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Defining subpopulations of differential drug response to reveal
novel target populations
Nirmal Keshava1,9, Tzen S. Toh2,3,9, Haobin Yuan4, Bingxun Yang4, Michael P. Menden5,6,7* and Dennis Wang 3,4,8*

Personalised medicine has predominantly focused on genetically altered cancer genes that stratify drug responses, but there is a
need to objectively evaluate differential pharmacology patterns at a subpopulation level. Here, we introduce an approach based on
unsupervised machine learning to compare the pharmacological response relationships between 327 pairs of cancer therapies. This
approach integrated multiple measures of response to identify subpopulations that react differently to inhibitors of the same or
different targets to understand mechanisms of resistance and pathway cross-talk. MEK, BRAF, and PI3K inhibitors were shown to be
effective as combination therapies for particular BRAF mutant subpopulations. A systematic analysis of preclinical data for a failed
phase III trial of selumetinib combined with docetaxel in lung cancer suggests potential indications in pancreatic and colorectal
cancers with KRAS mutation. This data-informed study exemplifies a method for stratified medicine to identify novel cancer
subpopulations, their genetic biomarkers, and effective drug combinations.
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INTRODUCTION
Drug developers face a conundrum in predicting the efficacy of
their investigational compound compared to existing drugs used
as the standard of care treatment. Systematic screening of drug
compounds across a variety of genomic backgrounds in cancer
cell lines has improved clinical trial design and personalised
treatments.1 Following the pioneering NCI-60 screen comprising
59 unique cell lines,2 modern high-throughput screens such as the
Genomics of Drug Sensitivity in Cancer (GDSC),3,4 the Cancer Cell
Line Encyclopaedia (CCLE),5 and the Cancer Therapeutics
Response Portal (CTRP)6–8 have characterised >1000 cancer cell
lines with the goal of establishing the genetic landscape of cancer.
The deep molecular characterisation of these large cell line panels
is complemented with high-throughput drug screens, which
enables the discovery of drug response biomarkers. For example,
analysis of the generic BRAF inhibitors PLX4720 (progenitor of
vemurafenib), SB590885, and CI-1040 reproduced drug sensitivity
association with BRAF mutation in melanoma, or afatinib
sensitivity with ERBB2 amplifications in breast cancer.3,4,9 These
associations between genetic variants and treatment response
have helped identify specific patient subpopulations who are
most likely to benefit from treatment. In Phase III clinical trials,
however, for new drugs to be successful, they must demonstrate a
significant improvement over the existing standard of care.
Accurately defining in which subpopulations a new drug
demonstrates improved differential efficacy over other drugs
targeting the same disease could lead to both better clinical
outcomes as well as new targeted therapies.
While several methods have been proposed to identify drug

response biomarkers in cell lines for precision medicine and drug
repositioning,4,5,10,11 there is a need for more objective and
unsupervised approaches for identifying subpopulations with
differences in drug response (differential drug response), and

consequently, systematically gain mechanistic insights from
biomarkers. Most approaches capable of comparing multiple
drugs measure the overall similarity (or correlation) based on a
single response summary metric,7,12 which permits drug reposi-
tioning based on subpopulations with similar behaviour, but
neglects ones that behave differently (Supplementary Fig. S1a).
Here, we used an unsupervised technique to identify the
perimeters of differentially sensitive or resistant subpopulations
and which may be generalised to stratify the pharmacology
response for any pair (or n-tuple) of targets using any number of
drug response summary metrics (e.g. IC50 or AUC). Segmentation
of the overall population occurs top-down and along globally
optimal contours that are derived explicitly and maximise the
differences between the two resulting subpopulations. The
segmentation continues recursively and is modulated by multiple
user-defined criteria such as the size or separability of the
resulting subpopulations. Higher threshold values for both result
in less granular subpopulations but increase certainty that the
subpopulations and the quantities estimated from them are both
distinct and accurate.
We present results from our platform, SEABED (SEgmentation

And Biomarker Enrichment of Differential treatment response), to
demonstrate how unsupervised machine learning can discover
intrinsic partitions in the drug response measurements of two or
more drugs that directly correspond to distinct pharmacological
patterns of response with therapeutic biomarkers. Addressing the
challenges in comparing the response of two drugs, SEABED
initially assesses two gold standards with established clinical
biomarkers, namely the differential response of a BRAF inhibitor
and MEK inhibitor with anticipated BRAF and KRAS mutations,13–16

and an EGFR inhibitor and MEK inhibitor with expected
biomarkers of EGFR, ERBB2, and KRAS mutations.17–20 Next, we
systematically compare how different drugs targeting the MAPK
and PI3K–AKT pathway yield different patterns of response within
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subpopulations. We show how differential drug response may
indicate benefit for drug combinations explained through
independent action rather than probable synergy by examining
subpopulations uniquely sensitive to a single drug,21 which may
be precisely targeted by identified biomarkers. This is particularly
evident in subpopulations of cell lines with divergent response,
where there is sensitivity to either drug but not both. Finally, we
demonstrate how the analysis of differential response can guide
the design of clinical trials by revealing specific indications where
an investigational therapy may be more effective than the
standard treatment.

RESULTS
We applied our technique to discover subpopulations of cell lines
in which two or more compounds, possibly addressing the same
disease state or even targeting the same genetic alteration, have a
common pharmacological pattern of response. By further
associating enriched genetic alterations in subpopulations with
specific patterns of response, we shed light into molecular
mechanisms responsible for patient subpopulations that respond
differently to two drugs.

