform) or the

number of times the target platform was crossed after

training (Fig. 3D and E). This result may be related to

the impaired visuospatial ability reported in individuals

with ASD (McGrath et al., 2012; Habib et al., 2019).

We did not observe significant differences in a reversal

learning test between the Fabp4 KO and WT mice (data

not shown), which evaluates a perseveration trait usually

under the condition of non-impaired spatial learning abil-

ity. To evaluate the ability of verbal communication in

Fabp4 KO mice, we examined the ultrasonic vocalization

of the pups when they were separated from the dam at

P5, P7, P10 and P14. While we found no significant dif-

ferences in the number of calls between the WT litter-

mates and Fabp4 KO mice at any stage (Fig. 3F), Fabp4

KO mice showed significant increases in the duration of

total calls (Fig. 3G and H) and in several subtype calls

(Supplementary Fig. 5A and B) at P5. We found that the

ratio of calls with a peak frequency maximum above

90 kHz was elevated in Fabp4 KO mice compared to

their WT littermates at P5 (Fig. 3I and Supplementary

Fig. 5C). These findings are consistent with the report

Table 1 Polymorphisms identified in the FABP4 gene

Exon Nucleotide change Amino acid change dbSNP ID Autism (n 5 516) Control (n 5 1000)

c.1-6C>T rs1585812890* 0 1

1 c.22A>G Thr8Ala rs1585812863* 1 0

3 c.294G>A Trp98Stop rs150131014* 1 0

4 c.399þ 11G>A rs138590127* 0 3

Asterisks indicate newly identified SNPs. They were registered in the dbSNP (https://www.ncbi.nlm.nih.gov/snp/, last accessed 9 September 2020).
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Figure 2 Exon resequencing analysis of the FABP4 gene. (A) Gene structure of human FABP4. Exon is shown as a square, with the coding

regions in black and the untranslated regions in white. Polymorphisms identified in ASD are indicated by arrows. (B) Amino acid sequence

alignment of FABP4 between multiple species. Black boxes indicate amino acids conserved from Atlantic salmon (Salmo salar) to humans. The

grey boxes indicate partially conserved amino acids. The variants identified in ASD are shown using arrows, with the amino acid positions. (C)

Family structure of the proband with the FABP4 Trp98Stop mutation. The black symbols represent individuals with the FABP4 Trp98Stop

mutation. The squares and circles indicate men and women, respectively. (D) ANS was incubated with recombinant FABP4 proteins and the

intensity of fluorescence was recorded (excitation filter: 355 nm, emission filter: 460 nm). The data are representative of independent

experiments. (E) Kd value obtained from ANS assays.
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that crying in infants with ASD has relatively higher fre-

quencies (Esposito et al., 2017). No significant differences

were observed in the other behavioural batteries

(Supplementary Table 9). Collectively, Fabp4 KO mice

showed some behavioural phenotypes of ASD.

Increased spine density in Fabp4 KO
mice

The spine density on apical dendrites of pyramidal neu-

rons has been found to be increased in layers II–III and

layer V of the temporal lobe in individuals with ASD

(Hutsler and Zhang, 2010). To investigate the effects of

Fabp4 loss-of-function, we analysed spine density in the

brains of 4-week-old Fabp4 KO mice. The spine density

on apical dendrites of pyramidal neurons was significant-

ly increased in layers II–III and layer V in the temporal

cortex of Fabp4 KO mice compared to that of their WT

littermates (Fig. 4A and B). We obtained similar results

in 8-week-old Fabp4 KO mice (Supplementary Fig. 6).

These results indicate that Fabp4 KO mice also emulate

ASD-like phenotypes with respect to spine histology.

Next, we morphologically classified the dendritic spines

into five categories: filopodia, thin, stubby, mushroom

and branched. Four-week-old Fabp4 KO mice showed

significantly fewer mushroom spines (mature form) with

a concomitant increase in the number of filopodia spines

(immature) (Fig. 4C), suggesting that a systemic loss of

Fabp4 affects the maturation of spines in the brain.

However, spine analysis of brain regions other than the

temporal cortex is required.

Abnormalities in the fatty acid
composition of the brain and
peripherals in Fabp4 KO mice

To investigate the effects of Fabp4 loss-of-function on the

FA composition in the cortex, we measured the FAs in

the phospholipids in the cortex of 4-week-old Fabp4 KO

mice. The percentage ratios of arachidonic acid (20:4n �
6) and docosahexaenoic acid (22:6n � 3), and the

percentage of n � 6 polyunsaturated fatty acid, n � 3

polyunsaturated fatty acid and total polyunsaturated fatty

acid (n � 3 polyunsaturated fatty acid þ n � 6 polyun-

saturated fatty acid) in total FAs were found to increase

in the cortex of Fabp4 KO mice. On the other hand, the

percentages of palmitic acid (16:0), palmitoleic acid (16:1

n � 7), vaccenic acid (18:1 n � 7) and lignoceric acid

(24:0) in total FAs were decreased in the cortex of Fabp4

KO mice (Fig. 4D). No significant differences were

observed in the percentages of other FAs in total FAs

(Supplementary Fig. 7).

