
Single Molecule Analysis Research Tool (SMART): An
Integrated Approach for Analyzing Single Molecule Data
Max Greenfeld1,2., Dmitri S. Pavlichin3., Hideo Mabuchi4*, Daniel Herschlag1,2*

1 Department of Chemical Engineering, Stanford University, Stanford, California, United States of America, 2 Department of Biochemistry, Stanford University, Stanford,

California, United States of America, 3 Department of Physics, Stanford University, Stanford, California, United States of America, 4 Department Applied Physics, Stanford

University, Stanford, California, United States of America

Abstract

Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level
of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the
management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for
analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART
provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for
fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to
streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the
maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination
of single molecule data and transparency in the analysis of reported data.
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Introduction

The goal of traditional thermodynamic and kinetic methods has

been to measure properties of ensembles and infer the behavior of

individual molecules. Single molecule approaches provide a

unique ability to directly visualize processes carried out by

individual molecules and complexes [1,2,3,4,5,6,7,8].

There is a rich history of single molecule approaches that have

dominated mechanistic investigation of ion channels [9,10]. More

recently, fluorescence and force measurements at the single

molecule level have greatly expanded the types of biological

systems amenable to single molecule investigation [11,12]. These

studies have allowed the identification and study of rare states and

events that would be difficult or impossible to infer from bulk

studies and have revealed a remarkable extent of molecular

heterogeneity that had not been apparent from bulk studies

[13,14,15,16,17,18].

Standardization is a ubiquitous challenge that must be faced

when novel methods are introduced and widely adopted.

Additionally, the dissemination of the actual experimental results

is difficult when there are large datasets. This challenge was

extensively discussed, and largely surmounted, for X-ray structur-

al, microarray, and other genomic data [19,20,21,22]. Single

molecule experiments contain orders of magnitude more infor-

mation than data from traditional bulk methods and are analyzed

differently in different laboratories [23,24,25,26,27]. As a result, it

is typically not possible to directly evaluate or reanalyze published

conclusions from single molecule experiments.

The rapid growth of single molecule publications highlights the

current need for standardization. At present, individual investiga-

tors have a host of data analysis strategies to choose from, as single

molecule data is generated from many sources and its analysis has

been subjected to extensive study. Nevertheless, the particular

strategy implemented to analyze a particular single molecule

experiment is usually lab-generated. While this approach can be

most efficient for the individual who must balance the demands of

data collection, analysis, and dissemination, it is inefficient in the

longer term and for the broader community. A larger time

investment by a subset of investigators to create a more general

and efficient tool could result in enormous aggregate time savings.

Such a tool could facilitate the rapid evaluation of experimental

results, the comparison of results from different labs, and the

reanalysis and reevaluation of published results in light of new data

and models.

To meet these important challenges, we have developed the

software package SMART: Single Molecule Analysis Research

Tool. This package is freely available, easily implemented, and

provides an integrated and convenient tool for data processing,

analysis, and visualization.

Results

SMART provides a means to rapidly organize and analyze the

large and complex data sets generated in single molecule

experiments. Ultimately, the researcher would like to use the

single molecule data to build kinetic and thermodynamic models
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that account for the raw data and explain the behavior of the

molecule(s) of interest. The process of analyzing single molecule

data can be cumbersome, but, even more fundamentally, it is often

difficult to relate errors and uncertainties from the raw data –

traces for individual molecules– to uncertainties in the models

obtained. This difficulty is exacerbated by the inherent stochas-

ticity of single molecule measurements and the typically limited

time window for data collection.

To underscore this point, Fig. 1A provides an example in which

not accounting for the noise inherent to the measurements could

lead an investigator to draw incorrect conclusions. Two hundred

traces were generated from a simulation with a stochastic two-state

model (k12 = k21 = 0.1), shown on the left of Fig. 1A, with individual

molecules having a signal to noise ratio (SNR) of either 4 or 12

(See Methods); traces for four of these molecules are shown in the

center of Fig. 1A. [Note: Kinetic models are in discrete time throughout this

paper. In this situation, the kinetic model parameters are transition probabilities

per time step that take values between 0 and 1. In an experiment the time step is

set by the sampling rate. Transition probabilities can be converted to rate

constants approximately by multiplication by the sampling rate, or by the more

accurate relationship given by equation S26 of Appendix S1.] The traces

were analyzed using the common thresholding analysis approach.

Details of thresholding and alternative approaches are described in

a later section. Kinetic data obtained from these molecules are

plotted on the right, with the colored traces in the center

represented by the same colors and additional black points for

analogous simulated traces that are not shown. The analysis

reveals two distinct clusters of molecules. However, the model

underlying this simulation was a simple two-state model, with

uniform values for the rate constants for all of the individual

molecules.

The origin of this clustering is that molecules with lower SNR

appear to have more transitions and thus give larger calculated

rate constants. Thus, an investigator using threshold analysis could

have concluded that the underlying molecular behavior was more

complex than it actually is, with two types of molecules in the

population that are kinetically distinct. If traces in the same

experiment yield different thermodynamic or kinetic behaviors,

the molecules and their behaviors are described as heterogeneous

[13,28,29,30,31,32]. A major focus of current single molecule

experiments is to understand the origins of potential underlying

heterogeneity. A standardized approach for evaluating the

presence or absence of heterogeneity, which in this instance could

prevent an erroneous conclusion, is needed.

A common approach for dealing with the limited amount of

information contained in any single data trace is to make an

assumption that all of the molecules follow a common kinetic

model [25,33,34] –i.e., that there is no significant heterogeneity in

the single molecule behavior. Rate constants determined by this

approach of combining the data for the individual molecules are

shown by the gray star in Fig. 1A (right); this approach, in some

instances, does not yield a good approximation of the true rate

constants; here the values differ by two-fold from the actual values.

To accurately determine the rate constants for the data in

Fig. 1A and, more generally, to faithfully obtain models for each

molecule –and avoid assuming a common model for all molecules,

assignment of statistical confidence intervals for each molecule is

needed. Statistical analysis is needed to determine if different

molecules follow the same or different kinetic models and, if the

same model is followed, to determine if the individual rate and

equilibrium constants for different individual molecules are the

same, within error, or different. The uncertainty for individual

molecules will be different, depending on the length of the trace,

the SNR of the trace, and the number of transitions that occur in

the trace. Thus, each molecule must be analyzed independently.