Identifying subpopulations of differential drug response
We first considered the specific circumstance in which two drugs
engage different targets within the same signalling pathway,
namely agents targeting MAPK signalling. SEABED analysed >800
cancer cells for each pair of drugs, and we evaluated two
established drug response measures: the drug concentration
required to reduce cell viability by half (IC50) and the area under
the dose–response curve (AUC; Fig. 1a). SEABED employed a
multivariate similarity measure to compare the vector patterns of
response for each distinct pair of cell lines without requiring a
priori assumptions on the number or distribution of the
subpopulations. The result is a diverse cell line population
segmented into distinct subpopulations having homogeneous
patterns of drug response (Fig. 1b). Here exemplified, we show
that the drug response of 802 cell lines treated with either
SB590885 (BRAF inhibitor) or CI-1040 (MEK inhibitor) could be
segmented into seven distinct subpopulations with a median size
of 40 cell lines by integrating the two metrics of drug response,
AUC and IC50 (Fig. 1c; see Supplementary Figs. S1b and S1c for
individual cell lines segmented by IC50 and AUC, respectively). We
comprehensively evaluated pan-cancer somatic events to nomi-
nate biomarkers, and found that the subpopulation sensitive to
both inhibitors was significantly enriched for BRAF mutants (P=
3.87e-14, hypergeometric test), while another subpopulation was
exclusively sensitive to the MEK inhibitor and significantly
enriched for KRAS mutations (P= 0.00589, hypergeometric test).
In another example we examined a case where one inhibitor

might overcome resistance to another inhibitor targeting the
same pathway: AZD6244/ARRY-142886 selumetinib (MEK inhibi-
tor) with afatinib (EGFR and ERBB2 dual inhibitor) across 839 cell
lines (Fig. 1d). Strong markers of sensitivity for selumetinib are
subpopulations carrying known associated KRAS, NRAS, and BRAF
mutations (Fig. 1d, e). A less anticipated association is APC loss-of-
function sensitivity to selumetinib, albeit this was also found with
trametinib (another MEK inhibitor) in APC-deficient mice.22 We
reproduced the well-established associations of afatinib with
either EGFR and ERBB2 amplifications,4,23 and surprisingly our
unsupervised segmentation returned two subpopulations
enriched for EGFR amplifications. The more sensitive subpopula-
tion is solely enriched for EGFR amplifications, while the less
sensitive subpopulation additionally includes activating PIK3CA
mutations. In concordance with recent literature, PI3K–AKT
signalling drives acquired drug resistance to EGFR inhibitors in
lung cancer.24

Drug response segmentation resulted in 14 subpopulations
with a median size of 37 (Fig. 1d). The subpopulation enriched for
EGFR, ERBB2, and PI3KCA mutations has an average log(IC50) of
1.01 µM for selumetinib and −0.672 µM for afatinib. In contrast,
the BRAF mutation was enriched in a subpopulation where the
average log(IC50) for selumetinib was −1.097 µM and 0.625 µM for
afatinib. The difference in response between afatinib and
selumetinib was significantly greater (t-test P < 0.01) between
the subpopulations identified and the total population of PIK3CA
or BRAF mutant cell lines (Fig. 1f, g).

Cross-comparison of multiple drugs redefines best-in-class drugs
for specific subpopulations
Although there is a larger portfolio of clinical drugs with identical
putative targets, their responses may differ substantially in
subpopulations as a consequence of multiple factors, for example
mode-of-action, different off-target effects, and binding proper-
ties. The ability to discover cell line subpopulations with distinct
pharmacological patterns of response characterised by genetic
mutations re-defines best-in-class drugs by their differential
response to other drugs in a specific subpopulation, rather than
their absolute response across an entire population.
In order to demonstrate this approach for drug discovery, we

applied SEABED to 745 cell lines across cancer types to evaluate
the differential response in those cell lines to five inhibitors (CI-
1040, PD0325901, RDEA119, selumetinib, and trametinib) which all
target the MEK protein (Fig. 2a). The segmentation of cell lines
revealed 13 subpopulations with different patterns of response
and 3 having enriched biomarkers (Supplementary Fig. S2a). Two
subpopulations were sensitive to all MEK inhibitors, with
trametinib achieving the greatest sensitivity. In one subpopula-
tion, the KRAS mutation was enriched (Fisher exact p value=
1.12e-4 and 40.8% of the cell lines) while another had the BRAF
mutation enriched (Fisher exact p value= 1.39e-7 and 50% of the
cell lines). In contrast, another subpopulation was enriched with
the RB1 mutation (Fisher exact p value= 3.84e-2 and 21.6% of cell
lines), within which the cell lines were almost uniformly resistant
to all MEK inhibitors.