We also examined the FA composition in the erythro-

cyte membrane fractions (RBC) and plasma. The percen-

tages of linoleic acid (18:2n � 6, LA) and alpha-linolenic

acid (18:3n � 3) in the total FAs were increased and the

percentages of docosatetraenoic acid (22:4n � 6) and

nervonic acid (24:1n � 9) in the total FAs were

decreased in Fabp4 KO mice (Supplementary Table 10).

The percentage of docosapentaenoic acid (22:5n � 3) in

the total FAs was increased in the plasma of the gene-de-

ficient mice (Supplementary Table 10).

Collectively, the loss-of-function of the Fabp4 gene can

elicit changes in the FA composition in the phospholipids

both, in the brain and the peripherals, suggesting that

Fabp4/FABP4 may play a role in lipid dynamics.

However, the altered FA species varied between tissues.

Discussion
In the present study, we focused on the ‘adipo-brain axis’

as a potential pathophysiology of ASD by examining the

serum levels of adipokines and other metabolic markers.

Genome-wide association studies have repeatedly reported

on the overlap between genetic risk variants in ASD and

obesity (Bachmann-Gagescu et al., 2010; Walters et al.,

2010; Shinawi et al., 2011; Lee et al., 2012; Sharma

et al., 2013; Cortes and Wevrick, 2018; Grove et al.,

2019). In addition, a low birth weight has been reported

to increase the risk of ASD (Schendel and Bhasin, 2008;

Lampi et al., 2012).

We found here that the age-dependent trajectories of

adipokine levels were different between ASD and TD

children. In particular, the FABP4 levels were found to

be significantly lower in ASD children than in TD chil-

dren in early childhood (2–6 years old). In addition, we

have obtained data for the potential of FABP4 as a

pathogenetic underpinning factor and an early diagnostic

biomarker for ASD.

Regarding the mechanistic role of FABP4 in ASD, we

performed exon resequencing analysis of this gene. As a

result, two novel and functional variants of the FABP4

gene were identified, although they were rare. In a previ-

ous large-scale exome sequencing study, a de novo mis-

sense variant in FABP4 was also found in an individual

with ASD (Satterstrom et al., 2020). Moreover, in the

same study, 102 risk genes of ASD were identified by

exome sequencing, most of which were involved in syn-

aptic functions and gene expression regulation

(Satterstrom et al., 2020). The protein–protein interaction

network between FABP4 and these 102 candidates

revealed that FABP4 interacts with CREBBP, MED13L,

PTEN and NCOA1 (Supplementary Fig. 8), which in

turn interact with other proteins. This suggests a poten-

tial role of FABP4-related network in the manifestation

of ASD pathogenesis/phenotype, at least in a subset of

ASD.

To corroborate the genetic contribution of FABP4 to

the pathogenesis of ASD, we analysed phenotypes of

Fabp4 gene-disrupted mice. Fabp4 KO mice exhibited

deficits in social behaviour (Fig. 3A and B), in accord-

ance with previous studies in other ASD mouse models
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(e.g. Shank3 haploinsufficient mice, Syngap1 haploinsuffi-

cient mice and Chd8 haploinsufficient mice) (Bozdagi

et al., 2010; Berryer et al., 2016; Katayama et al., 2016).

Fabp4 KO mice displayed an increased density of imma-

ture spines. It is worth noting that this spine phenotype

is similar to the phenotype of Fmr1 KO mice modelling
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Figure 4 Spine density and FA composition of the cortex of Fabp4 KO mice. (A, B) Spine density on apical dendrites in layers II–III

and layer V of the temporal cortex at 4 weeks. P-values were calculated using unpaired t-tests. Scale bar: 5 lm (C) Morphological classification of

spines on apical dendrites (filopodia, thin, stubby, mushroom and branched). P-values were calculated using unpaired t-tests. (D) FA composition

in the cortex at 4 weeks. P-values were calculated using two-tailed Mann–Whitney U tests. PUFA, polyunsaturated fatty acid.
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ASD (Galvez and Greenough, 2005). Collectively, these

results indicate that the Fabp4 KO mice displayed ASD-

like features and may therefore be useful as a new mouse

model for ASD.

The cortex of Fabp4 KO mice showed abnormalities in

terms of FA composition, including significant increases

in docosahexaenoic acid and arachidonic acid.

Arachidonic acid and docosahexaenoic acid are known

to function as endogenous ligands of the nuclear

receptor peroxisome proliferator-activated receptor (Ppar)

(Harmon et al., 2011), the activation of which has been

reported to increase spine density by regulating down-

stream genes (Brodbeck et al., 2008; Patel et al., 2018).