Indeed, the thresholding approach eliminates experimental

information needed for statistical analysis, as it makes an absolute

and local judgment as to what state a molecule is in and whether

or not a transition has occurred, whereas in reality these

judgments can only be made at a particular level of confidence

–a level that depends on the aforementioned properties of the data

for the molecule undergoing analysis.

SMART implements a workflow with tools that overcome the

statistical limitations introduced in Fig. 1A and several other

challenges associated with analyzing single molecule data. The

features of SMART include a graphical interface that makes it

easy to inspect and compare raw and processed data, algorithms

for fitting data to a series of possible models that allow the

goodness of fit to be assessed, clustering algorithms for grouping

molecules based on the similarity of inferred parameters, and a

data format that simplifies the sharing of raw and processed data.

We begin by providing a general overview of the fitting procedures

used in SMART (Fig. 1B–E), and we then describe the user

interface (Fig. 2). Subsequent sections (Fig. 3, 4, 5, 6) provide a

more in-depth explanation of key features introduced in Fig. 1B,

C, D, E.

Overview of the SMART Workflow
Single molecule traces can be generated from many different

types of experimental techniques investigating diverse biological or

biochemical systems. A trace typically consists of one or multiple

signals, which have time-dependent intensity fluctuations that

depend both on the dynamics of the system being studied and

noise that is intrinsic to measurements with single molecule

sensitivity. A key challenge in the data analysis is to identify with

statistical rigor levels of discrete, stable intensity and transitions

between those levels. We develop SMART to meet this challenge

and to provide a convenient platform for analysis and sharing of

data. The SMART workflow is schematized in Fig. 1B, C, D, E.

Following this workflow should allow a user to develop

thermodynamic and kinetic models and describe the level of

confidence in such models.

In the first step (Fig. 1B) multiple user-specified kinetic models

are put forward for analysis. Kinetic models can have an arbitrary

number of states (circles, squares and hexagons) and transitions

can be specified to occur between any states (arrows). Transitions

between states are stochastic and the transition rate constants are

constant in time, leading to dwell times spent in each state that are

exponentially distributed, as is standard for rate processes. An

observed signal with a particular signal intensity can correspond to

one state or multiple states in the model. In addition to the kinetic

model, a model of Poissonian or Gaussian noise is assumed for the

signal observed in an experiment for each state in each channel

(Fig. 1C, intensity histograms). Ultimately the noise model used

depends on the details of the system being investigated, and a

different noise model can be assumed for each input channel being

fit. Thus, instead of calculating FRET, the observed signals in each

channel (e.g., donor and acceptor) are fit directly. Direct fitting

avoids unnecessary pre-processing of data and allows noise in each

of the signals to be appropriately accounted for. After the data are

fit to each of the specified models, the optimal model is selected.

The data are fit to Hidden Markov Models (HMM) (Fig. 1C),

which are often used to analyze single molecule data as they are

well-suited for data of this type [35,36,37,38,39,40,41,42,43].

Traces have stochastic variations from two sources –noise and

actual transitions between states. HMMs jointly fit a combined

kinetic and noise model to each individual trace. Parameters for

the models (e.g., rate constants and the mean and standard

Single Molecule Analysis Research Tool (SMART)
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deviation for the Gaussian or Poissonian noise) are determined for

each molecule using maximum likelihood estimation (MLE)

[44,45]. For each state in the model we can determine the state

probability at each time point in the trace (Fig. 1C, left); when a

state probability is close to one, there is a high probability that the

state is occupied. Fits of the noise model can be visualized by using

Figure 1. Workflow for SMART analysis of single molecule data. In a typical analysis of single molecule data the distribution of rate constants
determined from a simple two-state system can appear heterogeneous because of uncertainties that arise from variation in trace length and SNR.
SMART addresses these limitations. Part A (left) shows a simple model used to generate 200 simulated traces, with SNR’s of either 4 or 12 and trace
lengths determined by a photobleaching model (see Methods). Four representative traces are shown, and the time constants for these four
molecules (colors) and each of the other simulated molecules (black) determined by threshold analysis are plotted on the right. The gray star
represents the inferred transition rate assuming all the molecules arose from the same population of molecules. Panels B–E show analysis of the
single molecule FRET data from Panel A subject to SMART analysis. The analysis is shown for one molecule, and the data for all molecules are
compared in Panel E. (B) The user specifies a set of kinetic and emission models to be fit to the observed trace. (C) Traces are analyzed individually.
The donor (green) and acceptor (red) intensities are plotted as a function of time and are used directly in the fits. The cumulative histograms for the
intensity of each are plotted on the right and are fit during the analysis. Fits of the models to the data are shown for the one-, two-, and three-state
models of Panel B. State occupancy probabilities are shown on the left, fitted emission distributions are depicted in the middle, and the inferred
transition rates between states (kxy), and normalized likelihood values (confidence intervals) are plotted on the right (colors depict rate constants for
different transitions). SMART is able to calculate confidence intervals for each of the fitted parameters. (D) The Bayesian information criterion (BIC) is
used to select a model that best balances goodness of fit and the number of free parameters. The fit with the lowest Bayesian information criteria has
the optimal fit. (E) Summary of data from steps (B) and (C) for the entire population of 200 molecules. The plots show different representations of
uncertainties, with confidence intervals on the left (shown explicitly only for the colored traces from Panel A) and as clusters on the right (one cluster
is shown). The molecules that segregated into two apparent classes by thresholding have overlapping confidence intervals (left) and fall in the same
cluster (right) and thus do not provide evidence for distinct populations of molecules.
doi:10.1371/journal.pone.0030024.g001

Single Molecule Analysis Research Tool (SMART)
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Figure 2. Highlights of SMART, an integrated data analysis tool that combines general HMM algorithms with graphical user
interfaces to allow data to be visualized and rapidly analyzed. (A) Molecules can be selected on the basis of experiment type and/or fitted
parameters: (A1) Fitted parameters can be inspected and molecules manually selected in tabular form. (A2) Molecules can be selected based on a
user-specified range of experimental or fit values. (A3) Molecules can be selected by a user-defined experiment number or numbers. (B) Interactive
data viewing environment allows inspection and plotting of raw data and fitted model parameters: (B1) A raw trace and the estimated state
occupancies. (B2) Cumulative emission distributions and fitted emissions model. (User chooses which channel is shown.) (B3) Scatter plot of all
molecules of the user-specified group. The red dot indicates the molecule that is summarized in B1, B2, and B4. (B4) Fitted model parameters for the
indicated molecule displayed in tabular form. (C) The environment (B3) allows the rapid generation of data summaries for the specified molecules
and displays them graphically; three additional data summary graph formats are shown in Part C.
doi:10.1371/journal.pone.0030024.g002

Single Molecule Analysis Research Tool (SMART)
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the fitted parameters to generate curves that overlay with the

cumulative intensity channels for each trace (Fig. 1C, middle).