Distribution of subpopulations highlight distinct pharmacological
relationships between PI3K-AKT and MAPK signalling
Next, we used SEABED to investigate the cross-talk between two
frequently active cancer pathways, MAPK and PI3K–AKT signal-
ling, by systematically comparing pairs of drugs targeting
different genes of each pathway (Fig. 2). In total, SEABED
performed 324 pairwise comparisons of 18 PI3K–AKT and 18
MAPK pathway inhibitors. Each drug pair was classified into five
categories based on the distribution of subpopulation
responses: (i) no preferential response, (ii) sensitive to both
MAPK and PI3K–AKT pathway inhibitors (Supplementary Fig.
S2b), (iii) greater sensitivity to MAPK pathway inhibitors
(Supplementary Fig. S2c), (iv) greater sensitivity to PI3K–AKT
pathway inhibitors (Supplementary Fig. S2d), (v) each subpopu-
lation was sensitive to either a MAPK pathway inhibitor or a
PI3K–AKT pathway inhibitor but not both, i.e. divergent
response (Supplementary Fig. S2e). Common enriched muta-
tions and cancer tissue types found across these examples
include BRAF and RB1 mutations as well as skin, small-cell lung
cancer, lymphoma, and leukaemia tissue types, respectively
(Supplementary Figs. S2b–e). An inactive MAPK pathway based
on gene expression profiles was found in a subpopulation
sensitive to KIN001-102 (AKT inhibitor) and resistant to
trametinib (MEK inhibitor) (Supplementary Fig. S2d). MAPK
pathway inactivity was also found within a subpopulation
sensitive to ZSTK474 (PI3K inhibitor) but resistant to RDEA119-2
(MEK inhibitor). The enriched MAPK–PI3K and TNFɑ pathway
expression markers showed inactivity in a subpopulation resistant
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to both RDEA119-2 and ZSTK474 (Supplementary Fig. S2e). While
this approach classified the distribution of subpopulations based
on somewhat arbitrary thresholds for sensitivity, we also
measured the weighted average Pearson correlation across
subpopulations to identify interesting drug pairs (Supplementary
Fig. S3).
We found 20 drug pairs subpopulations with sensitivity to both

PI3K–AKT and MAPK pathway inhibition. This association between
subpopulation size and sensitive response was significant when
comparing a CRAF inhibitor (TL-2-105) to PI3K-AKT signalling
inhibitors (hypergeometric test P= 2.358e-5). The same trend was
observed for inhibiting ERK (FR-180204) or RSK (FMK) compared to
inhibiting any PI3K–AKT signalling gene (P= 0.0185 and P=
2.358e-5, respectively; hypergeometric test), but interestingly
there was no mutual sensitivity when comparing to BRAF
inhibitors and only two cases for MEK inhibitors.
There were 20 drug pairs with a significantly high proportion of

subpopulations (P < 0.05) exhibiting greater sensitivity to MAPK

pathway inhibition. This phenotype is strongly pronounced in
pairs with BRAF inhibitors (hypergeometric test P= 0.0166).
Twenty drug pairs were found with significantly high proportions
of preferential PI3K–AKT pathway inhibition. This is observed
when comparing MEK inhibitors (CI-1040 and selumetinib-1) to
PI3K–AKT signalling inhibitors (P= 0.0185 and P= 0.00273,
respectively; hypergeometric test).
In 22 cases, we observed drug pairs with each subpopulation

having sensitivity to either an MAPK pathway or an PI3K–AKT
pathway inhibitor but not both, i.e. divergent response. This
response type was enriched for pairs of any PI3K–AKT pathway
inhibitors and BRAF (PLX4720-2) or MEK inhibitors (P= 0.026 and
P= 0.0135, respectively; hypergeometric test), and even signifi-
cant for PI3K inhibitors in comparison with either the EGFR
(erlotinib) or MEK inhibitors (P= 0.0315 and P= 0.0173; hypergeo-
metric test). Response patterns for all drug pairs can be explored
in our portal (Supplementary Website S1; https://szen95.github.io/
SEABED).
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Fig. 1 Segmentation of a population based on pharmacological patterns of response discovers subpopulations with differential response. a
Dose response curves of two or more drugs are measured across a population of just over 1000 cancer cell lines. b The population is
segmented into distinct and homogeneous subpopulations based on their response to multiple drugs. When comparing two drugs,
subpopulations can be categorised based on their mean log(IC50s): sensitive to both drugs (orange), sensitive to drug A but not drug B
(green), sensitive to drug B but not drug A (blue), and resistant to both drugs (grey). c Segmentation results for a BRAF inhibitor (SB590885)
and a MEK inhibitor (CI-1040). Tree nodes contain the number of cell lines and are coloured based upon their category of response.
Significance testing of 735 cancer functional events reveals subpopulations enriched for BRAF and KRAS mutations. d Scatter plot showing
derived subpopulations based on their pharmacological responses for afatinib and selumetinib. Dashed lines indicate 20th percentile of log
(IC50) values for each drug. PIK3CA, EGFR, ERBB2, KRAS, NRAS, BRAF, APC, TCF4, and RB1 mutations were found enriched in the associated
subpopulations. e OncoPrint visualising the percentage of mutations of selected genes in cell line panel treated with either afatinib (EGFR
inhibitor) or selumetinib (MEK inhibitor). The waterfall plots comparing the response of the cell lines to afatinib and to selumetinib. f Boxplot
of difference in log(IC50) values between afatinib and selumetinib response for wild-type cell lines, all cell lines with PI3KCA mutation, and cell
lines in derived subpopulations with enriched PI3KCA mutation. g Same as panel f, but for BRAF mutations
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Subpopulations of differential response identifies drug
combination efficacy
Previous studies have hypothesised that the efficacy of many
approved drug combinations can be explained by the indepen-
dent action of single agents on different patient subpopulations
with cancers driven by multiple pathways.21 We hypothesised that