The over-activation of Ppar elicited by an increase in the

arachidonic acid and docosahexaenoic acid contents in

the cortex of Fabp4 KO animals may result in abnormal

spine formation. On the other hand, palmitic acid levels

were decreased in the cortex of Fabp4 KO mice. palmitic

acid is involved in the S-palmitoylation of multiple synap-

tic proteins (Zareba-Koziol et al., 2018). Thus, the reduc-

tion of palmitic acid in the cortex of Fabp4 KO mice

may also play a role in abnormal spine formation.

The dysregulated transport of FAs from the blood to

the brain may play a crucial role in the abnormal com-

position of FA in Fabp4 KO mice, and potentially in

ASD pathophysiology. It has been reported that FABP5,

Figure 5 Illustration of ‘adipo-brain axis’ leveraged by FABP4 for a pathogenesis of ASD. AA ¼ arachidonic acid; BBB ¼ blood–

brain barrier; DHA ¼ docosahexaenoic acid; PA ¼ palmitic acid.
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another member of the FABP superfamily, is expressed in

brain endothelial cells and is involved in the uptake and

subsequent blood–brain barrier (BBB) transport of doco-

sahexaenoic acid (Pan et al., 2015). FABP4 is expressed

in the same cell population (Elmasri et al., 2009).

Therefore, we speculate that FABP4 may also contribute

to the transport of FA across the BBB and play a role in

ASD pathogenesis.

Our previous studies showed that genetic variations of

the brain-expressed FABP genes (FABP3, FABP5 and

FABP7) are involved in the pathogenesis of schizophrenia

and ASD (Watanabe et al., 2007; Iwayama et al., 2010;

Maekawa et al., 2010; Shimamoto et al., 2014). Some

variants in these genes affected ligand-binding properties

(Shimamoto et al., 2014). The current study also found

that a missense variant of FABP4 affects ligand-binding

properties. Thus, we speculate that peripheral FABP4

may contribute to the pathogenesis of ASD in an indirect

manner by altering the fatty acid composition in the

brain.

With respect to the lowered serum levels of FABP4 in

ASD, environmental factors are likely to play a substan-

tial role, given the rarity of functional variants and no

significant genome-wide association study signal in the

FABP4 gene locus (Grove et al., 2019). It has been

shown that low birth weight, prematurity and ‘small for

gestational age’ increase the risk for ASD (Schendel and

Bhasin, 2008; Lampi et al., 2012). In a mouse model, an

abnormal premature leptin surge was observed in off-

spring that had experienced malnutrition in utero (Yura

et al., 2005). Considering the links of abnormal in utero

growth to ASD and to aberrant adipose tissue develop-

ment, it would be an important future issue to retrospect-

ively examine whether ASD children with low FABP4

levels suffered from malnutrition in foetal stage.

There are several limitations to the present study. First,

the sample size used to evaluate the serum concentration

of FABP4 protein was relatively small in the current

study. Therefore, testing the FABP4 levels in a larger

sample size should help us to clarify the clinical or

physiological nature of ASD with lowered FABP4.

Second, our results were obtained only from Japanese

sample sets. Since there are differences in adipose tissue

development between different races (Heymsfield et al.,

2016), the examination of other ethnic samples, as well

as with larger sizes, will be needed to establish serum

FABP4 levels as a reliable and universal biomarker.

Third, the mechanism for the existence of a time window

of lowered FABP4 levels in ASD remains unknown.

Fourth, regarding the role of FABP4, the details of the

‘adipo-brain axis’ have yet to be elucidated. To address

the third and fourth issues, the generation and analysis of

conditional knockout mice of Fabp4 in a spatio (tissue-

specific)-temporal (developmental stage-specific) manner

will be helpful. It will also be interesting to study

whether the alterations in FA composition observed in

Fabp4 KO mice are also found in the brains of ASD

patients. Lastly, aberrant dendrite morphology was

reported in the postmortem brain from subjects with

ASD (Raymond et al., 1995; Mukaetova-Ladinska et al.,

2004) and in the model animals of ASD including Fmr1

KO mice (Thomas et al., 2008), CGG knock-in mice

with expanded CGG repeats in the 5’-UTR of the Fmr1

gene (Berman et al., 2012) and Mecp2-defiecient mice

(Belichenko et al., 2009; Nguyen et al., 2012). Therefore,

detailed morphological analysis of dendrites and spines in

the different cortical regions of Fabp4 KO mice remains

an important issue for the future study.

In summary, in this study, the development of adipose

tissue was found to be dysregulated in ASD children, as

exemplified by the differential trajectories of serum adipo-

kine levels between ASD and TD subjects. Importantly,

this indicated that FABP4 may be a novel player in ASD

pathogenesis and a useful biomarker for ASD at early

stages, shaping the role of ‘adipo-brain axis’ in ASD

(Fig. 5). Although the replication of the present finding

will be necessary, it would also be useful to perform a

prospective cohort study on newborns to examine

whether the levels of FABP4 at birth can be used to pre-

dict the future manifestation of ASD.

Supplementary material
Supplementary material is available at Brain

Communications online.
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