Importantly, SMART also implements an algorithm for

determining the confidence intervals for each of the parameters

inferred in fitting an HMM to data. The likelihood-ratio test for

HMM’s was recently described by Giudici et al. [46,47], but to the

best of our knowledge has not seen use in the single molecule

community. In our example (Fig. 1C, right), confidence intervals

were determined for the kinetic parameters. Knowing the

confidence with which a kinetic parameter has been determined

is critical to assessing if molecules are behaving differently or if

spread in the determined parameters is consistent with uncertain-

ties in the measurement.

From the multiple kinetic models that are fit to the data, a

model that optimally describes the data must be chosen. Higher-

order models (i.e., those with more degrees of freedom) always fit

data better than lower-order models. Thus, a statistical test is

required to justify added degrees of freedom. As model parameters

are determined using MLE, the Bayesian information criteria

(BIC) is a natural metric for selecting the optimal model in

SMART [45,48,49]. The BIC rewards models that fit the data

well and punishes extra free parameters. The BIC is determined

and compared for fits to different model types. The model with the

lowest BIC is optimal in balancing goodness of fit with simplicity.

This comparison can be made graphically by plotting the BIC as a

function of the model complexity (Fig. 1D). The BIC has a

rigorous theoretical basis, but has limitations that are discussed in

a later section.

Once individual traces have been fit, the next step is to bring the

information for all of the molecules together. A fundamental

question is whether there is molecular heterogeneity in the

experiment. To evaluate the presence of heterogeneity with

SMART two tools are provided (Fig. 1E). First, scatter plots of

fitted parameters and their corresponding confidence intervals can

be used to assess by inspection if there is overlap in the confidence

ranges for all, nearly all, or subsets of the molecules (Fig. 1E, left;

confidence intervals shown only for the four molecules from

Fig. 1A). Second, molecules can be clustered based on the

similarity of the fitted model parameters (e.g., rate constants) and

the uncertainties associated with them. Clustering provides a

Figure 3. Comparison of HMM and thresholding for identifying
the true rate constants from traces varying over a range of
SNRs with trace length (not shown) inversely proportional to
SNR to account for photobleaching in smFRET experiments. (A)
The two-state kinetic model used in simulating traces over a range of
SNRs. (B) Anecdotal traces at five different SNRs, simulated emissions
(see Methods) are shown in blue and the true state being occupied is
shown in red. Two-state HMM fits are shown below the simulated
traces. The blue line indicates the probability of being in state 1 (low
intensity) the green line indicates the probability of being in state 2
(high intensity). I and P on the ordinate of the traces indicate intensity
and probability, respectively, for each SNR. (C) The average inferred rate
constants obtained using thresholding (blue) and HMM modeling (red)
as a function of the SNR. The true value, represented by the horizontal
green line, is 0.3 (Panel A). The dotted blue line and red swath represent
the region that bounds 90% of the determined rate constants from the
500 simulated traces analyzed for HMM and threshold fits, respectively.
The mean number of transitions per trace is indicated at the top of the
graph. As the difference in signal means for true transitions becomes
negligible relative to the noise, the BIC indicates that a one-state fit
provides the best fit to the data; this region is shown by the gray swath.
doi:10.1371/journal.pone.0030024.g003

Figure 4. Testing the ability of the BIC to identify the true
model. (A) Three-state model used to generate mock traces. In this
model, states 1 and 2 had emission properties identical to the states in
Fig. 3A (also see Methods), and the equivalent of the SNR of 4 from that
figure was used. State 3 was added with emission halfway between
these states, resulting in an effective SNR between states of 2. (B)
Simulated traces were fit to six different HMM models. The 3-thermo
and 3-cycle models have identical topology but 3-thermo was fit using
a constraint of thermodynamic closure (i.e., the rate constants
determined will satisfy detailed balance) and therefore has one fewer
fitted parameter than 3-cycle. (C) Plots of the BIC for the six different
models. Three BICs for three example traces are shown in black. (D)
Same data as in part C except that the difference between the 3-linear
BIC (lowest in all cases) and the BIC for the other models is plotted. The
solid black line indicates the mean of this difference for 1000 traces and
the dashed lines indicate 90% confidence intervals.
doi:10.1371/journal.pone.0030024.g004

Single Molecule Analysis Research Tool (SMART)
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quantitative measure of the overlap between molecules [50].

However, clustering has not been widely used for evaluating the

heterogeneity that is typically seen in single molecule experiments.

In SMART, the optimal number of clusters used to describe the

data is determined using a technique similar to the BIC model

selection criterion used in Fig. 1D. For the SMART analysis of the

simulated data in Fig. 1A, one cluster optimally fits the data

(Fig. 1E, right), providing no indication of heterogeneity in

agreement with the input model. Analogous exercises with distinct

underlying populations reproduce the number and properties of

these subpopulations (Fig. 5 below).

SMART: The software package
For someone designing, optimizing, and conducting single

molecule experiments, the data analysis steps outlined in Fig. 1B–

E are carried out on a regular basis and can be enormously time-

consuming. SMART is designed to make this analysis easy so that

experimentalists can focus their attention on comparing and

interpreting data and designing experiments that yield more

information about the system being studied. SMART has a

graphical interface that streamlines access to built-in functions and

allows the rapid viewing of raw and processed data. Standardi-

zation of data processing and visualization has been important

for genomics and macromolecular structure determination

[19,20,21,22]. It seems likely that standardization by SMART or

a similar approach will have an analogous impact for those

carrying out single molecule experiments. All of SMART and the

interface is written in the widely used MATLABTM programming

language, allowing modification of SMART by advanced users

and direct interfacing with MATLABTM’s extensive built-in

functionalities. SMART is freely available and can be downloaded

from the website simtk.org maintained by Simbios (the NIH

Center for Physics-based Simulations of Biological Structures –

simbios.stanford.edu) at Stanford University.