SEABED comparisons of drug pairs would highlight subpopula-
tions of differential response that would exhibit synergistic or
independent action effects when the drugs are tested in
combination. Additionally, our method enables us to explore
putative biomarkers of such populations. Systematic comparison
of responses between two drugs highlighted subpopulations of
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cell lines in which there was sensitivity to either drug but not both
(divergent response). We observed this phenomenon in 22 drug
pair comparisons, including an MEK inhibitor (RDEA119-2) which
showed divergent responses to four PI3K inhibitors (PI-103,
GSK2126458, ZSTK474, and CAL-101; Fig. 3a; Supplementary Fig.
S4a–d, respectively). TNFɑ pathway inactivity was found in a
subpopulation resistant to both drugs in three out of these four
drug pairs. MAPK pathway inactivity was instead found in
subpopulations resistant to the MEK inhibitor but sensitive to
the PI3K inhibitor (Fig. 3a, Supplementary Figs. S4a–d). Drug pairs
with divergent response were also observed in cell lines treated
with PLX4720-2 (BRAF inhibitor) and two PI3K inhibitors (PI-103
and ZSTK474; Fig. 3b, Supplementary Figs. S4e and S4f). Cancer
tissue types found enriched in these two drug pairs included skin,
leukaemia, and lymphoma tissue types. There was only one
expressed pathway found in a subpopulation resistant to
PLX4720-2 but sensitive to ZSTK474, which was the MAPK
pathway expression marker indicating inactivity (Supplementary
Fig. S4f). Two subpopulations with a high proportion of BRAF
mutations were identified with greater sensitivity to the BRAF
inhibitor (Fig. 3b). These two subpopulations had a combined total
of 79 cell lines (Fig. 3c). The subpopulation with an average log
(IC50) of −0.0232 µM for PLX4720-2 and 0.771 µM for PI-103 had
21 cell lines with BRAF mutation (87.5%; P= 9.75e-17). In contrast,
the subpopulation with an average log(IC50) of 0.808 µM for
PLX4720-2 and 0.562 µM for PI-103 had 22 cell lines with BRAF
mutation (40.4%; P= 5.12e-7) (Fig. 3b). We observed 17 individual
cell lines with BRAF mutation that are resistant to both drugs
(Supplementary Fig. S4g).
We next examined the drug pairs as combination therapies in

cell lines25 and patient-derived tumour xenograft models (PDXs)26

to investigate whether the drug pairs with divergent response and
subpopulations with preferential sensitivity to one drug would be
associated with efficacy of their combination treatment (Fig. 3d).
SEABED first compared the single drug responses of BRAF, MEK,
and PI3K inhibitors as before to identify BRAF mutant subpopula-
tions with differential response. When the drugs were tested as
combinations in BRAF mutant cell lines, the MEK/PI3K inhibitor
combination had a surprising similar level of synergy as BRAF/MEK
combinations, which was recently a clinically approved combina-
tion.27,28 Also surprising, these two combinations had significantly
higher synergistic effect when used on BRAF mutant cell lines
compared to all cell lines (t-test P= 0.0204), and compared to all
drug combinations tested (t-test P= 1.46e-5; Fig. 3e; Supplemen-
tary Fig. S4h). In terms of overall efficacy in PDXs, we observed a
similar level of inhibition to tumour volume for the BRAF/PI3K
inhibitor combination on BRAF mutant cells when compared to
the clinically approved BRAF/MEK combination and a significantly
greater (t-test P= 0.0418) inhibition of tumour growth compared
to all combinations (Fig. 3f; Supplementary Fig. S4i). Notably,
previous work suggested in vivo efficacy of drug combinations is
mostly driven by the monotherapy agents targeting independent
mechanisms26; however, they did not exclude the possibility
that such drug combinations may also be synergistic. Here,
we highlight a drug combination example, where in vivo
efficacy is driven by targeting independent mechanisms, and

complementary being synergistic. This example highlights that
both concepts, synergy and targeting independent mechanism
may contribute to combination efficacy in patients.

Lack of subpopulations of differential response may explain
clinical failure
Sometimes, despite strong preclinical evidence, some drugs do
not succeed in clinical trials.29 One such trial was SELECT-1
(Supplementary Table S1), which compared the efficacy of
combining selumetinib and docetaxel to docetaxel alone in
patients with advanced KRAS-mutant non-small cell lung cancer
(NSCLC).30 Although there were KRAS mutant cell lines sensitive to
selumetinib in preclinical testing,31 we re-examined the pharma-
cological data with SEABED to assess whether there were distinct
subpopulations that justified the patient selection criteria for KRAS
mutation.
In this analysis, instead of only inspecting the subpopulation

identified by SEABED when the segmentation algorithm termi-
nated, we thoroughly examined all possible subpopulations.
SEABED identified a total of 61 possible subpopulations from
840 cell lines across tissue types tested with selumetinib and
docetaxel (Fig. 4a). Ten subpopulations were more sensitive to
selumetinib than docetaxel (Fig. 4b), and five of those subpopula-
tions were enriched for KRAS mutation. However, those sub-
populations enriched for NSCLC KRAS mutants were small in size
and mostly exhibited less sensitivity to selumetinib compared to
docetaxel (Supplementary Figs. S5a, b). The distribution of
different KRAS mutations (p.G12C vs p.G12V) was also no different
in selumetinib sensitive subpopulations compared to resistant
subpopulations (Supplementary Figs. S5c, d). Independent of
mutation status, only 8.9% of NSCLC cell lines were found in
subpopulations more sensitive to selumetinib, whereas 14.8% cell
lines originating from aerodigestive cancer types (e.g. oesopha-
geal) were found in these subpopulations (Supplementary Fig.
S5e, f).
Next, we focused on subpopulation_60, which had the greatest

difference in sensitivity (IC50 and AUC) to selumetinib compared to
docetaxel (Fig. 4c). This subpopulation of 122 cell lines was
enriched in KRAS mutations (28.8%, P= 3.061e-4) found across
multiple tissue types. NSCLC cell lines accounted for only 8% of
this subpopulation, with 50% of those cell lines being KRAS
mutants. Colorectal and pancreatic cell lines accounted for 15%
and 8% respectively of the subpopulation, and they both had a
higher proportion of KRASmutations (56% and 100%, respectively;
Fig. 4d).