The SMART software package is extensive, and a full

description of all functions is described in the user manual that

is included with the package. Some key features of the interface are

depicted in Fig. 2. After having fit individual molecules to kinetic

models (interface not shown, see SMART user manual), groups of

molecules can be selected for further analysis. Molecules can be

selected by inspection (Fig. 2A.1), by specifying a range of desired

fitted parameters (Fig. 2A.2), or by identifiers that specify the day

and type of experiment that was completed (Fig. 2A.3). Once

molecules are grouped, they are displayed in the interface depicted

in Fig. 2B. This interface depicts the raw data and inferred state

distributions for an individual molecule (Fig. 2B.1), fits to the noise

model (Fig. 2B.2), and all of the fitted parameters in tabular form

(Fig. 2B.4). Plots of fitted parameters can be generated (Fig. 2B.3)

instantaneously for all molecules selected in Fig. 2A and easily

exported (Fig. 2C) for future use. Three classes of plots can be

generated: (1) histograms of a single parameter vs. the number of

times it was observed; (2) plots of a single parameter in rank order

from the lowest to highest observed value; and (3) scatter plots of

two fitted parameters. Features of the SMART interface not

Figure 5. Clustering algorithms to identify two non-exchang-
ing populations of molecules. (A) Traces with SNRs of 2, 5, 10 and
15 were generated from two non-exchanging pools of molecules (100
traces each) with one transition rate differing by two-fold. The traces
were fit to two-state HMM models and subjected to clustering analysis
in SMART. (B) Traces were fit with 1 to 4 clusters; the cluster size of the 2
and 3 cluster fits are shown while the 1 and 4 cluster fits are shown in
Appendix S1. The black and green bars correspond to an individual
cluster size at the indicated SNR; the bars corresponding to the third
cluster in the third cluster fit is not visible due to its small size. (C)
Scatter plots for two-cluster fits of the inferred rate constants. Black
dots indicate the two inferred cluster centers, and blue dots indicate
the true population centers.
doi:10.1371/journal.pone.0030024.g005

Figure 6. Analysis of heterogeneity in smP4–P6 RNA with simulations and SMART clustering. The smP4–P6 data and simulation analysis
are from Greenfeld et al. [65]. (A) Folding and unfolding rates of smP4–P6 (black) were analyzed by simulating two non-exchanging populations of
molecules whose rate constants differ by two-fold (red). By this analysis 80% of the molecules are accounted for by the simulated data. (B) The
inferred cluster size for fits of 1 to 5 clusters of the folding and unfolding rates of smP4–P6. (C) Color-coded smP4–P6 kinetics from the four-cluster fit.
The two central clusters account for 90% of the molecules.
doi:10.1371/journal.pone.0030024.g006

Single Molecule Analysis Research Tool (SMART)
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shown include fitting of data to models, model selection, and

clustering.

SMART Uses General HMM Algorithms to Fit Models to
Single Molecule Data

Comparison of HMM and thresholding. Single molecule

experiments monitor the temporal changes of a molecule by

recording one or multiple experimental observables, such as

changes in donor or acceptor intensity in a FRET experiment or a

distance fluctuations measurement. Typically these data are

stereotyped by the presence of rapid (beyond the temporal

resolution of an experiment) transitions between states of stable

intensity. When the data have discrete hops (or can be well

approximated by this form) identifying the occurrence of

transitions in intensity levels is a key challenge of the analysis.

Two general means have been used to identify changes in

intensity in single molecule data. Thresholding identifies states by

defining intensity thresholds that stereotype each state [51]. This

approach is intuitive and easiest to implement. However, fitting

the data to a statistical model using Bayesian inference is a more

general approach [45]. A large class of models that is fit using this

approach are HMMs; as discussed below, HMMs make minimal

assumptions about the underlying origins of the data signals [45].

In experimental systems where the data are not characterized by

discrete hops (i.e., where continual variation in intensity levels is

observed) or where a detailed understanding of the system can

justify the creation of more complex models to fit to the data

alternative analysis procedures can be used [52,53,54].

To compare the performance of thresholding and HMM in

inferring rate constants, we simulated traces for a single

fluorophore-labeled molecule fluctuating between two states with

distinct levels of fluorescence, inferred rate constants by thresh-

olding and by fitting to two-state HMMs, and compared the

inferred values to the true rate constants. This and all subsequent

simulations used Poissonian emission noise (Fig. 3A and Methods),

as this is the theoretical noise model for a single fluorophore [55].

In these simulations the SNR and trace length were varied

inversely to reflect faster photobleaching that occurs at higher

SNR; the product of SNR and trace length were held constant to

reflect a simple model of the dependence of the dye photobleach-

ing time on laser intensity and thus SNR (see Methods). The

effects of alternative photobleaching models on the determined

rate constants are considered in Fig. S1 of Appendix S1, since a

simple linear dependence is not always observed experimentally.

Fig. 3B is shown to provide examples of the physical appearance of

real single molecule data with typical SNR values used throughout

this analysis (see Fig. S1 of Appendix S1). Traces are shown at five

different SNRs (blue lines) with the state lifetimes (i.e., rate

constants) fixed. The red lines show the true state that each

molecule occupies at each time. As the lengths of the traces vary

considerably (from about 200 to 30,000 time steps), a constant

window of about 250 time steps is shown.

The thresholding procedure defines a value for a signal that,

once crossed, indicates that a state transition has occurred.

Histograms of the dwell times between transitions are then fit to

kinetic models; in this instance a model of exponentially

distributed dwell times was used. The blue line in Fig. 3C

indicates the mean inferred k12 rate constants determined using

thresholding for all of the simulated traces at a given SNR (only

one of the determined rate constants is shown since they are both

determined with comparable accuracy). The region bounded by

the dashed blue lines indicates the spread in the inferred rate

constants that accounts for 90% of all inferred values from fits to

500 traces (these can be well approximated with 100 traces but are

less smooth).