DISCUSSION
The ability to identify distinct subpopulations based on multiple
measures of drug response (e.g. IC50 and AUC) and extract their
biomarkers is the basis for personalised therapeutics, which may
ultimately increase the likelihood of successful clinical trials.32,33

Using a network-based segmentation algorithm coupled with
biomarker detection (SEABED), we investigated well-established
pharmacological targets and clinical biomarkers by comparing the
response patterns for BRAF (SB590885) and MEK (CI-1040)

Fig. 2 Distinct drug response types after unsupervised segmentation of pharmacological response pattern for targeting MAPK or PI3K-AKT
signalling. a MAPK and PI3K–AKT pathways illustrating drugs in purple boxes which were assessed, and their different gene targets in the
pathway. Genes in the green boxes are involved in the PI3K–AKT pathway while genes in the blue boxes are involved in the MAPK pathway. b
Heatmap illustrating 324 pairwise comparison of responses for 18 different inhibitors targeting the MAPK pathway and 18 different inhibitors
targeting the PI3K–AKT pathway. The 20th-percentile of log(IC50) values for each drug was determined based on the distribution of log(IC50)
values across all cell lines after SEABED segmentation. Based on these 20th percentile cutoffs, we assessed whether there was over-
representation of subpopulations in each quadrant and categorised each drug pair into five categories: (i) no preferential response (grey), (ii)
subpopulations sensitive to both MAPK and PI3K–AKT pathway inhibitors (pink), (iii) greater MAPK pathway sensitivity (yellow), (iv) greater
PI3K–AKT pathway sensitivity (green), or (v) sensitive to either inhibitor but not both (divergent response, blue)
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inhibition, which expectedly reproduced subpopulations sensitive
to both drugs and enriched for BRAF mutants.34–36 In another
example, SEABED compared EGFR/ERBB2 (afatinib) and MEK
(selumetinib) inhibition to reveal expected biomarkers such as
BRAF, KRAS, and NRAS mutations for selumetinib,13–16 and afatinib
associated with EGFR and ERBB2 amplifications.37,38 Interestingly,
the more afatinib-resistant subpopulation was enriched for
PI3KCA-activating mutation, which may cause acquired resis-
tance.24 When we systematically compared inhibitors of the MAPK
and PI3K–AKT signalling pathways, we observed subpopulations
sensitive to both CRAF, ERK, or RSK targeted drugs and other
drugs targeting the PI3K–AKT pathway; however, there were few
instances of these subpopulations for inhibitors targeting other
genes in the MAPK signalling.39 We found many more subpopula-
tions that were more sensitive to BRAF inhibitors than other PI3K-
AKT inhibitors, and as expected, many contained BRAF muta-
tions.34 In contrast, there were not significantly more subpopula-
tions sensitive to MEK inhibition compared to inhibition of
PI3K–AKT signalling targets, but BRAF mutant subpopulations
may have greater differential response.14 Divergent response was
observed when comparing EGFR, BRAF, and MEK inhibitors to
drugs targeting the PI3K–AKT pathway. This unique type of

response was where subpopulations were found to be sensitive to
either drug but not both. Our results comparing the MAPK and
PI3K–AKT pathways based on drug response profiles highlights
how intertwined those two pathways are in pharmacology
space.39

Arguably, the divergent response type is the most exciting for
personalised treatment, since it may identify cases where
independent drug action and synergy may guide effective drug
combinations.21 Here exemplified, we showed that PI3K inhibitors
combined with either BRAF or MEK inhibitors increase in vitro
synergy and reduce tumour volume of in vivo models. Further-
more, we were able to show that synergistic and overall effect can
be further enhanced by the correct biomarker indication, in this
instance, BRAF mutant subpopulations.40,41 The BRAF mutant
subpopulation with high efficacy for the BRAF inhibitor and not
the other inhibitor could be cases where independent drug action
explains drug combination efficacy, whereas the subpopulation
with lower efficacy for single treatments of either drug may be
cases for synergistic effects when the drugs are combined.
In examining the preclinical evidence for trial testing combina-

tion treatment of NSCLC in which the KRAS mutation was the
biomarker,30 SEABED revealed a high proportion of NSCLC

a

b

Number of cell lines
in subpopulation

100 cells

50 cells

10 cells

Docetaxel (Microtubules)
log10(IC50) [uM]

)iKE
M( bi nit e

mul eS
[ ) 05CI( 01gol

]
Mu

eviti snes
t nat si ser

sensitive resistant
-0.5-1.0-1.5-2.0-2.5-3.0-3.5

2
.0

1
.5

1
.0

0
.5

0
.0

-0
.5

-1
.0

-1
.5

Pan-cancer cell lines

D
iff

e
re

n
ce

 in
 A

U
C

 (
S

e
lu

m
e
tin

ib
 −

 D
o
ce

ta
xe

l)

−
0

.5
0

.0
0
.5

c

subpop. 60
other subpops.