Comparison of this analysis to the actual rate constant (k12 = 0.3)

shows that thresholding works best at SNRs greater than ,5 for

the conditions simulated. Below this SNR false transitions produce

an upward bias in the determined rate constants with completely

erroneous values obtained at SNRs lower than 3 to 4. At low SNR,

the rates converge to a value of 0.5; the value of 0.5 is expected for

fitting noise because every time point has an equal probability of

being above or below the threshold, so that there is a probability of

an apparent transition at each timepoint of 0.5. At high SNR (i.e.,

short trace length), it is common to have traces with zero

transitions. These traces only provide an upper bound on one of

the state lifetimes and no information on the other. Therefore,

traces with fewer than two transitions were excluded from this

analysis, leading to an upward bias in the mean number of

transitions per trace. Above a SNR of ,30, a slight upward bias in

the rate constants is observed. This feature becomes more

pronounced for lower rates because even fewer transitions are

present in the data (Fig. S2 of Appendix S1).

HMM fitting, as outlined in the next section, provides a good fit

at lower SNRs compare to thresholding (Fig. 3C). This can be very

important in single molecule fluorescence experiments as the use

of lower SNRs typically makes it possible to achieve longer

individual-molecule data traces, as a result of reduced photo-

bleaching rate, and this in turn aids in the analysis of potential

molecular heterogeneity (as will be discussed below). HMM

performs better than thresholding because instead of determining

the hidden state locally in time for each data point, it assigns a

state occupation probability conditioned on all past and future

observations and based on the noise model for the system. The

power of the HMM method can be seen in the traces of Fig. 3B. At

high SNR, the state probabilities are essentially 1 or 0, so that

there is little difference from thresholding. However, at lower

SNR, as is often required to obtain sufficiently long data traces in

practice, the probabilistic state assignments from HMM differ

substantially from the absolute threshold assignment. These

simulations also help establish an optimal SNR regime for

carrying out experiments.

Implementation of HMM in SMART. SMART determines

kinetic parameters by fitting HMMs to the raw data. HMMs have

been used for single molecule data analysis, and the fitting

procedures used in SMART provide notable improvements over

commonly available implementations.

HMMs are a flexible model type that have seen use in diverse

fields such as voice recognition software and genomic sequence

alignment [45]. HMMs are a more general form of Markov

Models (MM). A MM is composed of directly observable states

that are connected by stochastic transitions with rate constants that

are constant in time, which is equivalent to having exponentially

distributed dwell times in each state. A MM can have any number

of states, and these states can be connected in any manner. MMs

take as inputs long series of data (e.g., a string of characters or a

time series of binary data), and multiple data sources can be fit in

an MM. However, in single molecule measurements states cannot

be directly observed and inferred with absolute confidence. The

state that a molecule occupies is masked by noise, and it is also

possible that multiple states produce identical signals. HMMs are

ideal for fitting this type of data, as HMMs have all the properties

of MM, but handles states that cannot be directly observed [45].

For each specified model, the HMM algorithms in SMART fit a

statistical model to the data to determine the parameters that best

fit the data and the confidence intervals associated with those

parameters. The optimal model parameters for a model with K

Single Molecule Analysis Research Tool (SMART)
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hidden states are determined to maximize the likelihood of the

data given a model [p(data | model)] given by equation 1,

p(datajmodel)~ 1K
�!: P

N

t~1
EtA

T

� �
fo
! ð1Þ

where 1K
�!

is the unit vector of length K, Et is the emission

probability matrix, AT is the transition probability matrix, and fo
!

is the best guess of the initial state of the system. Equation 1 is the

key equation evaluated in performing the HMM fit, and a detailed

description of these parameters and this equation is given in

Appendix S1. The MLE is determined using the computationally

efficient Baum-Welch algorithm [44,56]. A key feature of SMART

is the determination of confidence intervals for the fitted HMM

parameters. Once the MLE has been calculated, determining

these confidence bounds for any inferred parameters is possible.

This determination is done by varying the parameter value around

the MLE and recording the decrease in the data likelihood. A

confidence bound is determined by rejecting all models that

produce the observed data with less than a specified threshold

[46].

In Fig. 3C, the mean inferred rate constants determined using

HMMs for all of the simulated traces at each SNR are indicated

by the red line. The region bounded by the opaque red swath

indicates the spread in the inferred rate constants that accounts for

90% of all inferred rate constants determined by fitting 500 traces.

HMM fits are able to correctly infer rate constants at SNRs

considerably lower than thresholding can, at SNRs of ,1 in our

example. Fig. S1 of Appendix S1 shows that the SNR cutoff can be

lower for states with longer state lifetimes. The more reliable

performance of HMMs arises from the fact that inferred state

occupation probabilities are not sensitive to occasional jumps of

the signal across a threshold. Nevertheless, at low SNR the fitted

rate constants converge to a value of ,0.1 (and not 0.5, as would

an unbiased estimator). This result shows that HMM fits do not

provide an unbiased estimator of model parameters and that the

bias is larger in the low SNR regime. Fig. S2 of Appendix S1

shows, using two additional examples with different transition

rates, that the inferred rate constants are accurately determined

down to an SNR of ,1 but also converge to a value of 0.1 at low

SNRs. At high SNR the performance of HMM fits and

thresholding are the same because the uncertainty in indentifying

a state becomes small.

To test the accuracy of the calculated confidence values

determined during HMM fitting we compared the calculated

confidence bounds to an uncertainty measurement determined

with simulation. The confidence bounds determined as part of the

HMM fits for the rate constants are shown by the red vertical error

bars in Fig. 3C. Comparison of this region to the 90% confidence

intervals calculated from fits to 500 simulated traces (Fig. 3,

opaque red region) indicates good agreement between the two

measures of uncertainty. Computation of the confidence intervals

relies on the assumption that the data likelihood is approximately

Gaussian near the maximum likelihood estimator. This assump-

tion can be invalid at low SNR when transitions are not reliably

observed and at high SNR when transitions are reliably observed

but few in number due to smaller observation times. For the high

SNR case an investigator can assess this assumption for a

particular data set by plotting the data likelihood to see if the

distributions are Gaussian (e.g. as shown in Fig. 1C right). Below

an SNR of 1, the confidence intervals calculated with SMART

underestimate the true uncertainty in the inferred rate. This

discrepancy can be reduced by accounting for correlated

uncertainties in the fits, as discussed in Appendix S1 Fig. S3.