melanoma
colorectal
urogenital
pancreatic

non-small cell lung
leukemia

aerodigestive tract
kidney
gastric

neuroblastoma
thyroid

myeloma
smal cell lung

soft tissue
nervous system

lymphoma
breast

−0
.8

−0
.4

0.
0

KRAS mutations

d

D
iff

er
en

ce
 in

 A
U

C
 (

S
el

um
et

in
ib

 −
 D

oc
et

ax
el

)

2%
3%
4%
4%
5%

8%
15%
27%

<1%
<1%
<1%
<1%

8%
8%
8%

2%
2%KRAS

KRAS
KRAS

KRAS

subpop. 60

Fig. 4 Subpopulations of cell lines indicating differential response between docetaxel and selumetinib. a Tree diagram illustrating the
segmentation process of 840 cell lines across cancer types into subpopulations based on their response to docetaxel and selumetinib. Branch
colours distinguish subsets of subpopulations with darker colours indicating increasing number of cell lines in the subpopulation. b Scatter
plot of subpopulations discovered through progressive segmentation based on average log(IC50) values. Dashed lines indicate 20th percentile
of log(IC50) values for each drug. The KRAS mutation is enriched in five subpopulations exhibiting sensitivity to selumetinib and resistance to
docetaxel, including subpopulation 60. The colours of the subpopulations correspond to the location of the subpopulation in the tree
diagram. c Bar plot illustrating the difference in AUC values for each cell line. The orange bars highlight the cell lines within subpopulation 60.
d Heatmap showing the percentage of each cancer type enriched within the cell lines in subpopulation 60. The bar plot illustrates the KRAS
mutations within the cell lines that are highlighted in green

N. Keshava et al.

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2019)    36 



subpopulations having the KRAS mutation that are resistant to
both selumetinib and docetaxel, suggesting a smaller likelihood of
efficacy for the drug combination. Alternately, we identified a
subpopulation with differential response to selumetinib for a small
proportion of KRAS NSCLC cell lines, but this subpopulation
contained a higher proportion of colorectal and pancreatic cancer
cells with KRAS mutations. Previous studies have shown the
plausibility in treating colorectal cancer using MEK inhibitor
combinations.42,43 With consideration of KRAS mutations in
subpopulations having greater sensitivity to selumetinib, SEABED
suggests that while the correct biomarker was used for the clinical
trial, there may be other potential indications for selumetinib.
Future clinical trials testing MEK inhibitors in colorectal and
pancreatic cancer could select patients possessing KRASmutations
to improve their chances of success. Although response in cell
lines may not always correspond to response clinically, the use of
data-informed approaches to examine large populations of cells
may reveal clinically relevant drug response patterns. Future
studies may need to account for differences between in vitro and
in vivo responses.
While iterative and hierarchical clustering techniques have been

used widely to attribute molecular markers to differences in
subpopulation drug response and outcomes,44,45 we use an
approach that does not require an explicit estimate of the number
of subpopulations and is not greedy, i.e., each incremental step is
optimal but the overall algorithm is not. In biomedical data
processing, there has been substantial concern, particularly
regarding applications to molecular data, that rival unsupervised
machine learning methods optimise different criteria and conse-
quently yield diverging answers.46,47 In our effort, we are
concerned with discovering subpopulations having high homo-
geneity and statistical separability, while avoiding subpopulations
that are so small that extracting statistically significant biomarkers
is unlikely. We demonstrated the utility of SEABED over
conventional approaches of K-Means and hierarchical clustering
for drug response comparisons (see Supplementary Materials,
Supplementary Tables S2 and S3, and Supplementary Fig. S6).
Further, the ability to segment non-convex regions, which can
arise to describe different disease states, is advantageous.
Consequently, because of their success in other industries48,49 as
well as fast, efficient implementations, spectral methods based on
network models are powerful methods for discovering distinct
subpopulations.50–52

SEABED builds upon previous work using network models in
biomedical contexts50,51,53 that explicitly partition a population of
cell lines described by multiple variables into distinct subpopula-
tions, using a “top-down” approach of recursively identifying
optimal cuts for graph bisection. Similarly, while our segmentation
capitalises on past progress made in spectral clustering,54,55 our
effort distinguishes itself from past attempts by integrating all
variables into a single network model using a multivariate
similarity and local and global network statistics. Deeper
interpretations of embedded matrix subspaces in network models
may provide further insight into the linkage between subpopula-
tions of cancer cell lines and drugs.
As a whole, this study demonstrates several important insights

about the pharmacological pattern of response for different
cancer drugs by applying an unsupervised machine learning
platform to segment a large pan-cancer in vitro pharmacology
data set. By organising cell lines along similar pharmacological
patterns of response, we identified distinct, intrinsic subpopula-
tions sensitive to one drug but resistant to others, and in some
cases identified genetic alterations that can be used as biomarkers
for those subpopulations. Since these genetic alterations are often
driver mutations found in patient tumours,4 we can use these to
map new patients recruited into clinical studies to our subpopula-
tions derived from cell lines and predict their differential
treatment response to existing treatments. In the context of

analytical frameworks for increasing drug R&D productivity by
sharpening the focus of drugs,56 our work demonstrates the value
of advanced analytical approaches in translational medicine to
enable decision making that is more data-informed and less
ambiguous. Moreover, by analyzing different pharmacological
responses and interpreting its outputs in the context of the
underlying genetics and molecular pathways, we have created a
multi-faceted landscape for developing and assessing new drug
therapies.