Above a SNR of 3 these discrepancies are relatively small (with a

mean discrepancy for SNRs between 1 and 50 of ,10%

overestimating the uncertainty in the inferred rate, reflecting the

increasingly poor fit of a Gaussian to the data likelihood due to

shorter observation times), making the confidence intervals a good

estimator of the uncertainty in the inferred parameters over a wide

range of SNRs. Evidence of the poor fit quality in the low SNR

regime can be gained from the model selection criteria. In the case

of Fig. 3C traces with an SNR below 0.7 are more appropriately fit

with a one-state model rather than the two-state model; this

indicates a lack of confidence in the fit and derived parameters for

the two state model (see the next section for a further discussion).

The analysis of Fig. 3 shows there are regimes in which rate

constants can be accurately determined. However, the ability to fit

a trace depends both on the state lifetimes and the relationship

between SNR and trace length. Fig. S1 of Appendix S1

systematically explores the quality of fits for a two-state system

(k12 = k21 = 0.1) as the relationship between SNR and trace length

is systematically varied. State lifetime can have a similarly complex

effect on the ability to infer rate constants. Indeed the SNR limit of

0.7 for obtaining accurate rate constants in Fig. 3C is only true for

those simulated conditions. As demonstrated in Fig. S1 of

Appendix S1, as lifetimes increase, accurate rate constants can

be inferred from traces at significantly lower SNRs.

HMMs in general allow transitions between states to occur that

violate microscopic reversibility and, as a result, fits to HMMs are

not guaranteed to have thermodynamic closure (detailed balance)

–i.e., to be thermodynamically correct. Many single molecule

experiments, including those conducted on motor proteins,

polymerases and helicases are not at thermodynamic equilibrium.

However, imposing this constraint is appropriate when experi-

ments are carried out at thermodynamic equilibrium. SMART

overcomes this basic limitation by allowing HMMs to be fit using a

constraint of thermodynamic closure. A detailed description of this

fitting procedure is the subject of a theoretical study that will be

published elsewhere, and a brief description is provided in

Appendix S1.

A more general limitation of HMMs arises in that certain

models are not accurately described or well approximated by

HMMs with a few states. A common example in the biophysical

literature is the stretched exponential model, which has received

considerable attention as a possible description for the fast folding

of proteins [57,58,59,60] and is often used as a phenomenological

model. Although an HMM with many states can approximate the

form of a stretched exponential, this approximation leads to the

fitting of many kinetic parameters in contrast to the two

parameters in the analytical form of a stretched exponential and

is therefore not ideal. However, for many systems a simple HMM

with a limited number of states can rapidly provide good fits to the

data, and predicted behaviors from the best fit model can be

subjected to subsequent experimental tests. HMMs can also aid in

experimental design as a researcher determines optimal conditions

that account for the tradeoffs between SNR and trace lifetimes

(Fig. 3C and Fig. S1 of Appendix S1).

Determination of the Optimal Model
The flexibility of the HMM architecture enables many different

types of models to be fit to data. In most cases an investigator is

interested in identifying the simplest model (with the smallest

number of free parameters) that fits the data well; this model will

then be further tested and refined in subsequent studies as a

kinetic, thermodynamic, and mechanistic understanding of the

system is developed.

Single Molecule Analysis Research Tool (SMART)
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While model size estimation is not a solved problem in hidden

Markov model inference, the Bayesian Information Criterion

(BIC) is a widely adopted method with a theoretical basis [45,48]

and is computationally accessible [61,62]. The BIC’s performance

as a function of data length and SNR is not completely understood

and has only been investigated in a few cases [61,63] and the

method does not provide the user with a quantitative measure of

confidence in its output. Nevertheless, there are no easily

accessible methods that clearly outperform BIC. We have

therefore implemented the BIC as a guide to the experimenter

in assessing the dynamic complexity underlying the data. The

experimentalist can use BIC along with plots of fitted parameters

to adopt working models and to design further tests of these

models.

The BIC rewards models that fit the data well and punishes

extra free parameters to account for the ability of larger models to

always fit data as well or better than smaller ones. The BIC

relationship is given by equation 2:

BIC~{2:log p(datajmodel)½ �zk:log N½ � ð2Þ

where log p(data | model) is the log of the likelihood of the data

under the maximum likelihood estimator (determined by maxi-

mizing the quantity in equation 1), k is the number of free

parameters being fit, including transition rates, signal means, and

standard deviations, and N is the length of the observed trace. The

model with the lowest BIC provides the optimal fit of the models

under comparison in terms of maximizing data likelihood and

minimizing model complexity.

As a demonstration of how the BIC is used we examined the

ability of the BIC to identify the correct three-state model out of

six candidate models. Fig. 4A shows the three-state kinetic model

used to generate mock traces. In this model, states 1 and 2 had

emission properties identical to the states in Fig. 3A (also see

Methods), and an equivalent of the SNR of 4 from that figure was

used. State 3 was added with emission halfway between these

states, resulting in an effective SNR between states of ,2. Six

candidate models were then fit to the traces. For models with three

or more states, the interconnections between the states become an

important consideration. In this example we consider three

possible three-state models, but, for simplicity, we did not consider

ones where only two distinct intensity levels are produced or where

thermodynamically irreversible transitions occur.

Fig. 4C plots the determined BIC for each of the six models in

order of increasing number of fitted parameters. Of all fits, the true

model (3-linear) produces the lowest BIC. The 1- and 2-state fits

have BICs that are much higher than for the other models, with all

other models showing the expected trend of increasing BIC with

an increasing number of free parameters. A simple way to visualize

this analysis is to look at the difference between BIC values in a

trace. Fig. 4D shows the difference in BIC value between all the

fits and the true model. Although the absolute values of the BIC’s

vary from trace to trace (Fig. 4C), the 3-linear model is the

minimum in all cases and thus the best fit to the data.

The ability of the BIC to correctly identify the true number of

states depends strongly on the details of a system and experimental

data. For instance, in the two-state system shown in Fig. 3C, a one-

state model gives the best fit to the data below an SNR of 0.7

(opaque gray region), indicating no meaningful kinetic information

can be extracted with such a small SNR. In Fig. S4 of Appendix

S1 we examine the effect of state lifetime, trace length, and

distinctness of intensity level for each state on the ability of the BIC

to identify the true model. These examples highlight limitations

that exist when trying to identify the best model and the need to

use BIC in conjunction with and as a guide for additional

experimental tests. The BIC can also be used to evaluate which

noise model optimally fits the data (i.e., Poissonian or Gaussian),

although we have not systematically investigated this behavior.

Clustering Algorithms to Assess Heterogeneity in Single
Molecule Data

The determination of kinetic and thermodynamic parameters

from individual molecules provides sensitivity unmatched by bulk

techniques. For many systems this sensitivity has revealed

persistent long-lived differences in seemingly identical molecules

–i.e., molecular heterogeneity [13,15,17,64]. This type of direct

observation is unique to single molecule measurements and has

garnered much attention. There is evidence that the observed

heterogeneity can arise from large barriers in deeply furrowed

energy landscapes and from covalent differences between

molecules in the population [13,17,65].

No standardized approach exists for assessing if the data from

an experiment is stereotyped by heterogeneity. As a first-pass

approach, SMART allows data to be plotted with statistically

rigorous confidence intervals that can then be visually assessed for

the degree to which the confidence intervals overlap or fall into

well separated groups. SMART also implements a more

systematic analysis tool that groups molecules into clusters based

on the similarity of their inferred parameters and the uncertainty

in inferring those parameters. This tool allows single molecule data

for populations of molecules to be systematically and rapidly

analyzed.

SMART allows the user to assess molecule-to-molecule

variation by clustering up to three jointly inferred model

parameters. The clustering algorithm in SMART takes as inputs

the MLE model parameters and confidence bounds determined by

an HMM fit for each trace in the data set. These parameters are

then grouped by fitting models with different numbers of clusters.

An expectation maximization algorithm is used to find the MLE fit

for the cluster positions [50]. This task is accomplished by

evaluating the likelihood of each trace arising from each cluster

and then adjusting the cluster positions to maximize the expected

likelihood of the data set. This computation can be completed

quickly -in minutes on a desktop computer- by approximating the

likelihood for each trace with a normal distribution. A detailed

description of this algorithm and an analysis of this approximation

is provided in Appendix S1. Key outputs that can be used to

describe and evaluate the cluster fit include the cluster center

positions, the probability that a trace resides within a cluster for

each trace, the total size of the cluster (i.e., the number of traces

expected to reside within the cluster), and the log likelihood or BIC

for the data set under the cluster model. To demonstrate the utility

of the SMART clustering algorithms for assessing heterogeneity in

single molecule data, we first present simulated data for a

hypothetical heterogeneous system. We then present actual

smFRET data that was previously analyzed using a more time-

consuming and less direct simulation approach.

To test the ability of the clustering approach to differentiate two

populations of traces, traces were simulated (100 traces for each

population) at four different SNRs ranging from 2 to 15 using the

same relationship between SNR and trace length as in Fig. 3. For a

given SNR, traces in the two populations are distinguishable

because one of the rate constants differs by two-fold, which

provides a rather stringent test of this algorithm (Fig. 5). Traces

were then fit to two-state HMMs and traces at each SNR were fit

with one to four clusters. Fig. 5B shows the determined cluster size

for the two and three cluster fits. The one and four cluster fits are

shown in Fig. S5A of Appendix S1; the one-cluster fits by

Single Molecule Analysis Research Tool (SMART)
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definition contain all of the molecules analyzed. The fourth cluster

did little to improve the overall fit as the size of the smallest two

clusters in the four cluster fits was almost identical to the smallest

cluster in the three cluster fits.

For the two-cluster fits, a SNR of around five or lower is needed

for the two clusters to be nearly equally populated and thus to

reflect the actual behavior of the two populations. For the

simulations with SNRs of five or two, the determined clusters

correctly partition ,90% of the molecules and accurately

determine the population centers (Fig. 5C, blued dots). This

increased accuracy at lower SNR is a result of the relationship

between SNR and the typical size of confidence bounds in inferred

kinetic parameters shown in Fig. 3C above. Comparison of the

two-cluster fit to the three-cluster fit shows only a minor change.

The third cluster (Fig. 5B) is zero for SNRs five or higher and for

an SNR of two it only accounts for 1 out of the 200 traces. Some

molecules can populate the third cluster as a result of the stochastic

variation in the inferred model parameters of the simulated traces.

The marginal improvement seen for the addition of the third

cluster and fourth cluster can be further evaluated using plots of

the log of p(data | model) for the one to four cluster fits shown in

Fig. S5B of Appendix S1. The value of the log likelihood for the

data set increases as more clusters are added, and the leveling off

of this increase is an indication that the correct number of clusters

has been surpassed. This criterion further supports the cluster

assignment suggested above by our analysis of the cluster size.

These results indicate the clustering approach can be a powerful

tool for analyzing populations of molecules. The clustering

approach directly relates uncertainties in parameters for individual

molecules to the behavior of populations of molecules. Moreover,

clustering eliminates many of the assumptions that would

otherwise be used in the analysis of heterogeneity with simulations

and can be completed rapidly.

To further test the utility of clustering we used SMART

clustering to reanalyze part of the smFRET data from a prior

RNA folding experiment. Fig. 6A shows a scatter plot of the

folding and unfolding rate constants determined by fitting a two-

state HMM to traces for folding of the P4–P6 domain of the

Tetrahymena Group I intron in 2.5 mM Mg2+ [65]. Overlaid in red

are simulations used to assess the heterogeneity in P4–P6. These

simulations assume two populations of molecules with folding and

unfolding rate constants differing slightly (kf = 0.95/ku = 0.80 and

kf = 1.35/ku = 0.57 all [sec21]) and with uncertainties due to SNR

and trace length estimated from variation in the measured

populations. These simulated distributions are able to account

for 80% of all the molecules. This analysis in combination with

other results supported the conclusion P4–P6 has relatively simple

folding behavior, with most rate constants for individual molecules

falling within a two-fold range [65]. Analysis of this type is a

standard approach for evaluating heterogeneity in single molecule

data and can give an assessment of the extent of heterogeneity in a

system. However, the approach is time-consuming to implement

and there are numerous assumptions that go into iteratively

identifying the parameters used as inputs for the simulation and for

evaluating the degree of overlap between the measured and

simulated distributions.