METHODS
Pharmacology data
The discovery pharmacology dataset was extracted from the GDSC
database,3,4 while leads from the analysis were validated with the Cancer
Cell Line Encyclopaedia (CCLE)5 and the Cancer Therapeutics Response
Portal (CTRP).6–8 Furthermore, suggested drug combinations were
validated with cell line responses from the AstraZeneca-DREAM challenge
dataset25 and patient-derived xenograft (PDX) models from Gao et al.26

Drug synergy was defined as the total efficacy of two drugs that is greater
than the individual effects of each drug. Combenefit (v1.31) was used to
quantify drug combination synergy by comparing the observed two-
dimensional (2-D) combination dose–response surface to a modelled
reference based on the Loewe model of additive combinations and the
single drug dose–response curves.57

For a given cell line in GDSC, the drug response was fitted with a
sigmoid curve58 and consecutively quantified as area under the curve
(AUC) or the concentration required to reduce cell viability by half (IC50).
GDSC contains 265 compounds tested in 1074 cell lines, while we focus on
a subset of 38 drugs targeting either PI3K–AKT signalling, MAPK signalling,
or microtubules, which leads to 327 experiments considered for evaluation.

Deep molecular characterisation of the cancer cell lines
The GDSC project4 provides the characterisation of >1000 cell lines
including whole-exome sequencing, targeted PCR sequencing/split probe
FISH analysis and SNP6.0 arrays, which enabled to quantify somatic
mutations, gene fusions, and copy number variations (CNVs), respectively.
In our analysis, we focus on somatic mutational state of 300 cancer genes
and 10 gene fusions. Additionally, we considered 425 recurrent CNVs, split
into 117 amplifications and 308 deletions. In total, we consider 735 cancer
functional events, which is summarised in the binary event matrix (BEM)
from Iorio et al.4 The SPEED algorithm was applied to gene expression
profiles in the cell lines to quantify pathway activation as binary scores and
then added to the BEM.59

Pre-processing cell line and pharmacological data
For every pair of drugs that was computationally analysed, the subset of
GDSC cell lines having valid IC50 and AUC values for both drugs was
retained. Typically there were roughly 700 cell lines across all cancer types
that met these criteria in each experiment. Cancer types and subtypes
were stored along with the pharmacological data in a table for each drug
for subsequent recall and analysis.

Processing drug response measures (AUC/IC50 values)
We build network models for a set of N cell lines, C ¼ fC1; ::;CNg, which
are separately exposed to two distinct drugs, D1 and D2, which results in
two sets of M measurement variables, Xi ¼ ½x1; ::; xM�; i ¼ 1; 2, describing
the response to each compound:

Xi;j ¼ DiðCjÞ; i ¼ 1; 2; j ¼ 1; :::;N (1)

We use a network model that is an undirected graph, G, consisting of N
vertices, Vi ; i ¼ 1; :::;N (one for each cell line in C) with weighted edges,
Wi;j Vi ; Vj

� �
, i; j ¼ 1; :::;N; i ≠ j, between every distinct pair of vertices. Our

approach uses a single multivariate similarity measure (Eq. 2), to construct
one network model, with the advantage that the subspace properties of
the resulting adjacency and Laplacian matrices are fully embedded with
the complete characteristics of C. The weight is the similarity, wi,j, between
ith and jth composite 2Mx1 dose response profile (DRP), Xi= [X1,i, X2,i] for
Ci and Xj= [X1,j, X2,j] for Cj.
We characterise drug response by two important continuous-valued

measurements extrapolated from the cell line pharmacology screens: the
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IC50 and the AUC values of the dose–response curve (Supplementary Table
S4) observed when one compound is applied in vitro to a single cell line
sample at successively greater concentrations. Since every cell line
possesses a length-4 DRP for a given pair of drugs, the similarity, w,
between any two cell lines resides on (0,1] and is calculated by a
multivariate quasi-Gaussian comparison that differences the elements of
the DRPs but also weighs the differences by a combination of local and
global network statistics. Similarity between the response vectors, Xi and
Xj, is given by

w Xi ;Xj
� � ¼ exp �d Xi ;Xj

� �� �
; (2)

dðXi ;XjÞ ¼ ðΔXT
i;jΣ

�1
i;j ΔXi;jÞβ: (3)

The similarity between two cell lines equals one when both have
identical covariate values, and approaches zero as their covariates
increasingly differ. Additionally, w(Xi,Xj)=w(Xj,Xi). ΔXi,j is a 4 x 1 vector
whose entries are the difference of the DRP values in Xi and Xj and β
modulates the similarity between two patients. We selected β=0.5 for our
experiments based on experimentation and the observations of previous
efforts.
Σi;j is a 4 × 4 covariance-like matrix that is estimated for every distinct (i,

j)-pair and captures the variability of individual variables as well as their
inter-relationships. While Σi;j is an explicit function of the two patients
being compared, it also captures network-wide characteristics. For
diagonal elements, Σi;jða; aÞ; a ¼ 1; ¼ 4; the entries are:

Σi;jða; aÞ ¼
ΔXi;jðaÞ þ NgbdðΔXIðaÞÞ þ þNgbdðΔXJðaÞÞ

� �2

9
; a ¼ 1; 2; 3; 4

(4)

where NgbdðΔXIðaÞÞcorresponds to all edges neighbouring vertex-i, and
the overbar is the averaging operator. The off-diagonal elements,
Σi;jða; bÞ; a; b ¼ 1; ::4; a≠ b are:

Σi;jða; bÞ

¼
ΔXi;jðaÞ þ NgbdðΔXIðaÞÞ þ þNgbdðΔXJðaÞÞ

� �
ΔXi;jðbÞ þ NgbdðΔXIðbÞÞ þ þNgbdðΔXJðbÞÞ

� �

9
; a ¼ 1; 2; 3; 4:

(5)

The Moore–Penrose pseudo-inverse was used to avoid problems with
low-rank during matrix inversion. The framework is generalisable to
include more variables and different measures of similarity. The symmeric,
positive semi-definite, N ´ N weighted adjacency matrix, W, holds the
pairwise similarities.