These data were fit with one to five clusters using SMART

(Fig. 6B & C). For the three-cluster fit the two main clusters

account for 819 and 278 molecules (93%), while the remaining

cluster contained only 79 of the molecules. An examination of the

four-cluster fit reveals a similar result, with the two main clusters

accounting for 556 and 514 molecules (91%) and the two minor

clusters containing only 106. In the five-cluster fits the three

smallest clusters contain 196 molecules with the two major clusters

having a similar distribution as in the four-cluster fit. These results

reveal a similar picture to the interpretation of the simulation

shown in Fig. 6A. For instance, in the four-cluster fit the center of

the two main clusters are (kf = 0.91/ku = 0.90 and kf = 1.19/

ku = 0.51 all [sec21]), which are nearly identical to the centers of

the simulated distributions and these two clusters account for over

90% of the data. Since we do not know the true underlying

distribution of P4–P6, in contrast to the simulations examined in

Fig. 5, determining the optimal number of clusters will necessarily

require an evaluation of the many possible sources that can

contribute to the distribution in the data. For P4–P6 being able to

account for 90% of the data with two kinetically similar

populations of molecules is suggestive of a simple folding landscape

for P4–P6. This is particularly the case considering that a small

amount of remaining covalent heterogeneity could be the source

for the variation seen in the remaining population of molecules.

However, in stark contrast to the prior simulation analysis

(Fig. 6A), this result is arrived at quickly, naturally, and without

the need for extensive user input.

Discussion

SMART provides a solution for contemporary challenges in the

analysis of single molecule data, providing an ease of use, rigorous

statistics, a semi-automated means to distinguish models, a

convenient format for storing and sharing data and is freely

accessible.

Single molecule approaches have enormous power to delve

deeply into molecular mechanisms, but single molecule data also

have many sources of uncertainties and can be unwieldy to

manipulate and analyze. SMART aids in experimental design,

revealing a counter-intuitive increase in data quality with lower

SNRs because this decrease typically allows longer observation of

individual molecules. Fitting the individual data traces obtained

to HMMs is necessary to deal with the inherent stochastic

variations. The HMM fitting algorithms in SMART are a more

general implementation than have been routinely applied to

single molecule data, allowing fits with multiple data types and

with states having non-unique emissions. SMART also allows a

thermodynamic constraint to be imposed and confidence

intervals to be calculated for inferred parameters. The confidence

intervals obtained in SMART allow a common and vexing issue

in single molecule work to be addressed: to what extent do the

individual molecules exhibit identical versus distinct behavior?

The degree of overlap between the confidence intervals of

inferred parameters provides a readout of how similar or different

individual molecules are, and the clustering algorithms in

SMART provide a natural and intuitive means for identifying

groups of similar molecules.

In addition to providing a comprehensive and statistically

rigorous means of analyzing single molecule data, SMART

represents a step toward standardization of single molecule data.

All the analysis tools in SMART are accessible through a graphical

interface, allowing everything from specifying the model to be fit to

the data, to inspection of fitted parameters, and clustering groups

of similar molecules. The integration of commonly used functions

speeds data analysis and allows investigators to focus on the design

and optimization of experiments instead of the implementation of

analysis protocols. The adoption of a common data analysis

format should facilitate sharing of raw data and the critical

assessment and re-assessment of analyses from other investigators,

analogous to advances from standardization of X-ray structural,

microarray, and other genomic data.
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Methods

See Appendix S1 for detailed descriptions of HMM and

clustering fitting procedures.

Numerical simulations for Figs. 1, 3, 4, and 5 required sampling

from a hidden Markov model (HMM) with a specified transition

matrix A and emissions distribution. We first obtained a sequence

of hidden states by sampling from the stationary distribution of the

Markov chain and then repeatedly choosing a next state according

to the transition probabilities specified by A. We then generated a

sequence of emissions conditionally independent of each other

given the hidden state. The emissions distributions we sampled

from were the Poisson distribution with a specified mean for

Figs. 1, 3, 4, and 5. We sampled from a single Poisson-distributed

channel in Figs. 3, 4, and 5. We sampled from two Poisson-

distributed, conditionally independent of the hidden state channels

in Fig. 1 to simulate the availability of donor and acceptor

fluorescence data. We did not simulate FRET directly or attempt

to fit FRET traces, because we assume that the raw donor and

acceptor traces are available in an experiment and because the

ratio of two Poisson-distributed signals follows a ratio distribution

and is not normal or Poisson. As noted above, more rigorous and

accurate analyses can be carried out using the actual emission data

from each channel.

These simulations required a choice of trace length T and signal

to noise ratio (SNR). When we varied these parameters, as in

Figs. 3 and 5, we held their product constant, T*SNR = c, to

simulate the effect of photobleaching. Thus, higher optical power

results in higher SNR but faster dye photobleaching and lower dye

lifetime T. A higher constant c corresponds to a higher total mean

number of photons a dye emits before photobleaching. SNR

increases in proportion to the square root of the number of

channels, so two identical independent intensity channels with

SNR 1 would produce overall SNR !2.

For a single Poisson-distributed channel with means m1 and m2

in states 1 and 2, as in Figs. 3, 4, and 5, SNR is defined by

equation 3.

SNR1,2~
1

2

m1{m2j jffiffiffiffiffi
m1

p z
m1{m2j jffiffiffiffiffi

m2

p
� �

ð3Þ

For example a Poisson-distributed channel with mean intensities of

100 and 110 in states 1 and 2, respectively, corresponds to a SNR

of about 1.

Supporting Information

Appendix S1 Includes supporting figures and support-
ing methods. Supporting methods provides a detailed descrip-

tion of HMM specification, HMM fitting procedures, confidence

interval determination, model selection, cluster determination,

cluster selection and conversion from continuous to discrete time

models.

(PDF)
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