Segmentation
The set of cell lines, C, is segmented recursively into distinct subpopula-
tions using the Fiedler eigenvector derived from the eigendecomposition
of W.60 Each parent subpopulation of cell lines is successively segmented
into two offspring subpopulations until at least one of three constraints is
satisfied:

● The size of the parent subpopulation falls below a user-defined
threshold.

● The size of either offspring subpopulation is below a user-defined
threshold.

● The offspring subpopulations are not sufficiently dissimilar, where we
measure class separability using the silhouette metric,61 a common
non-parametric method in which values range between −1 (highly
similar) and 1 (highly dissimilar) and values near 0 indicate the two
subpopulations are just barely overlapping. Higher values result in
fewer, less granular, subpopulations.

In our experiments, we required the size of the parent subpopulation to
be at least 40 in order for segmentation to be performed, and required
both offspring subpopulations to have 20 or more members in order to be
retained. The silhouette metric threshold was set to 0.25. Generally,
criteria and thresholds can be modified and adapted to emphasise
relevant factors in a particular problem. The whole segmentation process
yields K mutually exclusive subpopulations Pk ; k ¼ 1; :::; K; where
C ¼ ∪ K

k¼1Pk . Successive segmentation results in sub-populations with
increasingly homogeneous DRPs.

Enrichment of features to nominate biomarkers
Because genetic alterations in each cell line are known, each subpopula-
tion can be evaluated by non-parametric statistical tests to identify
enriched alterations that may be attributed to patterns of sensitivity or

resistance in the DRP across both drugs. For each subpopulation, we
measured the number of cell lines in the subpopulation with a particular
gene mutation, and the number of cell lines outside of the subpopulation
with the mutation. A 2 × 2 contingency table was generated from the cell
line counts of with/without mutation and inside/outside of subpopulation.
Significance of observed enrichment of mutations within subpopulations
were calculated using the Fisher’s exact test. The resulting p values were
corrected for multiple testing using the Benjamini and Hochberg (BH)
procedure (Supplementary Table S5).

Classification of drug pairs based on the distribution of
subpopulations
We made 324 pairwise comparisons of drugs targeting the MAPK and
PI3K–AKT pathways. Based on the distribution of log(IC50) values across all
cell lines tested with both drugs, we determined the 20th-percentile of log
(IC50) values for each drug to be a user-defined cutoff. The 20th percentile
cutoffs P20 for drugs A and B was used to categorise each subpopulation i
into four categories based on their average log(IC50) y:
yi < P20, A and yi < P20, B= sensitive to drugs A and B
yi < P20, A and yi ≥ P20, B=more sensitive to drug A
yi ≥ P20, A and yi < P20, B=more sensitive to drug B
yi ≥ P20, A and yi ≥ P20, B= resistant to drugs A and B
The number of subpopulations in each category were recorded in a 2 × 2

contingency matrix and using a binomial test compared this to the
proportion of cells expected in each category if SEABED segmentation was
not performed.
After classification of pairwise drug responses, we assessed whether a

drug’s subpopulations was significantly over-represented in one category
in comparison with all other categories. Testing was carried out using the
hypergeometric test (phyper R package).

2-D visualisation of drug response profiles
To visualise DRPs across cell lines and drug comparisons, we calculated the
average log(IC50) values for each drug in subpopulations generated based
on their response to the tested drug pairs (Supplementary Table S5). We
then plotted the mean log(IC50) values as circles on a 2-D scatter plot using
the Matplotlib Python library. Dashed lines indicative of local 20th
percentile of log(IC50) values for each drug were also plotted on the
scatter plot unless stated otherwise. The radii of the circles is proportional
to the subpopulation size. Due to potential misidentification, cell lines
named ‘NA’ found in the output files after segmentation with SEABED were
not used for the calculation of the mean log(IC50) values of each
subpopulation and, hence, not used for the 2-D visualisation. Sensitivity
cutoffs for each drug assumed that 20% of cell lines had an IC50 beyond an
arbitrary threshold, which was a consensus among drug development
scientists and a lower threshold for clinically approved drugs.62 These
human-defined cutoffs were used as a guide for comparing our
algorithmically segmented subpopulations.

Tree visualisation of subpopulations
We utilised tree diagrams to visualise the data generated. The tree
diagrams illustrate how the cancer cell lines are segmented into different
subpopulations, based on whether they are sensitive or resistant to the
drugs that are being tested. We did not visualise further down the tree in
the figures when previously observed significant enrichment of genetic
biomarkers is no longer observed in all current subpopulations. The tree
diagrams were generated through an open-source Python library called
Graphviz. The style of each component of the tree diagram was first
initialised through a class. This included the colours, shapes, and fonts of
the edges and nodes of the tree diagram. A method to create tree
diagrams was developed to accept the number of vertices and leaves, the
labels for the leaves, and the tree diagram filename. The tree diagram is
finally generated and saved by calling the method.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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